No Effect of Early Adult Experience on the Development of Individual Specialization in Host-Searching Cabbage White Butterflies
Abstract
:1. Introduction
2. Methods
2.1. Overview
2.2. Care for Experimental Butterflies
2.3. Care for Plants
2.4. Experimental Arrays
2.5. Behavioral Measurements
2.6. Statistical Analysis
3. Results
3.1. Day 1: Confirming That Butterflies Have Different Host Plant Experiences across Treatments
3.2. Day 2: Previous Experience Did Not Affect Subsequent Resource Specialization
3.3. Change between Days: Butterflies Increased Visits to Cabbage and Improved Their Accuracy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethics Statement
References
- Bolnick, D.I.; Svanback, R.; Fordyce, J.A.; Yang, L.H.; Davis, J.M.; Hulsey, C.D.; Forister, M.L. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 2003, 161, 1–28. [Google Scholar] [CrossRef]
- Woo, K.J.; Elliott, K.H.; Davidson, M.; Gaston, A.J.; Davoren, G.K. Individual specialization in diet by a generalist marine predator reflects specialization in foraging behaviour. J. Anim. Ecol. 2008, 77, 1082–1091. [Google Scholar] [CrossRef]
- Bearhop, S.; Phillips, R.A.; McGill, R.; Cherel, Y.; Dawson, D.A.; Croxall, J.P. Stable isotopes indicate sex-specific and long-term individual foraging specialisation in diving seabirds. Mar. Ecol. Prog. Ser. 2006, 311, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Araujo, M.S.; Bolnick, D.I.; Machado, G.; Giaretta, A.A.; dos Reis, S.F. Using delta C-13 stable isotopes to quantify individual-level diet variation. Oecologia 2007, 152, 643–654. [Google Scholar] [CrossRef]
- Araujo, M.S.; Gonzaga, M.O. Individual specialization in the hunting wasp Trypoxylon (Trypargilum) albonigrum (Hymenoptera, Crabronidae). Behav. Ecol. Sociobiol. 2007, 61, 1855–1863. [Google Scholar] [CrossRef]
- Heinrich, B. Majoring and minoring by foraging bumblebees, bombus-vagans—Experimental-analysis. Ecology 1979, 60, 245–255. [Google Scholar] [CrossRef]
- Chittka, L.; Thomson, J.D.; Waser, N.M. Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 1999, 86, 361–377. [Google Scholar] [CrossRef]
- Hughes, A.R.; Inouye, B.D.; Johnson, M.T.J.; Underwood, N.; Vellend, M. Ecological consequences of genetic diversity. Ecol. Lett. 2008, 11, 609–623. [Google Scholar] [CrossRef]
- Bolnick, D.I.; Amarasekare, P.; Araujo, M.S.; Burger, R.; Levine, J.M.; Novak, M.; Rudolf, V.H.W.; Schreiber, S.J.; Urban, M.C.; Vasseur, D.A. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 2011, 26, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Harmon, J.P.; Moran, N.A.; Ives, A.R. Species Response to Environmental Change: Impacts of Food Web Interactions and Evolution. Science 2009, 323, 1347–1350. [Google Scholar] [CrossRef] [Green Version]
- Dall, S.R.X.; Bell, A.M.; Bolnick, D.I.; Ratnieks, F.L.W. An evolutionary ecology of individual differences. Ecol. Lett. 2012, 15, 1189–1198. [Google Scholar] [CrossRef] [Green Version]
