Temporal and Spatial Changes in Crop Patterns, Use of Inputs and Hydrological Alteration in the Case of Fogera Floodplain, Ethiopia
Abstract
:1. Introduction
2. Methods and Materials
2.1. Description of Study Area
2.2. Sampling and Data Collection
2.3. Methods of Data Analysis
3. Results and Discussion
3.1. Spatial and Temporal Trends in Crop Production Pattern in the Area
3.2. Agricultural Inputs Application
3.3. Biodiversity in the Fogera Floodplain
3.4. Hydrological Alteration in the Fogera Floodplain Wetlands
3.4.1. Monthly Flow Trends
3.4.2. Water Chemistry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roger, P.A. Biology and Management of the Floodwater Ecosystem in Rice Fields; International Rice Research Institute: Los Banos, Philippines, 1996. [Google Scholar]
- USDA. World Rice Production 2020/2021. 2021. Available online: http://www.worldagriculturalproduction.com/crops/rice.aspx (accessed on 10 August 2020).
- Villar, C.; Wetlands and Agriculture: Partners for Growth. Manila Bulletin, 2014, p. 12. Available online: https://ani.seafdec.org.ph/handle/20.500.12174/9918 (accessed on 15 July 2020).
- Ghosh, B.; Bhat, R. Environmental hazards of nitrogen loading in wetland rice fields. Environ. Pollut. 1998, 102, 123–126. [Google Scholar] [CrossRef]
- Roger, A.P.; Heong, K.; Teng, P. Biodiversity and sustainability of wetland rice production: Role and potential of microorganisms and invertebrates. Casafa. Rep. 1991, 4, 117–136. [Google Scholar]
- Mitsch, W.J.; Gosselink, J.G. The value of wetlands: Importance of scale and landscape setting. Ecol. Econ. 2000, 35, 25–33. [Google Scholar] [CrossRef]
- Gosselink, G.J.; Turner, R.E. Role of hydrology in freshwater wetland ecosystems. Freshw. Wetl. 2013, 1978, 63–78. [Google Scholar]
- Tiner, R.W. The primary indicators method—A practical approach to wetland recognition and delineation in the United States. Wetlands 1993, 13, 50–64. [Google Scholar] [CrossRef]
- Tran, D.D.; van Halsema, G.; Hellegers, P.J.; Ludwig, F.; Wyatt, A. Questioning triple rice intensification on the Vietnamese mekong delta floodplains: An environmental and economic analysis of current land-use trends and alternatives. J. Environ. Manag. 2018, 217, 429–441. [Google Scholar] [CrossRef]
- Dixon, A.B. The hydrological impacts and sustainability of wetland drainage cultivation in Illubabor, Ethiopia. Land Degrad. Dev. 2002, 13, 17–31. [Google Scholar] [CrossRef]
- Rosenberg, D.M.; McCully, P.; Pringle, C.M. Global-Scale Environmental Effects of Hydrological Alterations: Introduction. BioScience 2000, 50, 746–751. [Google Scholar] [CrossRef] [Green Version]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Wetlands and Water; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Improving Productivity and Market Success (IPMS). Fogera Wereda Pilot Learning Site: Diagnosis and Program Design Report. 2005. Available online: https://cgspace.cgiar.org/bitstream/handle/10568/16747/Fogera.pdf?sequence=1&isAllowed=y (accessed on 10 July 2020).
