Boosting C Sequestration and Land Restoration through Forest Management in Tropical Ecosystems: A Mini-Review
Abstract
:1. Introduction
2. Material and Methods
2.1. Systematic Literature Review
2.2. Including and Excluding Criteria
- -
- Research questions (scope, topic): (i) how managing soil carbon in tropical forest ecosystems may be related to climate change adaptation and resilience; (ii) how land restoration and management in forest ecosystem may be driven by the interaction between SOC and other nutrients cycling and links to land restoration in tropical forest ecosystems in the long term?
- -
- Define and conceptualize (terms and concepts); ‘tropical forests’, in this study, is a collective name for all forest ecosystems (natural and plantations). ‘Natural forest’ may be primary or secondary, either humid or dry. ‘Forest plantations’ are defined as those forest stands established by planting or/and seeding in the process of afforestation or reforestation, marginal and degraded land may be previous cropping or forest systems.
- -
- Qualitative and quantitative measurements and key variables: primary studies that evaluate SOC management related to climate change or land restoration in tropical ecosystems have been considered. In addition, the review also includes a qualitative and quantitative review of secondary data on tropical forest ecosystems.
- -
- Time frame: literature published in the last three decades (1990–2021).
- -
- Data sources: articles, books and book chapters, theses and dissertations, also bibliographies and data available have been reviewed.
2.3. Primary Studies and Review Search
2.4. Information and Quality Assessment Extraction
3. Results and Discussion
3.1. How Forest Management May Boost Soil C Sequestration in Tropical Ecosystems
3.1.1. Forest Management Boosting C Sequestration
3.1.2. Limitation to SOC Sequestration in Forest Ecosystems
3.2. What Is the Relationship between the SOC Quality (i.e., SOC Associated with N or P Cycling, C Stocks, Stable Versus Labile C Forms) and Its Sequestered Quantity on One Hand, and the Land Degradation Restoration on the Other Hand, in Tropical Forest Ecosystems over the Long Term?
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Global Forest Resources Assessment 2020; FAO: Rome, Italy, 2020; Available online: http://www.fao.org/forest-resources-assessment/2020 (accessed on 19 January 2022).
- FAO. How Are the World’s Forests Changing? Global Forest Resources Assessment 2015, 2nd ed.; FAO: Rome, Italy, 2016; 54p. [Google Scholar]
- FAO; UNEP. The State of the World’s Forests 2020. In Forests, Biodiversity and People; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the World’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jandl, R.; Rasmussen, K.M.; Tomé, M.; Johnson, D.W. The Role of Forests in Carbon Cycles, Sequestration, and Storage 4; Forest Management and Carbon Sequestration. 2006. Available online: http://www.iufro.org/science/taskforces/carbon-sequestration/ (accessed on 19 January 2022).
- Ontl, T.A.; Janowiak, M.K.; Swanston, C.W.; Daley, J.; Handler, S.; Cornett, M.; Hagenbuch, S.; Handrick, C.; McCarthy, L.; Patch, N. Forest Management for Carbon Sequestration and Climate Adaptation. Practice of Forestry—Biomass, carbon & bioenergy. J. For. 2020, 118, 86–101. [Google Scholar] [CrossRef] [Green Version]
- Biber, P.; Felton, A.; Nieuwenhuis, M.; Lindbladh, M.; Black, K.; Bahýl’, J.; Bingöl, Özkan; Borges, J.G.; Botequim, B.; Brukas, V.; et al. Forest Biodiversity, Carbon Sequestration, and Wood Production: Modeling Synergies and Trade-Offs for Ten Forest Landscapes Across Europe. Front. Ecol. Evol. 2020, 8, 547696. [Google Scholar] [CrossRef]
- Buotte, P.C.; Law, B.E.; Ripple, W.J.; Berner, L.T. Carbon sequestration and biodiversity co-benefits of preserving forests in the western United States. Ecol. Appl. 2020, 30, e02039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domke, G.M.; Oswalt, S.N.; Walters, B.F.; Morin, R.S. Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proc. Natl. Acad. Sci. USA 2020, 117, 24649–24651. [Google Scholar] [CrossRef] [PubMed]
- FAO. State of the World’s Forests 2011 (SOFO); FAO: Rome, Italy, 2011; 179p. [Google Scholar]
- Kappen, G.; Kastner, E.; Kurth, T.; Puetz, J.; Reinhardt, A.; Soininen, J. The Staggering Value of Forests—And How to Save Them. Boston Consulting Group, 2020. Available online: https://www.bgc.com/publications/2020/the-staggering-value-of-forests-and-how-to-save-them (accessed on 19 January 2022).
- Goodman, R.C.; Herold, M. Why maintaining tropical forests is essential and urgent for a stable climate. In CGD Climate and Forest Paper Series #11; Center for Global Development Climate and Forest: Washington, DC, USA, 2014; 56p, Available online: http://www.cgdev.org/publication/why-maintaining-tropical-forests-essential-and-urgent-stable-climate-working-paper-385 (accessed on 19 January 2022).