- Hjelm, J.; Persson, L.; Christensen, B. Growth, morphological variation and ontogenetic niche shifts in perch (Perca fluviatilis) in relation to resource availability. Oecologia 2000, 122, 190–199. [Google Scholar] [CrossRef]
- Shine, R. Intersexual Dietary Divergence And The Evolution Of Sexual Dimorphism In Snakes. Am. Nat. 1991, 138, 103–122. [Google Scholar] [CrossRef]
- Beck, C.A.; Bowen, W.D.; Iverson, S.J. Seasonal changes in buoyancy and diving behaviour of adult grey seals. J. Exp. Biol. 2000, 203, 2323–2330. [Google Scholar] [CrossRef]
- Van Valen, L. Morphological variation and width of ecological niche. Amer. Nat. 1965, 99, 377–390. [Google Scholar] [CrossRef]
- Werner, T.K.; Sherry, T.W. Behavioral feeding specialization in pinaroloxias-inornata, the darwin finch of cocos-island, costa-rica. Proc. Natl. Acad. Sci. USA. 1987, 84, 5506–5510. [Google Scholar] [CrossRef] [Green Version]
- Estes, J.A.; Riedman, M.L.; Staedler, M.M.; Tinker, M.T.; Lyon, B.E. Individual variation in prey selection by sea otters: Patterns, causes and implications. J. Anim. Ecol. 2003, 72, 144–155. [Google Scholar] [CrossRef] [Green Version]
- Araujo, M.S.; Bolnick, D.I.; Layman, C.A. The ecological causes of individual specialisation. Ecol. Lett. 2011, 14, 948–958. [Google Scholar] [CrossRef]
- Votier, S.C.; Fayet, A.L.; Bearhop, S.; Bodey, T.W.; Clark, B.L.; Grecian, J.; Guilford, T.; Hamer, K.C.; Jeglinski, J.W.E.; Morgan, G.; et al. Effects of age and reproductive status on individual foraging site fidelity in a long-lived marine predator. Proc. R. Soc. B-Biol. Sci. 2017, 284. [Google Scholar] [CrossRef] [Green Version]
- Sanz-Aguilar, A.; Jovani, R.; Melian, C.J.; Pradel, R.; Tella, J.L. Multi-event capture-recapture analysis reveals individual foraging specialization in a generalist species. Ecology 2015, 96, 1650–1660. [Google Scholar] [CrossRef] [Green Version]
- Slagsvold, T.; Wiebe, K.L. Learning the ecological niche. Proc. R. Soc. B-Biol. Sci. 2007, 274, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Tinker, M.T.; Mangel, M.; Estes, J.A. Learning to be different: Acquired skills, social learning, frequency dependence, and environmental variation can cause behaviourally mediated foraging specializations. Evol. Ecol. Res. 2009, 11, 841–869. [Google Scholar]
- Laverty, T.M.; Plowright, R.C. Flower handling by bumblebees: A comparison of specialists and generalists. Anim. Behav. 1988, 36, 733–740. [Google Scholar] [CrossRef]
- Snell-Rood, E.C.; Papaj, D.R. Patterns of Phenotypic Plasticity in Common and Rare Environments: A Study of Host Use and Color Learning in the Cabbage White Butterfly Pieris rapae. Am. Nat. 2009, 173, 615–631. [Google Scholar] [CrossRef] [Green Version]
- Pietrewicz, A.T.; Kamil, A.C. Search Image-Formation In The Blue Jay (Cyanocitta-Cristata). Science 1979, 204, 1332–1333. [Google Scholar] [CrossRef] [Green Version]
- Jermy, T.; Hanson, F.; Dethier, V. Induction of specific food preference in lepidopterous larvae. Entomol. Exp. Appl. 1968, 11, 211–230. [Google Scholar] [CrossRef]