- Dugan, P. Wetland Conservation: A Review of Current Issues and Action IUCN; IUCN: Gland, Switzerland, 1990. [Google Scholar]
- Qiu, J.; Turner, M.G. Spatial interactions among ecosystem services in an urbanizing agricultural watershed. Proc. Natl. Acad. Sci. USA 2013, 110, 12149–12154. [Google Scholar] [CrossRef] [Green Version]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental Impact of Different Agricultural Management Practices: Conventional vs. Organic Agriculture. Crit. Rev. Plant Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Tilahun-Tadesse, F.; Nigussie-Dechassa, R.; Wondimu Bayu, S.G. Effect of transplanting on terminal moisture stress, growth and yield of rain-fed lowland rice. Res. J. Agric. Environ. Manag. 2013, 2, 117–129. [Google Scholar]
- Takele, A. Analysis of Rice Profitability and Marketing Chain: The Case of Fogera Woreda, South Gondar Zone, Amhara national regional state, Ethiopia. Master’s Thesis, Haramaya University, Haramaya, Ethiopia, 2010. [Google Scholar]
- Agegnehu, S.; Fikremariam, A.; Agumas, B.; Eshetie, A.; Minwuyelet, J.; Getachew, A. Effect of time and frequency of hand weeding on yield of direct seeded rice in Fogera plain. Curr. Res. Microbiol. Biotechnol. 2013, 1, 266–269. [Google Scholar]
- Seyoum, M.; Gebrekidan, H. Effects of N and P Fertilisers on Yield and N Uptake of Flooded Rice Grown on Vertisols of Fogera Plain of Ethlopia. Indian J. Fertil. 2005, 1, 47. [Google Scholar]
- Desta, M.A.; Zeleke, G.; Payne, W.A.; Shenkoru, T.; Dile, Y. The impacts of rice cultivation on an indigenous Fogera cattle population at the eastern shore of Lake Tana, Ethiopia. Ecol. Process. 2019, 8, 19. [Google Scholar] [CrossRef]
- Zur Heide, F. Feasibility Study for a Lake Tana Biosphere Reserve, Ethiopia; Bundesamt für Naturschutz, BfN: Bonn, Germany, 2012. [Google Scholar]
- Yamane, T. Problems to Accompany ”Statistics, an Introductory Analysis”; Harper & Row: New York, UY, USA, 1967. [Google Scholar]
- BCEOM. Abay River Basin Integrated Development Master Plan–Phase 2–Land Resources Development–Reconnaissance Soils Survey; Ministry of Water Resources: Addis Ababa, Ethiopia, 1998. [Google Scholar]
- Abebe, W.B.; Tilahun, S.A.; Moges, M.M.; Wondie, A.; Dersseh, M.G.; Assefa, W.W.; Mhiret, D.A.; Adem, A.A.; Zimale, F.A.; Abera, W.; et al. Ecological Status as the Basis for the Holistic Environmental Flow Assessment of a Tropical Highland River in Ethiopia. Water 2021, 13, 1913. [Google Scholar] [CrossRef]
- Atnafu, N.; Dejen, E.; Vijverberg, J. Assessment of the Ecological Status and Threats of Welala and Shesher Wetlands, Lake Tana Sub-Basin (Ethiopia). J. Water Resour. Prot. 2011, 3, 540–547. [Google Scholar] [CrossRef] [Green Version]
- The Nature Conservancy (TNC). Indicators of Hydrologic Alteration Version 7.1; User’s Manual: Arlington, VI, USA, 2009; Available online: https://www.conservationgateway.org/Files/Pages/indicators-hydrologic-altaspx47.aspx (accessed on 5 July 2020).
- Tucker, C.J.; Sellers, P.J. Satellite remote sensing of primary production. Int. J. Remote Sens. 1986, 7, 1395–1416. [Google Scholar] [CrossRef]
- Shannon-Wiener, C.; Weaver, W.; Weater, W. The Mathematical Theory of Communication; University of Illinois Press: Champaign, IL, USA, 1949. [Google Scholar]
- Guan, X.; Huang, C.; Liu, G.; Meng, X.; Liu, Q. Mapping Rice Cropping Systems in Vietnam Using an NDVI-Based Time-Series Similarity Measurement Based on DTW Distance. Remote Sens. 2016, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Sakai, T.; Omori, K.; Oo, A.N.; Ma, S.S.; Zaw, Y.N. Decadal changes in the rice-cropping system in the Ayeyarwady Delta using a large archive of satellite imagery from 1981 to 2020. Paddy Water Environ. 2021, 19, 295–306. [Google Scholar] [CrossRef]
- Alemu, D.; Tesfaye, A.; Assaye, A.; Addis, D.; Tadesse, T.; Thompson, J. A Historical Analysis of Rice Commercialisation in Ethiopia: The Case of the Fogera Plain; 2018. Available online: https://opendocs.ids.ac.uk/opendocs/handle/20.500.12413/14283 (accessed on 5 July 2020).
