Scale Treatment Planning Using Broaching Method in a Vapor-Dominated Geothermal Well X at Kamojang Geothermal Field
Abstract
:1. Introduction
2. Geothermal System and Tectonic Setting of Kamojang Field
3. Methods
3.1. Research Location
3.2. Research Methods
3.2.1. Geochemical Sampling
3.2.2. Scale Analysis Methods
3.2.3. PHREEQC Analysis
3.3. Treatment Method Selection
4. Results and Discussion
4.1. Scale Formation Indicators in Well X
4.1.1. Analysis of Wellhead Pressure (WHP) Decline Indicators
4.1.2. Analysis of Production Decline Characteristics
4.2. Scale Formation Assessment Through Well Integrity Testing: Go-Devil and Sample Catcher Analysis
4.2.1. Analysis of Go-Devil Measurement Results
4.2.2. Analysis of Sample Catcher Measurement Results
4.2.3. Well Schematic Analysis of Scale Deposition Points Based on Well Integrity (Go-Devil) Measurements
4.3. Scale Formation Assessment Through Geochemistry and XRD Analysis
4.3.1. Geochemistry Result and Scaling Prediction
- a.
- Goethite (FeO(OH))
- b.
- Hematite (Fe2O3):
4.3.2. XRD Analysis and Result
4.4. Determination of Scale Cleaning Stimulation Methods
4.5. Planning for Broaching Scale in Well X
4.5.1. Requirements for Broaching Operations to Be Used in a Well
4.5.2. Determination of Broaching Based on Well X’s Deviation Angle
4.5.3. Pre-Job Planning
4.5.4. Determination of Broaching Target Depths Based on Well Schematic Review
4.5.5. Broaching Tools
4.5.6. Design Specifications of Broaching String Assembly for Well X
4.5.7. The Broaching Procedure
- The scale column height in Well X is still manageable, making broaching operations relatively straightforward to implement.
- The inclination angle of Well X, at 30°, falls within the required limit of the broaching method, which is 50°. Therefore, this method is applicable to this well.
- The scale formation in Well X is relatively minimal, requiring a more economical method to avoid excessive costs. Broaching represents the most cost-effective scale stimulation method compared to other alternatives.
- High temperatures and potential tool-sticking incidents can pose risks of wireline breakage during scale cleaning operations.
- Complete scale removal may not be achievable in big-hole wells due to broaching tool diameter limitations. Additionally, the broaching tool’s cutting action might cause direct friction with the casing wall, potentially leading to casing leaks.
5. Conclusions
5.1. Summarys
5.2. Recommendation
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAS | Atomic Absorption Spectroscopy |
Ar | Argon |
ASTM | American Society for Testing and Materials |
AWJ | Abrasive Water Jet |
BPPT | Agency for the Assessment and Application of Technology Indonesia |
BOP | Blowout Preventer |
BTC | Buttress Thread Connection |
CH4 | Methane |
COD | Crystallography Open Database |
CO2 | Carbon Dioxide |
°C | Degrees Celsius |
Fe2O3 | Hematite |
Fe3O4 | Magnetite |
FeO(OH) | Goethite |
ft | Feet |
GPP | Geothermal Power Plant |
GW | Gigawatt |
H2 | Hydrogen |
H2S | Hydrogen Sulfide |
ICP-OES | Inductively Coupled Plasma-Optical Emission Spectrometry |
IPA | Indonesian Petroleum Association |
KOP | Kick-Off Point |
lbs | Pounds |
Ma | Million Years Ago |
MD | Measured Depth |
MW | Megawatt |
μS/cm | Microsiemens per Centimeter |
NaOH | Sodium Hydroxide |
N2 | Nitrogen |
NCG | Non-Condensable Gas |
NH4 | Ammonium |
pHREEQC | pH-REdox-EQuilibrium (in C programming language) |
PHREEQC | A Computer Program for Speciation, Batch-Reaction, and Geochemical Modeling |
ppf | Pounds Per Foot |
PGE | Pertamina Geothermal Energy |
POOH | Pull-Out-Of-Hole |
ppm | Parts Per Million |
QPA | Quantitative Phase Analysis |
RIH | Run-In-Hole |
SI | Saturation Index |
SiO2 | Silicon Dioxide/Silica |
TDS | Total Dissolved Solids |
TFS | Total Flow Steam |
TVD | True Vertical Depth |
USD | United States Dollar |
WHP | Wellhead Pressure |
XRD | X-Ray Diffraction |
References
- Li, Q.; Li, Q.; Wu, J.; Li, X.; Li, H.; Cheng, Y. Wellhead Stability During Development Process of Hydrate Reservoir in the Northern South China Sea: Evolution and Mechanism. Processes 2024, 13, 40. [Google Scholar] [CrossRef]
- Sofyan, A.; Szanyi, J.; Aka, H.S. Investigation of Zone and Type of Scaling Based on the Fluid Flow Pattern in the Geothermal Well ‘X’ at the Salak Geothermal Field—Indonesia. Int. J. Renew. Energy Res. 2024, 14, 192–202. [Google Scholar]
- Yudha, S.W.; Tjahjono, B.; Longhurst, P. Unearthing the Dynamics of Indonesia’s Geothermal Energy Development. Energies 2022, 15, 5009. [Google Scholar] [CrossRef]
- Boch, R.; Leis, A.; Goldbrunner, J. Scaling Forensics: Evaluating Geothermal Production Conditions from Scales as Chemical-Sedimentary Archives. 2017. Available online: https://www.researchgate.net/publication/319677339 (accessed on 8 December 2024).