- Fernández-Martínez, M.; Sardans, J.; Chevallier, F.; Ciais, P.; Obersteiner, M.; Vicca, S.; Canadell, J.G.; Bastos, A.; Friedlingstein, P.; Sitch, S.; et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Chang. 2019, 9, 73–79. [Google Scholar] [CrossRef] [Green Version]
- FAO. ITTO The State of Forests in Amazon Basin, Congo Basin and Southeast Asia. Summit of the Three Rainforest Basins, Republic of the Congo, Brazzaville 31 May–3 June 2011; FAO: Rome, Italy, 2011; 80p, Available online: https://pfbc-cbfp.org/amazon-congo-asia.html (accessed on 19 January 2022).
- Koutika, L.-S.; Zagatto, M.R.G.; Pereira, A.P.d.A.; Miyittah, M.; Tabacchioni, S.; Bevivino, A.; Rumpel, C. Does the introduction of N2-fixing trees in forest plantations on tropical soils ameliorate low Fertility and enhance carbon sequestration via interactions between biota and nutrient availability? Case studies from Central Africa and South America. Front. Soil Sci. 2021, 1, 752747. [Google Scholar] [CrossRef]
- Thompson, I.; Mackey, B.; McNulty, S.; Mosseler, A. Forest Resilience, Biodiversity, and Climate Change. A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Secr. Conv. Biol. Divers. 2009, 43, 1–67. [Google Scholar]
- Mayer, M.; Prescott, C.E.; Abaker, W.E.A.; Augusto, L.; Cecillon, L.; Ferreira, G.W.D.; James, J.; Jandl, R.; Katzensteiner, K.; Laclau, J.-P.; et al. Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag. 2020, 466, 11812. [Google Scholar] [CrossRef]
- Malhi, Y.; Franklin, J.; Seddon, N.; Solan, M.; Turner, M.G.; Field, C.B.; Knowlton, N. Climate change and ecosystems: Threats, opportunities and solutions. Phil. Trans. R. Soc. B 2020, 375, 20190104. [Google Scholar] [CrossRef] [Green Version]
- Bini, C. Soil: A precious natural resource. In Conservation of Natural Resources; Kudrow, N.J., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2009; pp. 1–48. [Google Scholar]
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Climate Change and Soil Degradation Mitigation by Sustainable Management of Soils and other Natural Resources. Agric. Res. 2012, 1, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Hartemink, A.E.; McSweeney, K. Soil Carbon. Progress in Soil Science; Springer International: Cham, Switzerland, 2014; p. 503. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Management and Climate Change. In Soil Carbon. Progress in Soil Science; Hartemink, A.E., McSweeney, K., Eds.; Springer International: Cham, Switzerland, 2014; Chapter 35; pp. 339–361. [Google Scholar] [CrossRef]
- McBratney, A.B.; Stockmann, U.; Angers, D.A.; Minasny, B.; Field, D.J. Challenges for Soil Organic Carbon Research. In Soil Carbon. Progress in Soil Science; Hartemink, A.E., McSweeney, K., Eds.; Springer International: Cham, Switzerland, 2014; Chapter 1; pp. 3–16. [Google Scholar] [CrossRef]
- FAO. Paper Preview: Koronivia Joint Work on Agriculture: Summary of Submissions; FAO: Rome, Italy, 2018; Available online: https://www.fao.org/3/I9302EN/i9302en.pdf (accessed on 19 January 2022).
- Pimentel, D.; Burgess, M. Soil Erosion Threatens Food Production. Agriculture 2013, 3, 443–463. [Google Scholar] [CrossRef] [Green Version]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Stewart, C.E.; Paustian, K.; Conant, R.T.; Plante, A.F.; Six, J. Soil carbon saturation: Implications for measurable carbon pool dynamics in long-term incubations. Soil Biol. Biochem. 2009, 41, 357–366. [Google Scholar] [CrossRef]
- Platteau, J.; Bas, L.; Bernaerts, E.; Campens, V.; Carels, K.; Demuynck, E.; Hens, M.; Overloop, S.; Samborski, V.; Smets, D.; et al. Landbouwbeleidsrapport 2005 (LARA), Afdeling Monitoring en Studie, D/2006/3241/155; Administratie, Departement Landbouw en Visserij: Brussels, Belgium, 2006; p. 240. [Google Scholar]
- Lal, R. Carbon sequestration. Philos. Trans. R. Soc. B 2008, 363, 815–830. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Carter, M.R.; Angers, D.A.; Monreal, C.M.; Ellert, B.H. Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can. J. Soil Sci. 1994, 74, 367–385. [Google Scholar] [CrossRef] [Green Version]