- Sattler, C.; Schrader, J.; Farkas, V.M.; Settele, J.; Franzén, M. Pesticide diversity in rice growing areas of Northern Vietnam. Paddy Water Environ. 2018, 16, 339–352. [Google Scholar] [CrossRef]
- Berg, H.; Söderholm, A.E.; Söderström, A.-S.; Tam, N.T. Recognizing wetland ecosystem services for sustainable rice farming in the Mekong Delta, Vietnam. Sustain. Sci. 2016, 12, 137–154. [Google Scholar] [CrossRef] [Green Version]
- Dejen, E.; Anteneh, W.; Vijverberg, J. The Decline of the Lake Tana (Ethiopia) Fisheries: Causes and Possible Solutions. Land Degrad. Dev. 2015, 28, 1842–1851. [Google Scholar] [CrossRef] [Green Version]
- Lakew, T.; Tariku, S.; Alem, T.; Bitew, M. Agronomic performances and stability analysis of upland rice genotypes in North West Ethiopia. Int. J. Sci. Res. Publ. 2014, 4, 1–9. [Google Scholar]
- Gebey, T.; Berhe, K.; Hoekstra, D.; Alemu, B. Rice Value Chain Development in Fogera Woreda Based on the IPMS Experience; International Livestock Research Institute (ILRI): Addis Ababa, Ethiopia, 2012. [Google Scholar]
- Gebresllassie, H.; Gashaw, T.; Mehari, A. Wetland degradation in Ethiopia: Causes, consequences and remedies. J. Environ. Earth Sci. 2014, 4, 40–48. [Google Scholar]
- Anteneh, W.; Dejen, E.; Getahun, A. Shesher and Welala floodplain wetlands (Lake Tana, Ethiopia): Are they important breeding habitats for Clarias gariepinus and the migratory Labeobarbus fish species? Sci. World J. 2012, 2012, 298742. [Google Scholar] [CrossRef] [Green Version]
- Kawano, S. Nakaikemi, a Miraculous Lowland Marsh in Central Honshu, Japan—A Search for the Secret of its Fascination; NGO: Honshu, Japan, 2000. [Google Scholar]
- Shimoda, M. Conservation and management of rice field biodiversity. In Wetlands: Monitoring, Modelling and Management; Okruszko, T., Maltby, E., Szatylowicz, J., Miroslaw-Swiatek, D., Kotowski, V., Eds.; Taylor and Francis: London, UK, 2007; pp. 323–329. [Google Scholar]
- Wondie, A. Improving management of shoreline and riparian wetland ecosystems: The case of Lake Tana catchment. Ecohydrol. Hydrobiol. 2010, 10, 123–131. [Google Scholar] [CrossRef]
- Moorman, F.; van Breemen, N. Rice: Soil, Water, Land; IRRI: Los Banos, Philippines, 1978. [Google Scholar]
- Abebe, W.B.; Tilahun, S.A.; Moges, M.M.; Wondie, A.; Derseh, M.G.; Nigatu, T.A.; Mhiret, D.A.; Steenhuis, T.S.; Van Camp, M.; Walraevens, K.; et al. Hydrological Foundation as a Basis for a Holistic Environmental Flow Assessment of Tropical Highland Rivers in Ethiopia. Water 2020, 12, 547. [Google Scholar] [CrossRef] [Green Version]
- Taylor, V.; Schulze, R.; Jewitt, G. Application of the Indicators of Hydrological Alteration method to the Mkomazi River, KwaZulu-Natal, South Africa. Afr. J. Aquat. Sci. 2003, 28, 1–11. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D. Functional Organization of Stream Fish Assemblages in Relation to Hydrological Variability. Ecology 1995, 76, 606–627. [Google Scholar] [CrossRef]
- Wondie, A. Ecological conditions and ecosystem services of wetlands in Lake Tana basin. Ecohydrol. Hydrobiol. 2018, 18, 231–244. [Google Scholar] [CrossRef]