- Association, I.G. Best Practices Guide for Geotherma l Exploration; IGA Service GmbH: Bochum, Germany, 2014. [Google Scholar]
- Fukuyama, M.; Chen, F. Geochemical characteristics of silica scales precipitated from the geothermal fluid at the Onuma geothermal power plant in Japan. J. Miner. Pet. Sci. 2021, 116, 159–169. [Google Scholar] [CrossRef]
- Tranter, M.; De Lucia, M.; Kühn, M. Barite Scaling Potential Modelled for Fractured-Porous Geothermal Reservoirs. Minerals 2021, 11, 1198. [Google Scholar] [CrossRef]
- Setiawan, F.A.; Rahayuningsih, E.; Petrus, H.T.B.M.; Nurpratama, M.I.; Perdana, I. Kinetics of silica precipitation in geothermal brine with seeds addition: Minimizing silica scaling in a cold re-injection system. Geotherm. Energy 2019, 7, 22. [Google Scholar] [CrossRef]
- Boersma, A.; Fischer, H.; Vercauteren, F.; Pizzocolo, F. Scaling Assessment, Inhibition and Monitoring of Geothermal Wells; American Association of Petroleum Geologists AAPG/Datapages: Washington DC, USA, 2023. [Google Scholar] [CrossRef]
- Kaypakoğlu, B.; Sisman, M.; Aksoy, N. Preventive methods for scaling and corrosion in geothermal fields. In New Zealand Geothermal Workshop 2012 Proceedings; New Zealand Geothermal Association: Auckland, New Zealand, 2012. [Google Scholar]
- Wilson, D.R.; Gilliland, J.; Austin, A. Broaching: An effective method of well intervention for calcite scale removal. In Transactions—Geothermal Resources Council; Peppermill Resort Spa CasinoReno: Reno, NV, USA, 2015; pp. 217–221. [Google Scholar]
- Vazquez, O.; Mackay, E.; Beteta, A. Scale Treatment Optimisation in Geothermal Reservoirs. In SPE International Oilfield Scale Conference and Exhibition; SPE: Calgary, AB, Canada, 2024. [Google Scholar] [CrossRef]
- Prasetyo, B.T.; Suyanto; Cahyadi; Sutriyanto, H. Lesson learned—The operation of the pilot scale geothermal power plant 3MW-Kamojang, Indonesia. Geothermics 2021, 91, 102025. [Google Scholar] [CrossRef]
- Suryadarma; Dwikorianto, T.; Zuhro, A.A.; Yani, A. Sustainable development of the Kamojang geothermal field. Geothermics 2010, 39, 391–399. [Google Scholar] [CrossRef]
- Ameri, M.; Shamshirgaran, S.R. The Study of Key Thermodynamic Parameters’ Effects on the Performance of a Flash Steam Geothermal Power Plant. In Proceedings of the 2nd Joint International Conference on “Sustainable Energy and Environment (SEE 2006), Bangkok, Thailand, 21–23 November 2006. [Google Scholar]
- Pambudi, N.A. Geothermal power generation in Indonesia, a country within the ring of fire: Current status, future development and policy. Renew. Sustain. Energy Rev. 2018, 81, 2893–2901. [Google Scholar] [CrossRef]
- Sofyan, A.; Wiharti, S.; Szanyi, J.; Suranta, B.Y.; Njeru, R. Determination of Scaling Zone and Scaling Type in Slotted Liner Based on the Fluid Flow Pattern in the Geothermal Well “X”. Int. J. Renew. Energy Res. 2023, 13, 273–283. [Google Scholar] [CrossRef]
- Pena-Castellnou, S.; Marliyani, G.I.; Reicherter, K. Preliminary Tectonic Geomorphology of the Opak Fault System, Java (Indonesia). Geophys. Res. Abstr. 2019, 21, 1. [Google Scholar]