- Bergelson, J.M. A Mechanistic Interpretation Of Prey Selection By Anax-Junius Larvae (Odonata, Aeschnidae). Ecology 1985, 66, 1699–1705. [Google Scholar] [CrossRef]
- Dukas, R. Animal expertise: Mechanisms, ecology and evolution. Anim. Behav. 2019, 147, 199–210. [Google Scholar] [CrossRef]
- Papaj, D.R. Conditioning of leaf shape discrimination by chemical cues in the butterfly, Battus philenor. Anim. Behav. 1986, 34, 1281–1288. [Google Scholar] [CrossRef]
- Rausher, M.D.; Papaj, D.R. Host Plant-Selection By Battus-Philenor Butterflies—Evidence For Individual-Differences In Foraging Behavior. Anim. Behav. 1983, 31, 341–347. [Google Scholar] [CrossRef]
- Prokopy, R.J.; Averill, A.L.; Cooley, S.S.; Roitberg, C.A. Associative Learning In Egglaying Site Selection By Apple Maggot Flies. Science 1982, 218, 76–77. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.A. Effects of Experience on Oviposition and Attraction in Drosophila—Comparing Apples and Oranges. Am. Nat. 1985, 126, 41–51. [Google Scholar] [CrossRef]
- Cunningham, J.P.; West, S.A.; Wright, D.J. Learning in the nectar foraging behaviour of Helicoverpa armigera. Ecol. Entomol. 1998, 23, 363–369. [Google Scholar] [CrossRef]
- Brosi, B.J. Pollinator specialization: From the individual to the community. New Phytol. 2016, 210, 1190–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossman, S.; Ostrom, P.H.; Stolen, M.; Barros, N.B.; Gandhi, H.; Stricker, C.A.; Wells, R.S. Individual specialization in the foraging habits of female bottlenose dolphins living in a trophically diverse and habitat rich estuary. Oecologia 2015, 178, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.L.; Morrison, S.J.; Moschonas, E.H.; Papaj, D.R. Patterns of pollen and nectar foraging specialization by bumblebees over multiple timescales using RFID. Sci. Rep. 2017, 7, 42448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traynier, R.M.M. Associative learning in the ovipositional behaviour of the cabbage butterfly, Pieris rapae. Physiol. Entomol. 1984, 9, 465–472. [Google Scholar] [CrossRef]
- Hern, A.; EdwardsJones, G.; McKinlay, R.G. A review of the pre-oviposition behaviour of the small cabbage white butterfly, Pieris rapae (Lepidoptera: Pieridae). Ann. Appl. Biol. 1996, 128, 349–371. [Google Scholar] [CrossRef]
- Lewis, A.C. Memory constraints and flower choice in Pieris rapae. Science 1986, 232, 863–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steck, M.K.; Snell-Rood, E.C. Specialization and accuracy of host-searching butterflies in complex and simple environments. Behav. Ecol. 2018, 29, 486–495. [Google Scholar] [CrossRef]
- Webb, S.; Shelton, A. Laboratory rearing of the imported cabbageworm. N. Y. Food Life Sci. Bull. 1988, 122, 1–6. [Google Scholar]
- Blumstein, D.T.; Daniel, J.C.; Evans, C.S. JWatcherTM 1.0 an introductory User’s guide. Last Modif. 2006, 9. Available online: http://docplayer.net/45718231-Jwatcher-tm-1-0-an-introductory-user-s-guide-daniel-t-blumstein-janice-c-daniel-christopher-s-evans.html (accessed on 17 January 2022).