- Kipkemboi, J. Fingerponds: Seasonal Integrated Aquaculture in East African Freshwater Wetlands: Exploring Their Potential for Wise Use Strategies; Taylor & Francis/Balkema: Leiden, The Netherlands, 2006. [Google Scholar]
- Odada, E.O.; Olago, D.O.; Kulindwa, K.; Ntiba, M.; Wandiga, S. Mitigation of environmental problems in Lake Victoria, East Africa: Causal chain and policy options analyses. Ambio J. Hum. Environ. 2004, 33, 13–23. [Google Scholar] [CrossRef]
S.N. | Data Type | Spatial Resolution | Source |
---|---|---|---|
1 | Landsat 8 image | 30 m | USGS Landsat images |
2 | DEM SRTM, 2000 | 30 m | NASA/USGS/JPL-Caltech |
3 | NDVI | 250 m | MODIS from: https://doi.org/10.5067/ASTER/ASTGTM.003 (accessed on 16 September 2020) |
4 | Rib River flow, 1981–2005 | discharge in m3s−1 | MoWIE, Ethiopia |
5 | Precipitation, 1981-now | 0.25° | CHIRPS 2.0 Africa |
6 | Temperature, Minimum/Maximum, 1981-now | 0.25° | ERA5 Africa |
7 | Soil | 1:250,000 | MoWIE, BCEOM. [24] |
Sample Kebeles | No. of Sample Respondents | Their Farmland | Size of Their Farmland in timad | ||||||
---|---|---|---|---|---|---|---|---|---|
(1 timad = 0.25 ha) | |||||||||
Yes | No | Before Rice | % | After Rice | % | Increased | % | ||
Kidest Hana | 69 | 68 | 1 | 124 | 19.5 | 221 | 19.4 | 97 | 19.3 |
Shina | 81 | 81 | 0 | 130 | 20.5 | 234 | 20.5 | 104 | 20.6 |
Shaga | 57 | 57 | 0 | 95 | 15 | 175 | 15.4 | 80 | 15.9 |
Wagetera | 91 | 91 | 0 | 146 | 23 | 261 | 22.9 | 115 | 22.8 |
Nabega | 87 | 87 | 0 | 140 | 22 | 248 | 21.8 | 108 | 21.4 |
Gross cropped area | 385 | 384 | 1 | 635 | 100 | 1139 | 100 | 504 | 100 |
Name of Sample Kebele | No. of Sample Respondent | 2014 | 2015 | Increment in ha |
---|---|---|---|---|
Total Cultivated Land in ha | Total Cultivated Land in ha | |||
Kidest Hana | 69 | 46 | 55.25 | 9.25 |
Shaga | 81 | 52 | 58.5 | 6.5 |
Shina | 57 | 36 | 43.75 | 7.75 |
Wagetera | 91 | 56.25 | 65.25 | 9 |
Nabega | 87 | 55 | 62 | 7 |
No. of Kebeles | No Sample Respondents | Mono Cropping | Crop Rotation | Intercropping | Other |
---|---|---|---|---|---|
Kidest Hana | 69 | 62 | 7 | 0 | 0 |
Shaga | 81 | 69 | 12 | 0 | 0 |
Shina | 57 | 51 | 6 | 0 | 0 |
Wagetera | 91 | 81 | 9 | 0 | 0 |
Nabega | 87 | 79 | 8 | 0 | 0 |
If There Is an Increase in Production, What Are the Causes | ||||||||
---|---|---|---|---|---|---|---|---|
No. of Kebeles | No. of Respondents | Fertilizers | Manure | Improved Seed | Fallowing | Crop Rotation | Using Insecticides | Using Herbicides |
Kidest Hana | 69 | 69 | 0 | 69 | 0 | 0 | 69 | 69 |
Shaga | 81 | 81 | 0 | 81 | 0 | 0 | 81 | 81 |
Shina | 57 | 57 | 0 | 57 | 0 | 0 | 57 | 57 |
Wagetera | 91 | 91 | 0 | 91 | 0 | 0 | 91 | 91 |
Nabega | 87 | 87 | 0 | 87 | 0 | 0 | 87 | 87 |
Kebele | No. of Respondents | Water Pollution | Reduction of Birds | Reduction of Bees | Reduction of Fish | Reduction of Other Animals |
---|---|---|---|---|---|---|
Kidest Hana | 69 | 53 | 47 | 55 | 50 | 48 |
Shaga | 81 | 64 | 63 | 80 | 63 | 63 |
Shina | 57 | 41 | 41 | 57 | 41 | 41 |
Wagetera | 91 | 66 | 66 | 91 | 66 | 66 |
Nabega | 87 | 62 | 62 | 87 | 62 | 62 |
No. of Sample Kebeles | Recession Farming | ||
---|---|---|---|
No. of Sample Respondents | Yes | No | |