- Cambardella, C.A.; Elliott, E.T. Methods for physical separation and characterization of soil organic matter fractions. Geoderma 1993, 56, 449–457. [Google Scholar] [CrossRef]
- Bini, D.; Figueiredo, A.F.; da Silva, M.C.P.; de Figueiredo Vasconcellos, R.L.; Cardoso, E.J.B.N. Microbial biomass and activity in litter during the initial development of pure and mixed plantations of Eucalyptus grandis and Acacia mangium. Rev. Bras. Ciencia Solo 2012, 37, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Li, D.Z.; Niu, S.L.; Luo, Y.Q. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: A meta-analysis. New Phytol. 2012, 195, 172–181. [Google Scholar] [CrossRef]
- Marin-Spiotta, E.; Sharma, S. Carbon storage in successional and plantation forest soils: A tropical analysis. Glob. Ecol. Biogeogr. 2013, 22, 105–117. [Google Scholar] [CrossRef]
- Akpa, S.I.C.; Odeh, I.O.A.; Bishop, T.F.A.; Hartemink, A.E.; Amapu, I.Y. Total soil organic carbon and carbon sequestration potential in Nigeria. Geoderma 2016, 271, 202–215. [Google Scholar] [CrossRef]
- Hassink, J.; Bouwman, L.A.; Zwart, K.B.; Bloem, J.; Brussaard, L. Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils. Geoderma 1993, 57, 105–128. [Google Scholar] [CrossRef]
- Koutika, L.-S.; Choné, T.; Andreux, F.; Burtin, G.; Cerri, C.C. Factors influencing organic carbon decomposition of topsoils from the Brazilian Amazon Basin. Biol. Fert. Soils 1999, 28, 436–438. [Google Scholar] [CrossRef]
- Galantini, J.A.; Senesi, N.; Brunetti, G.; Rosell, R. Influence of texture on organic matter distribution and quality and nitrogen and sulphur status in semiarid Pampean grassland soils of Argentina. Geoderma 2004, 123, 143–152. [Google Scholar] [CrossRef]
- Funakawa, S.; Fujii, K.; Kadono, A.; Watanabe, T.; Kosak, T. Could Soil Acidity Enhance Sequestration of Organic Carbon in Soils? Challenges for Soil Organic Carbon Research. In Soil Carbon. Progress in Soil Science 2014; Hartemink, A.E., McSweeney, K., Eds.; Springer International: Cham, Switzerland, 2014; pp. 209–216. [Google Scholar] [CrossRef]
- Hartemink, A.E.; Lal, R.; Gerzabek, M.H.; Jama, B.; McBratney, A.B.; Six, J.; Tornquist, C.G. Soil carbon research and global environmental challenges. PeerJ 2014, 2, e366v1. [Google Scholar]
- Bauters, M.; Ampoorter, E.; Huygens, D.; Kearsley, E.; De Haulleville, T.; Sellan, G.; Verbeeck, H.; Boeckx, P.; Verheyen, K. Functional identity explains carbon sequestration in a 77-year-old experimental tropical plantation. Ecosphere 2015, 6, 198. [Google Scholar] [CrossRef] [Green Version]
- Balesdent, J.; Basile-Doelsch, I.; Chadoeuf, J.; Cornu, S.; Derrien, D.; Fekiacova, Z.; Hatté, C. Atmosphere–soil carbon transfer as a function of soil depth. Nature 2018, 559, 599–602. [Google Scholar] [CrossRef]
- Schlesinger, W.H. Carbon and agriculture—Carbon sequestration in soils. Science 1999, 284, 2095. [Google Scholar] [CrossRef]
- Hartemink, A.E. Forest plantations. In Soil Fertility Decline in the Tropics: With Case Studies on Plantations; Hartemink, A.E., Ed.; Cabi International: Cambridge, MA, USA, 2003; pp. 197–222. [Google Scholar]
- Chenu, C.; Plante, A.F. Clay-sized organo-mineral complexes in a cultivation chronosequence: Revisiting the concept of the ‘primary organo-mineral complex’. Eur. J. Soil Sci. 2006, 57, 596–607. [Google Scholar] [CrossRef]
- Eclesia, R.P.; Jobbagy, E.G.; Jackson, R.B.; Biganzoli, F.; Pineiro, G. Shifts in soil organic carbon for plantation and pasture establishment in native forests and grasslands of South America. Glob. Chang. Biol. 2012, 18, 3237–3251. [Google Scholar] [CrossRef] [PubMed]
- Sang, P.M.; Lamb, D.; Bonner, M.; Schmidt, S. Carbon sequestration and soil fertility of tropical tree plantations and secondary forest established on degraded land. Plant Soil 2013, 362, 187–200. [Google Scholar] [CrossRef]
- Cook, R.L.; Binkley, D.; Mendes, J.C.T.; Stape, J.L. Soil carbon stocks and forest biomass following conversion of pasture to broadleaf and conifer plantations in southeastern Brazil. For. Ecol. Manag. 2014, 324, 37–45. [Google Scholar] [CrossRef]