- Sieh, K.; Natawidjaja, D. Neotectonics of the Sumatran fault, Indonesia. J. Geophys. Res. 2000, 105, 28295–28326. [Google Scholar] [CrossRef]
- Hall, R.; Clements, B.; Smyth, H.R.; Cottam, M.A. A new interpretation of Java’s structure. In Proceedings of the Indonesian Petroleum Association, Proceedings 31st Annual Convention, Jakarta, Indonesia, 14–16 May 2007; pp. 63–86. [Google Scholar]
- Ahnaf, J.S.; Patonah, A.; Permana, H.; Ismawan, I. Structure and Tectonic Reconstruction of Bayah Complex Area, Banten. J. Geosci. Eng. Environ. Technol. 2018, 3, 77–85. [Google Scholar] [CrossRef]
- Haryanto, I. Tectonic and Geological Structures of Gunung Kromong, West JAVA, Indonesia. Int. J. GEOMATE 2020, 19, 185–193. [Google Scholar] [CrossRef]
- Pulunggono, A.D.; Martodjojo, S. Perubahan tektonik Paleogen-Neogen merupakan peristiwa tektonik terpenting di Jawa. Proc. Geol. Dan Geotek. Pulau Jawa Yogyak 1994, 12, 37–49. [Google Scholar]
- Soeria-Atmadja, R.; Maury, R.C.; Bellon, H.; Pringgoprawiro, H.; Polve, M.; Priadi, B. Tertiary magmatic belts in Java. J. Southeast Asian Earth Sci. 1994, 9, 13–27. [Google Scholar] [CrossRef]
- Setijadji, L.D. Segmented Volcanic Arc and its Association with Geothermal Fields in Java Island, Indonesia. In Proceedings of the World Geothermal Congress, Bali, Indonesia, 25–30 April 2010. [Google Scholar]
- Rejeki, S.; Hadi, J.; Suhayati, I. Porosity Study for Detail Reservoir Characterization in Darajat Geothermal Field, West Java, Indonesia. In Proceedings of the World Geothermal Congress, Antalya, Turkey, 24–29 April 2005. [Google Scholar]
- Robert, D.; Raharso, R.; Bastaman, S. Exploration and development of the Kamojang geothermal field. In 12th Annual Convention Proceedings; Indonesian Petroleum Association (IPA): Jakarta, Indonesia. [CrossRef]
- Yudiantoro, D.; Suparka, E.; Yuwono, S.; Takashima, I.; Ishiyama, D.; Kamah, Y.; Hutabarat, J. Alteration and Lithogeochemistry of Altered Rocks at Well KMJ-49 Kamojang Geothermal Field, West Java. Econ. Env. Geol. 2012, 3, 21–32. [Google Scholar]
- Yudiantoro, D.F.; Suparka, E.; Yuwono, S.; Takashima, I.; Ishiyama, D.; Kamah, Y.; Hutabarat, J. Interstratified Illite/Montmorillonite in Kamojang Geothermal Field, Indonesia. Indones. J. Geosci. 2013, 8, 177–183. [Google Scholar] [CrossRef]
- Utami, P. Characteristics of the Kamojang geothermal reservoir (West Java) as revealed by its hydrothermal alteration mineralogy. In Proceedings of the Proceedings World Geothermal Congress, Tohoku, Japan, 28 May—10 June 2000. [Google Scholar]
- Utami, A.R.; Widiati, E.; Program, M.S.; Digital, T.; Lokal, P.; Digital, T. Efektivitas Digital Branding Melalui Platform E-Commerce Dalam Meningkatkan Penjualan Produk Lokal. Ikraith Ekon. 2025, 8, 294–303. [Google Scholar]
- Tavip, Y.D.; Kamah, A.Z.A. Penanggulangan problem geologi dalam operasi pemboran sumur di blok timur area geothermal kamojang jawa barat Indonesia. In Proceedings of the 6th Indonesian Geothermal Association, Jakarta, Indonesia, 20–21 September 2023; pp. 175–184. [Google Scholar]
- Arnórsson, S.; Bjarnason, J.Ö.; Giroud, N.; Gunnarsson, I.; Stefánsson, A. Sampling and analysis of geothermal fluids. Geofluids 2006, 6, 203–216. [Google Scholar] [CrossRef]