- Bates, D.; Machler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Snell-Rood, E.C. An overview of the evolutionary causes and consequences of behavioural plasticity. Anim. Behav. 2013, 85, 1004–1011. [Google Scholar] [CrossRef]
- Heinrich, B. Foraging specializations of individual bumble-bees. Ecol. Monogr. 1976, 46, 105–128. [Google Scholar] [CrossRef]
- Gripenberg, S.; Mayhew, P.J.; Parnell, M.; Roslin, T. A meta-analysis of preference-performance relationships in phytophagous insects. Ecol. Lett. 2010, 13, 383–393. [Google Scholar] [CrossRef]
- Dyer, A.G.; Chittka, L. Bumblebees (Bombus terrestris) sacrifice foraging speed to solve difficult colour discrimination tasks. J. Comp. Physiol. A-Neuroethol. Sens. Neural Behav. Physiol. 2004, 190, 759–763. [Google Scholar] [CrossRef] [PubMed]
- Forrest, J.; Thomson, J.D. Background complexity affects colour preference in bumblebees. Naturwissenschaften 2009, 96, 921–925. [Google Scholar] [CrossRef]
- Telles, F.J.; Corcobado, G.; Trillo, A.; Rodriguez-Girones, M.A. Multimodal cues provide redundant information for bumblebees when the stimulus is visually salient, but facilitate red target detection in a naturalistic background. PLoS ONE 2017, 12, e0184760. [Google Scholar] [CrossRef]
- Raine, N.E.; Chittka, L. Flower constancy and memory dynamics in bumblebees (Hymenoptera Apidae Bombus). Entomol. Gen. 2007, 29, 179–199. [Google Scholar] [CrossRef]
- Weiss, M.R.; Papaj, D.R. Colour learning in two behavioural contexts: How much can a butterfly keep in mind? Anim. Behav. 2003, 65, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Chittka, L.; Muller, H. Learning, specialization, efficiency and task allocation in social insects. Commun. Integr. Biol. 2009, 2, 151–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chittka, L.; Thomson, J.D. Sensori-motor learning and its relevance for task specialization in bumble bees. Behav. Ecol. Sociobiol. 1997, 41, 385–398. [Google Scholar] [CrossRef]
- Ishii, H.S.; Kadoya, E.Z. Legitimate visitors and nectar robbers on Trifolium pratense showed contrasting flower fidelity versus co-flowering plant species: Could motor learning be a major determinant of flower constancy by bumble bees? Behav. Ecol. Sociobiol. 2016, 70, 377–386. [Google Scholar] [CrossRef]
- Snell-Rood, E.C.; Papaj, D.R. Learning signals within sensory environments: Does host cue learning in butterflies depend on background? Anim. Biol. 2006, 56, 173–192. [Google Scholar] [CrossRef] [Green Version]
Relative Abundance Comparisons | β | SE | z | p-Value |
Day 1: Different Environments | ||||
Cabbage Abundant-Equal Abundance | 0.894 | 0.144 | 6.230 | <0.001 |
Equal Abundance-Radish Abundant | 0.856 | 0.146 | 5.866 | <0.001 |
Cabbage Abundant-Radish Abundant | 1.750 | 0.147 | 11.870 | <0.001 |
Day 2: Common Environment (comparisons refer to Day 1 expereinces) | ||||
Cabbage Abundant-Equal Abundance | 0.062 | 0.141 | 0.440 | 0.899 |
Equal Abundance-Radish Abundant | 0.098 | 0.147 | 0.662 | 0.785 |
Cabbage Abundant-Radish Abundant | 0.160 | 0.140 | 1.139 | 0.490 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steck, M.K.; Snell-Rood, E.C. No Effect of Early Adult Experience on the Development of Individual Specialization in Host-Searching Cabbage White Butterflies. Ecologies 2022, 3, 1-11. https://doi.org/10.3390/ecologies3010001
Steck MK, Snell-Rood EC. No Effect of Early Adult Experience on the Development of Individual Specialization in Host-Searching Cabbage White Butterflies. Ecologies. 2022; 3(1):1-11. https://doi.org/10.3390/ecologies3010001
Chicago/Turabian StyleSteck, Meredith K., and Emilie C. Snell-Rood. 2022. "No Effect of Early Adult Experience on the Development of Individual Specialization in Host-Searching Cabbage White Butterflies" Ecologies 3, no. 1: 1-11. https://doi.org/10.3390/ecologies3010001
APA StyleSteck, M. K., & Snell-Rood, E. C. (2022). No Effect of Early Adult Experience on the Development of Individual Specialization in Host-Searching Cabbage White Butterflies. Ecologies, 3(1), 1-11. https://doi.org/10.3390/ecologies3010001