- Bonfatti, B.R.; Hartemink, A.E.; Giasson, E.; Tornquist, C.G.; Adhikari, K. Digital mapping of soil carbon in a viticultural region of Southern Brazil. Geoderma 2015, 261, 204–221. [Google Scholar] [CrossRef]
- Cook, R.L.; Binkley, D.; Stape, J.L. Eucalyptus plantation effects on soil carbon after 20 years and three rotations in Brazil. For. Ecol. Manag. 2016, 359, 92–98. [Google Scholar] [CrossRef]
- Batjes, N.H.; Sombroek, W.G. Possibilities for C sequestration in tropical and subtropical soils. Glob. Chang. Biol. 1997, 3, 3,161–173. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Lal, R. Beyond COP 21: Potential and challenges of the “4 per Thousand” initiative. J. Soil Water Conserv. 2016, 71, 20A–25A. [Google Scholar] [CrossRef]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Shimamoto, C.Y.; Padial, A.A.; da Rosa, C.M.; Marques, M.C.M. Restoration of ecosystem services in tropical forests: A global meta-analysis. PLoS ONE 2018, 13, e0208523. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil science beyond COVID-19. J. Soil Wat. 2020, 75, 79A–81A. [Google Scholar] [CrossRef]
- Jesson, J.; Matheson, L.; Lacey, F.M. Doing Your Literature Review: Traditional and Systematic Techniques; Sage Publications, Ltd.: London, UK, 2011. [Google Scholar] [CrossRef]
- Van Bodegom, A.J.; Savenije, H.; Wit, M. Forests and Climate Change: Adaptation and Mitigation; Tropenbos International: Wageningen, The Netherlands, 2009; p. xvi + 160. ISBN 978-90-5113-100-0. [Google Scholar]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; McBratney, A.B.; de Courcelles, V.d.R.; Singh, K.; et al. The knowns, known unknowns and unknowns of sequestration of soil organic Carbon. Agric. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- Wang, F.; Li, Z.; Xia, H.; Zou, B.; Li, N.; Liu, J.; Zhu, W. Effects of nitrogen-fixing and non-nitrogen-fixing tree species on soil properties and nitrogen transformation during forest restoration in southern China. Soil Science Plant Nutr. 2010, 56, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Zhang, C.; Wu, J.; Zhou, L.; Lin, Y.; Fu, S. Subtropical plantations are large carbon sinks: Evidence from two monoculture plantations in South China. Agric. For. Meteorol. 2011, 151, 1214–1225. [Google Scholar] [CrossRef]
- Wolf, S.; Eugster, W.; Potvin, C.; Turner, B.L.; Buchmann, N. Carbon sequestration potential of tropical pasture compared with afforestation in Panama. Glob. Chang. Biol. 2011, 17, 2763–2780. [Google Scholar] [CrossRef]
- Dou, X.; Xu, X.; Shu, X.; Zhang, Q.; Cheng, X. Shifts in soil organic carbon and nitrogen dynamics for afforestation in central China. Ecol. Eng. 2016, 87, 263–270. [Google Scholar] [CrossRef]
- Bond, W.J.; Stevens, N.; Midgley, G.F.; Lehmann, C.E.R. The Trouble with Trees: Afforestation Plans for Africa. Trends Ecol. Evol. 2019, 34, 963–965. [Google Scholar] [CrossRef]
- Parr, C.L.; Lehmann, C.E.; Bond, W.J.; Hoffmann, W.A.; Andersen, A.N. Tropical grassy biomes: Misunderstood, neglected, and under threat. Trends Ecol. Evol. 2014, 29, 205–213. [Google Scholar] [CrossRef]
- Koutika, L.S.; Epron, D.; Bouillet, J.P.; Mareschal, L. Changes in N and C Concentrations, Soil Acidity and P Availability in Tropical Mixed Acacia and Eucalypt Plantations on a Nutrient-Poor Sandy Soil. Plant Soil 2014, 379, 205–216. [Google Scholar] [CrossRef]
- Koutika, L.-S. Soil fertility improvement of nutrient-poor and sandy soils in the Congolese coastal plains. In:. Recarbonizing global soils: A technical manual of recommended management practices. In Forestry, Wetlands, Urban Soils—Case Studies; FAO & ITPS: Rome, Italy, 2021; Volume 6, pp. 4–13. [Google Scholar] [CrossRef]
- Lee, K.L.; Ong, K.H.; King, P.J.H.; Chubo, J.K.; Su, D.S.A. Stand productivity, carbon content, and soil nutrients in different stand ages of Acacia mangium in Sarawak, Malaysia. Turk J. Agric. For. 2015, 39, 154–161. [Google Scholar] [CrossRef]
- Camacho, L.D.; Camacho, S.C.; Youn, Y.-C. Carbon sequestration benefits of the Makiling forest reserve, Philippines. For. Sci. Technol. 2009, 5, 23–30. [Google Scholar] [CrossRef]