- Sofyan, A.; Aka, H.S.; Rizaldy, A.M.; Suranta, B.Y. Development of Indonesian Wellhead Generating Unit (Small Scale) Based on Legal and Regulation of PT. Geo Dipa Dieng: A Case Study. In Proceedings of the 2nd Borobudur International Symposium on Science and Technology (BIS-STE 2020), Virtual, 18 November 2020; pp. 72–82. [Google Scholar] [CrossRef]
- Li, T.; Gao, R.; Gao, X.; Liu, Q. Synergetic Effect of Non-Condensable Gas and Steam Quality on the Production Capacity of Geothermal Wells and Geothermal Power Generation for Hot Dry Rock. Energies 2022, 15, 7726. [Google Scholar] [CrossRef]
- Bragulla, S.C.H.; Lorenz, J.; Harms, C.; Wark, M.; Friedrich, K.A. Application of Ion Chromatography for the Reliable Quantification of Ammonium in Electrochemical Ammonia Synthesis Experiments: A Practical Guide. ChemSusChem 2023, 16, e202202211. [Google Scholar] [CrossRef] [PubMed]
- Muravyev, A.V. Gas Condensate Wells: Challenges of Sampling, Testing and Production Optimization. Energies 2022, 15, 5419. [Google Scholar] [CrossRef]
- ASTM D1066-97; Standard Practice for Sampling Two-Phase Geothermal Fluid for Purposes of Chemical Analysis 1. ASTM: West Conshehawken, PA, USA, 2004.
- Rahayudin, Y.; Kashiwaya, K.; Tada, Y.; Iskandar, I.; Koike, K.; Atmaja, R.W.; Herdianita, N.R. On the origin and evolution of geothermal fluids in the Patuha Geothermal Field, Indonesia based on geochemical and stable isotope data. Appl. Geochem. 2020, 114, 104530. [Google Scholar] [CrossRef]
- Hu, K.; Liu, X.; Chen, Z.; Grasby, S.E. Mineralogical Characterization from Geophysical Well Logs Using a Machine Learning Approach: Case Study for the Horn River Basin, Canada. Earth Space Sci. 2023, 10, e2023EA003084. [Google Scholar] [CrossRef]
- Kauzhanova, A.; Te, L.; Reedy, J.; Ehighebolo, T.I.; Heinerth, M.B.; Khaidarov, Y. Field-Proven Well Surveillance Techniques Designed for an Early Well Scaling Diagnosis and Timely Well Performance Reinstatement: Case Study from the Kashagan Field. In Proceedings of the SPE Annual Caspian Technical Conference, Virtual, 5 October 2021; p. D012S014R011. [Google Scholar] [CrossRef]
- Tawfeeq, Y.J.; Aziz, Q.A.A.; Al-Hadidy, A.H. Prediction of Wells Performance and Producing Life Applying Production Decline Analysis. Iraqi Geol. J. 2024, 57, 111–120. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo CA, J. Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. US Geol. Surv. Tech. Methods 2013, 6, 497. [Google Scholar]
- Chauhan, V.; Saevarsdottir, G.; Tesfahunegn, Y.A.; Asbjornsson, E.; Gudjonsdottir, M. Computational study of two-phase flashing flow in a calcite scaled geothermal wellbore. Geothermics 2021, 97, 102239. [Google Scholar] [CrossRef]
- Cao, L.; Yuan, H.; Pan, Z.; Liu, Z.; Zhang, B.; Sun, T.; Liu, J.; Wu, H. Dynamic Scaling Prediction Model and Application in Near-Wellbore Formation of Ultradeep Natural Gas Reservoirs. SPE J. 2024, 29, 2476–2493. [Google Scholar] [CrossRef]
- Bedrikovetsky, P.; Silva, R.M.; Daher, J.S.; Gomes, J.A.; Amorim, V.C. Well-data-based prediction of productivity decline due to sulphate scaling. J. Pet. Sci. Eng. 2009, 68, 60–70. [Google Scholar] [CrossRef]