Kidest Hana | 69 | 11 | 58 |
Shaga | 81 | 16 | 65 |
Shina | 57 | 8 | 49 |
Wagetera | 91 | 25 | 66 |
Nabega | 87 | 23 | 64 |
Description of Wetland Resources | Resource Rank | Papyrus | Fish | Sand | Birds | Grass | Amount of Water | Hippopotamus |
---|---|---|---|---|---|---|---|---|
Wetland resources highly reduced is ranked from the smallest number 1 to the large number 7, e.g., if 1 is selected, the resource is highly reduced. | First = 1 | 385 | 0 | 0 | 0 | 0 | 0 | 0 |
Second = 2 | 0 | 135 | 5 | 7 | 191 | 47 | 0 | |
Third = 3 | 0 | 43 | 63 | 10 | 95 | 171 | 3 | |
Fourth = 4 | 0 | 178 | 4 | 117 | 14 | 60 | 12 | |
Fifth = 5 | 0 | 27 | 30 | 189 | 15 | 71 | 53 | |
Sixth = 6 | 0 | 1 | 38 | 32 | 28 | 13 | 273 | |
Seventh = 7 | 0 | 1 | 245 | 30 | 42 | 23 | 44 | |
In this table, the data are the weighted values for each resource responded by sampled respondents, e.g., 385 sampled respondents give rank for each resource. | 1 | 385 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 270 | 10 | 14 | 382 | 94 | 0 | |
3 | 0 | 129 | 189 | 30 | 285 | 513 | 9 | |
4 | 0 | 712 | 16 | 468 | 56 | 240 | 48 | |
5 | 0 | 135 | 150 | 945 | 75 | 355 | 265 | |
Rank value ∗ each value given by respondents, e.g., 1 ∗ 385 = 385 continuous like this. | 6 | 0 | 6 | 228 | 192 | 168 | 78 | 1638 |
7 | 0 | 7 | 1715 | 210 | 294 | 161 | 308 | |
Weighted Sum Total | 385 | 1259 | 2308 | 1859 | 1260 | 1441 | 2268 | |
Rank | 1st | 2nd | 7th | 5th | 3rd | 4th | 6th |
Shannan Wiener Index (H′) | Evenness | ||||
---|---|---|---|---|---|
Kebele | Sample A | Sample B | Sample C | Average | |
Nabega | 1.91 | 2.31 | 2.23 | 2.15 | 0.80 |
Shaga | 2.28 | 2.27 | 2.26 | 2.27 | 0.86 |
Wagetera | 2.46 | 2.43 | 2.44 | 2.44 | 0.93 |
Variable | Observations | Obs. with Missing Data | Obs. without Missing Data | Minimum | Maximum | Mean | Std. Deviation |
---|---|---|---|---|---|---|---|
Flow m3/s | 35 | 0 | 35 | 18.670 | 42.280 | 31.276 | 6.134 |
N m3/s | 35 | 0 | 35 | 0.040 | 2.830 | 0.911 | 0.651 |
P m3/s | 35 | 0 | 35 | 0.170 | 0.360 | 0.261 | 0.047 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desta, M.A.; Zeleke, G.; Payne, W.A.; Abebe, W.B. Temporal and Spatial Changes in Crop Patterns, Use of Inputs and Hydrological Alteration in the Case of Fogera Floodplain, Ethiopia. Ecologies 2021, 2, 380-396. https://doi.org/10.3390/ecologies2040022
Desta MA, Zeleke G, Payne WA, Abebe WB. Temporal and Spatial Changes in Crop Patterns, Use of Inputs and Hydrological Alteration in the Case of Fogera Floodplain, Ethiopia. Ecologies. 2021; 2(4):380-396. https://doi.org/10.3390/ecologies2040022
Chicago/Turabian StyleDesta, Mare Addis, Gete Zeleke, William A. Payne, and Wubneh Belete Abebe. 2021. "Temporal and Spatial Changes in Crop Patterns, Use of Inputs and Hydrological Alteration in the Case of Fogera Floodplain, Ethiopia" Ecologies 2, no. 4: 380-396. https://doi.org/10.3390/ecologies2040022
APA StyleDesta, M. A., Zeleke, G., Payne, W. A., & Abebe, W. B. (2021). Temporal and Spatial Changes in Crop Patterns, Use of Inputs and Hydrological Alteration in the Case of Fogera Floodplain, Ethiopia. Ecologies, 2(4), 380-396. https://doi.org/10.3390/ecologies2040022