- Kasongo, R.K.; Van Ranst, E.; Verdoodt, A.; Kanyankagote, P.; Baert, G. Impact of Acacia auriculiformis on the chemical fertility of sandy soils on the Batéké plateau, D.R. Congo. Soil Use Manag. 2009, 25, 21–27. [Google Scholar] [CrossRef]
- Dubliez, E.; Freycon, V.; Marien, J.M.; Peltier, R.; Harmand, J.M. Long term impact of Acacia auriculiformis woodlots growing in rotation with cassava and maize on the carbon and nutrient contents of savannah sandy soils in the humid tropics (Democratic Republic of Congo). Agrofor. Syst. 2018, 93, 1167–1178. [Google Scholar] [CrossRef]
- D’Annunzio, R.; Conche, S.; Landais, D.; Saint-Andre, L.; Joffre, R.; Barthes, B.G. Pairwise comparison of soil organic particle-size distributions in native savannas and Eucalyptus plantations in Congo. For. Ecol. Manag. 2008, 255, 255,1050–1056. [Google Scholar] [CrossRef]
- Derrien, D.; Plain, C.; Courty, P.E.; Gelhaye, L.; Moerdijk, T.; Thomas, F.; Versini, A.; Zeller, B.; Koutika, L.-S.; Boschker, E.; et al. Does the addition of labile substrate destabilise old soil organic matter? Soil Biol. Biochem. 2014, 76, 149–160. [Google Scholar] [CrossRef]
- Binkley, D. Mixtures Nitrogen-Fixing and Non-Nitrogen-Fixing Tree Species. In The Ecology of Mixed-Species Stands of Trees; Cannell, M.G.R., Malcolm, D.C., Robertson, P.A., Eds.; Blackwell Scientific Publications: Oxford, UK, 1992; pp. 99–124. [Google Scholar]
- Bini, D.; Dos Santos, C.A.; Bouillet, J.-P.; Gonçalves, J.L.M.; Cardoso, E.J.B.N. Eucalyptus Grandis and Acacia Mangium in Monoculture and Intercropped Plantations: Evolution of Soil and Litter Microbial and Chemical Attributes during Early Stages of Plant Development. Appl. Soil Ecol. 2013, 63, 57–66. [Google Scholar] [CrossRef]
- Bini, D.; dos Santos, C.A.; da Silva, M.C.P.; Bonfim, J.A.; Cardoso, E.J.B.N. Intercropping Acacia Mangium Stimulates AMF Colonization and Soil Phosphatase Activity in Eucalyptus Grandis. Sci. Agric. 2018, 75, 102–110. [Google Scholar] [CrossRef]
- De Araujo Pereira, A.P.; De Andrade, P.A.M.; Bini, D.; Durrer, A.; Robin, A.; Bouillet, J.P.; Andreote, F.D.; Cardoso, E.J.B.N. Shifts in the Bacterial Community Composition along Deep Soil Profiles in Monospecific and Mixed Stands of Eucalyptus Grandis and Acacia Mangium. PLoS ONE 2017, 12, e018037. [Google Scholar]
- Pereira, A.P.A.; Zagatto, M.R.G.; Brandani, C.B.; Mescolotti, D.D.L.; Cotta, S.R.; Gonçalves, J.L.M.; Cardoso, E.J.B.N. Acacia Changes Microbial Indicators and Increases C and N in Soil Organic Fractions in Intercropped Eucalyptus Plantations. Front. Microbiol. 2018, 9, 655. [Google Scholar] [CrossRef] [Green Version]
- Brown, H.C.A.; Berninger, F.A.; Larjavaara, M.; Appiah, M. Above-ground carbon stocks and timber value of old timber plantations, secondary and primary forests in southern Ghana. For. Ecol. Manag. 2020, 472, 118236. [Google Scholar] [CrossRef]
- Chinade, A.A.; Siwar, C.; Ismail, S.M.; Isahak, A. A review on carbon sequestration in Malaysian forest soils: Opportunities and barriers. Inter. J. Soil Sci. 2015, 10, 17–27. [Google Scholar] [CrossRef]
- Forest Survey of India. Carbon stock in India’s Forests. Indian State For. Rep. 2017, 8, 120–127. [Google Scholar]
- Joshi, R.; Singh, H.; Chhetri, R.; Yadav, K. Assessment of Carbon Sequestration Potential in Degraded and Non-Degraded Community Forests in Terai Region of Nepal. J. For. Environ. Sci. 2020, 36, 113–121. [Google Scholar] [CrossRef]
- Chayaporn, P.; Sasaki, N.; Venkatappa, M.; Abe, I. Assessment of the overall carbon storage in a teak plantation in Kanchanaburi province, Thailand—Implications for carbon-based incentives. Cleaner Environ. Syst. 2021, 2, 100023. [Google Scholar] [CrossRef]
- Satakhun, D.; Chayawat, C.; Sathornkich, J.; Phattaralerphong, J.; Chantuma, P.; Thaler, P.; Gay, F.; Nouvellon, Y.; Kasemsap, P. Carbon sequestration potential of rubber-tree plantation in Thailand. IOP Conf. Ser. Mater. Sci. Eng. 2019, 526, 012036. [Google Scholar] [CrossRef]
- Paniagua-Ramirez, A.; Krupinska, O.; Jagdeo, V.; Cooper, W.J. Carbon storage estimation in a secondary tropical forest at CIEE Sustainability Center, Monteverde, Costa Rica. Nat. Sci. Rep. 2021, 11, 23464. [Google Scholar] [CrossRef]
- Sayer, E.J.; Lopez-Sangil, L.; Crawford, J.A.; Bréchet, L.M.; Birkett, A.J.; Baxendale, C.; Castro, B.; Rodtassana, C.; Garnett, M.H.; Weiss, L.; et al. Tropical forest soil carbon stocks do not increase despite 15 years of doubled litter inputs. Sci. Rep. Nat. Res. 2019, 9, 18030. [Google Scholar] [CrossRef] [Green Version]
- Epron, D.; Mouanda, C.; Mareschal, L.; Koutika, L.S. Impacts of organic residue management on the soil C dynamics in a tropical eucalypt plantation on a nutrient poor sandy soil after three rotations. Soil Biol. Biochem. 2015, 85, 183–189. [Google Scholar] [CrossRef]
- Koutika, L.-S.; Ngoyi, S.; Cafiero, L.; Bevivino, A. Soil organic matter dynamics along rotations in acacia and eucalyptus plantations in the Congolese coastal plains. For. Ecosyst. 2019, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Hassink, J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 1997, 191, 77–87. [Google Scholar] [CrossRef]
- Marin-Spiotta, E.; Silver, W.L.; Swanston, C.W.; Ostertag, R. Soil organic matter dynamics during 80 years of reforestation of tropical pastures. Glob. Chang. Biol. 2009, 15, 1584–1597. [Google Scholar] [CrossRef]
- Campo, J.; Merino, A. Variation in soil carbon sequestration and their determinants along a precipitation gradient in seasonally dry forest ecosystem. Glob. Chang. Biol. 2016, 22, 1942–1956. [Google Scholar] [CrossRef] [PubMed]
- Zech, W.; Kögel-Knabner, I. Patterns and regulation of organic matter transformation in soils: Litter decomposition and humification. In Flux Control in Biological Systems: From the Enzyme to the Population and Ecosystem Level; Schulze, E.D., Ed.; Academic Press: San Diego, CA, USA, 1994; pp. 303–334. [Google Scholar]
- Ostertag, R.; Marin-Spiota, E.; Silver, W.L.; Schulten, J. Litterfall and decomposition in relation to soil carbon pools along a secondary forest chronosequence. Ecosystems 2008, 11, 701–714. [Google Scholar] [CrossRef]
- Saynes, V.; Hidalgo, C.; Etchevers, J.D.; Campo, J.E. Soil C and N dynamics in primary and secondary seasonally dry tropical forests in Mexico. Appl. Soil Ecol. 2005, 29, 282–289. [Google Scholar] [CrossRef]
- Ferraz, A.; Saatchi, S.S.; Xu, L.; Hagen, S.C.; Chave, J.; Yu, Y.; Meyer, V.; Garcia, M.; Silva, C.A.; Roswintiart, O.; et al. Carbon storage potential in degraded forests of Kalimantan, Indonesia. Environ. Res. Lett. 2018, 13, 095001. [Google Scholar] [CrossRef]
- Paustian, K.; Andren, O.; Clarholm, M.; Hansson, L.; Johansson, G.; Lagerlof, T.; Lindberg, T.; Petersson, R.; Sohlenius, B. Carbon and nitrogen budgets of four Agro-ecosystems with annual and perennial crops, with and without N fertilization. J. Appl. Ecol. 1990, 27, 60–84. [Google Scholar] [CrossRef]
- Sikora, L.J.; Yakovchenko, V.; Cambardella, C.A.; Doran, J.W. Assessing soil quality by testing organic matter. Soil Org. Matter Anal. Interpret. 1996, 46, 41–50. [Google Scholar]
- Van Groningen, W.; van Kessel, C.; Hungate, B.A.; Oenema, O.; Powlson, D.S.; van Groenigen, K.J. Sequestering Soil Organic Carbon: A Nitrogen Dilemma. Environ. Sci. Technol. 2017, 51, 4738–4739. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yang, Z.; Dang, P.; Zhu, H.; Gao, Y.; Ha, V.N.; Zhao, Z. Response of Soil Microbial Community Dynamics to Robinia Pseudoacacia, L. A_orestation in the Loess Plateau: A Chronosequence Approach. Plant Soil 2018, 423, 327–338. [Google Scholar] [CrossRef]
- Resh, S.C.; Binkley, D.; Parrotta, J.A. Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems 2002, 5, 217–231. [Google Scholar] [CrossRef]
- Forrester, D.I.; Pares, A.; O’Hara, C.; Khanna, P.K.; Bauhus, J. Soil organic carbon is increased in mixed-species plantations of Eucalyptus and nitrogen-fixing Acacia. Ecosystems 2013, 16, 123–132. [Google Scholar] [CrossRef]
- Fornara, D.; Banin, L.; Crawley, M. Multi-nutrient versus nitrogen-only effects on carbon sequestration in grassland soils. Glob. Chang. Biol. 2013, 19, 3848–3857. [Google Scholar] [CrossRef] [Green Version]
- Cusack, D.F.; Torn, M.S.; McDowell, W.H.; Silver, W.L. The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils. Glob. Chang. Biol. 2010, 16, 2555–2572. [Google Scholar] [CrossRef]
- Syers, J.K.; Johnston, A.E.; Curtin, D. Efficiency of Soil and Fertilizer Phosphorus: Reconciling Changing Concepts of Soil Phosphorus Behaviour with Agronomic Information; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2009. [Google Scholar]
- Gonçalves, J.L.M.; Stape, J.L.; Laclau, J.-P.; Bouillet, J.-P.; Ranger, J. Assessing the effects of early silvicultural management on long-term site productivity of fast-growing eucalypt plantations: The Brazilian experience. South. For. J. For. Sci. 2008, 70, 105–118. [Google Scholar] [CrossRef]
- Bachega, L.R.; Bouillet, J.P.; de Cássia Piccolo, M.; Saint-André, L.; Bouvet, J.M.; Nouvellon, Y.; Gonçalves, J.L.M.; Robin, A.; Laclau, J.P. Decomposition of Eucalyptus grandis and Acacia mangium leaves and fine roots in tropical conditions did not meet the Home Field Advantage hypothesis. For. Ecol. Manag. 2016, 359, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.M.; Balieiro, F.C.; Fontes, M.A.; Chaer, G.M. Understanding the enhanced litter decomposition of mixed-species plantations of Eucalyptus and Acacia mangium. Plant Soil. 2017, 423, 141–155. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Liptzin, D. C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass. Biogeochemistry 2007, 85, 235–252. [Google Scholar] [CrossRef]
- Schleuss, P.M.; Widdig, M. Heintz-Buschart, A.; Kirkman, K.; Spohn, M. Interactionsof nitrogen and phosphorus cycling promote P acquisition and explain synergistic plant-growth responses. Ecology 2020, 101, e03003. [Google Scholar] [CrossRef]
- McDonald, C.A.; Delgado-Baquerizo, M.; Reay, D.S.; Hicks, L.C.; Singh, B.K. Soil nutrients and soil carbon storage: Modulators and mechanisms. In Soil Carbon Storage; Elsevier: Edinburgh, UK, 2018; pp. 167–205. [Google Scholar] [CrossRef]
- Kaye, J.P.; Resh, S.C.; Kaye, M.W.; Chimner, R.A. Nutrient and carbon dynamics in a replacement series of Eucalyptus and Albizia Trees. Ecology 2000, 81, 3267–3273. [Google Scholar] [CrossRef]
- Koutika, L.-S.; Mareschal, L.; Epron, D. Soil P availability under eucalypt and acacia on Ferralic Arenosols, republic of the Congo. Geoderma Reg. 2016, 7, 153–158. [Google Scholar] [CrossRef]
- Cusack, D.F.; Silver, W.L.; Torn, M.S.; Burton, S.D.; Firestone, M.K. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests. Ecology 2011, 92, 621–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baccini, A.; Walker, W.; Carvalho, L.; Farina, M.; Sulla-Menashe, D.; Houghton, R.A. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 2017, 358, 230–234. [Google Scholar] [CrossRef] [Green Version]
- Kirkby, C.A.; Richardson, A.E.; Wade, L.J.; Batten, G.D.; Blanchard, C.; Kirkegaard, J.A. Carbon-nutrient stoichiometry to increase soil carbon sequestration. Soil Biol. Biochem. 2013, 60, 77–86. [Google Scholar] [CrossRef]
- Kirschbaum, M.U.F.; Guo, L.B.; Gifford, R.M. Why does rainfall affect the trend in soil carbon after converting pastures to forests? A possible explanation based on nitrogen dynamics. For. Ecol. Manag. 2008, 255, 2990–3000. [Google Scholar] [CrossRef]
- Macedo, M.O.; Resende, A.S.; Garcia, P.C.; Boddey, R.M.; Jantalia, C.P.; Urquiaga, S.; Campello, E.F.C.; Franco, A.A. Changes in soil C and N stocks and nutrient dynamics 13 years after recovery of degraded land using leguminous nitrogen-fixing trees. For. Ecol. Manag. 2008, 255, 1516–1524. [Google Scholar] [CrossRef]
- Sanginga, N.; Mulungoy, K.; Ayanaba, A. Inoculation of Leucaena leucocephala Lam de Witt with Rhizobium and its nitrogen contribution to a subsequent maize crop. Biol. Agric. Hortic. 1986, 3, 341–352. [Google Scholar]
- Koutika, L.-S.; Nolte, C.; Yemefack, M.; Ndango, R.; Folefoc, D.; Weise, S. Leguminous fallows improve soil quality in south-central Cameroon as evidenced by the particulate organic matter status. Geoderma 2005, 125, 343–354. [Google Scholar] [CrossRef]
- Ahmed, O.H.; Hasbullah, N.A.; Majid, N.M.A. Accumulation of Soil Carbon and Phosphorus Contents of a Rehabilitated Forest. Sci. World J. 2010, 10, 1988–1995. [Google Scholar] [CrossRef] [Green Version]
- Binkley, D.; Kaye, K.; Barry, M.; Ryan, F.M.G. First-Rotation Changes in Soil Carbon and Nitrogen in a Eucalyptus Plantation in Hawaii. Soil Sci. Soc. Am. J. 2004, 68, 1713–1719. [Google Scholar] [CrossRef] [Green Version]
Location & Climate Zone | Soil Type | Forest Type | Baseline | Sequestered C | Duration (Year, Yr) | More Information | References |
---|---|---|---|---|---|---|---|
Ghana/Tropical | ND | Mature plantation of Aucoumea klaineana, Cedrela odorata, Tarrietia utilis, Terminalia ivorensis | Secondary forest 103 Mg ha−1 - | 70 Mg C ha−1 (primary forest) 56 Mg C ha−1 (timber plantation) - | 42–47 years & secondary | Higher aboveground biomass C stocks in managed forest plantations compared to naturally regenerated secondary forests, | (Brown et al. 2020) |
Thailand/Tropical monsoon climate | ND | Plantation of teak | - | 19.1 Mg C ha−1 82.1 Mg C ha−1 73.0 Mg C ha−1 45.4 Mg C ha−1 | 17 yr 24 yr 31 yr 35 yr | Average C storage in standing trees of 63.3 Mg C ha−1, of which 42% in the harvest wood products | (Chayaporn et al. 2021) |
India/Overall | ND | All forest types | 3969 million tonnes (2015) 3979 million tonnes (2017) | - | Largest C stock followed by aboveground and belowground biomass | (Indian State of Forest, 2017) | |
Nepal/Tropical | ND | Community degraded and non-degraded forests | Degraded forests (SOC = 42.55 ± 3.10 t ha−1 & TC = 152.68 ± 22.95 t ha−1) | Non degraded forests (SOC = 54.21 ± 3.59 t ha−1 & TC= 301.08 ± 27.07 t ha−1) | - | Better forest management in community forests: 1.97 times > in non-degraded than in degraded forests | (Joshi et al. 2020) |
Republic of the Congo/Subtropical | Ferralic Arenosols | Plantation of A. mangium and eucalypt | Plantation of eucalypt (15.9 tC ha−1 yr−) | 0.9 tC ha−1 yr−1 | 7 yr | Soil C stock in plantation of A. mangium (16.7). 0–25 cm | (Koutika et al. 2014) |
1.8 | 7 yr | Soil C in plantation of eucalypt and A. mangium (17.8). 0–25 cm | |||||
Malaysia/Tropical | Well drained Bekenu series (loamy siliceous, with low fertility status) | Plantation of A. mangium | Plantation of A. mangium (1 year) (74.9) | 15 tC ha−1 yr−1 | 3 yr | Plantation of A. mangium 3 yr (89.9) 0–15, 15–30 cm | (Lee et al. 2015) |
64 tC ha−1 yr−1 | 5 yr | Plantation of A. mangium 5 yr (138.9) 0–15, 15–30 cm | |||||
Costa Rica/Hu-mid tropical | ND | Mature natural forest | - | Estimated total CO2 sequestered 18,210 ton (2019) | 50 yr | (Paniagua-Ramirez et al. 2021) | |
Brazil, (Subtropical) | Ferralsol of sandy texture | Plantation of A. mangium and Eucalypt | ND | C accretion | 2.25–3.25 y | Changes in microbial attributes and a strong effect on Soil C and N dynamics | (Pereira et al. 2018) |
Vietnam/Tropical | Ferralic Acrisols, Dystric Cambisols | Plantation of Eucalypt and A. mangium | Plantation of Eucalypt (50.9) | 11.5 tC ha−1 yr−1 | 7–16 yr | Plantations of A. mangium (62.4) 0–30 cm | (Sang et al. 2013) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koutika, L.-S. Boosting C Sequestration and Land Restoration through Forest Management in Tropical Ecosystems: A Mini-Review. Ecologies 2022, 3, 13-29. https://doi.org/10.3390/ecologies3010003
Koutika L-S. Boosting C Sequestration and Land Restoration through Forest Management in Tropical Ecosystems: A Mini-Review. Ecologies. 2022; 3(1):13-29. https://doi.org/10.3390/ecologies3010003
Chicago/Turabian StyleKoutika, Lydie-Stella. 2022. "Boosting C Sequestration and Land Restoration through Forest Management in Tropical Ecosystems: A Mini-Review" Ecologies 3, no. 1: 13-29. https://doi.org/10.3390/ecologies3010003
APA StyleKoutika, L.-S. (2022). Boosting C Sequestration and Land Restoration through Forest Management in Tropical Ecosystems: A Mini-Review. Ecologies, 3(1), 13-29. https://doi.org/10.3390/ecologies3010003