- Li, Y.; Pang, Z.; Galeczka, I.M. Quantitative assessment of calcite scaling of a high temperature geothermal well in the Kangding geothermal field of Eastern Himalayan Syntax. Geothermics 2020, 87, 101844. [Google Scholar] [CrossRef]
- Cheng, J.; Mao, D.; Salamah, M.; Horne, R. Scale Buildup Detection and Characterization in Production Wells by Deep Learning Methods. In SPE Annual Technical Conference and Exhibition; SPE: Calgary, AB, Canada, 2021. [Google Scholar] [CrossRef]
- Bin Othman, E.; Gomes, D.; Bidin, T.E.B.T.; Hashim, M.M.H.M.; Yusoff, M.H.; Arriffin, M.F.; Ghazali, R. Application of Machine Learning to Augment Wellbore Geometry-Related Stuck Pipe Risk Identification in Real Time. In Proceedings of the Offshore Technology Conference Asia, Kuala Lumpur, Malaysia, 22–25 March 2022; p. D041S002R004. [Google Scholar] [CrossRef]
- Pudyaksa, A.; Harsian, H.; Shibuya, T.; Wilasari, N.M.; Azwar, O.; Pasaribu, I.T. Combination of Deep-Reading and Near-Wellbore-Scale Measurement in Accessing Thin Layer Facies of a Carbonate Reservoir. In Proceedings of the 2019 AAPG Asia Pacific Region Technical Symposium the Art of Hydrocarbon Prediction: Managing Uncertainties, Bogor, Indonesia, 7–8 August 2019. [Google Scholar] [CrossRef]
- Wein, F.; Dunning, P.D.; Norato, J.A. A review on feature-mapping methods for structural optimization. Struct. Multidiscip. Optim. 2020, 62, 1597–1638. [Google Scholar] [CrossRef]
- Davoody, M.; Graham, L.J.; Wu, J.; Witt, P.J.; Madapusi, S.; Parthasarathy, R. Mitigation of scale formation in unbaffled stirred tanks-experimental assessment and quantification. Chem. Eng. Res. Des. 2019, 146, 11–21. [Google Scholar] [CrossRef]
- Jamero, J.; Zarrouk, S.J.; Mroczek, E. Mineral scaling in two-phase geothermal pipelines: Two case studies. Geothermics 2018, 72, 1–14. [Google Scholar] [CrossRef]
- Scott, S.; Galeczka, I.M.; Gunnarsson, I.; Arnórsson, S.; Stefánsson, A. Silica polymerization and nanocolloid nucleation and growth kinetics in aqueous solutions. Geochim. Cosmochim. Acta 2024, 371, 78–94. [Google Scholar] [CrossRef]
- Clark, D.E.; Oelkers, E.H.; Gunnarsson, I.; Sigfússon, B.; Snæbjörnsdóttir, S.Ó.; Aradóttir, E.S.; Gíslason, S.R. CarbFix2: CO2 and H2S mineralization during 3.5 years of continuous injection into basaltic rocks at more than 250 °C. Geochim. Cosmochim. Acta 2020, 279, 45–66. [Google Scholar] [CrossRef]
- Khanfar, H.S.; Sitepu, H. Lab Case Study of Microbiologically Influenced Corrosion and Rietveld Quantitative Phase Analysis of X-ray Powder Diffraction Data of Deposits from a Refinery. ACS Omega 2021, 6, 11822–11831. [Google Scholar] [CrossRef]
- Zarrouk, S.J.; Woodhurst, B.C.; Morris, C. Silica scaling in geothermal heat exchangers and its impact on pressure drop and performance: Wairakei binary plant, New Zealand. Geothermics 2014, 51, 445–459. [Google Scholar] [CrossRef]
- Hajirezaie, S.; Wu, X.; Soltanian, M.R.; Sakha, S. Numerical simulation of mineral precipitation in hydrocarbon reservoirs and wellbores. Fuel 2018, 238, 462–472. [Google Scholar] [CrossRef]
- Sojková, T.; Gröger, R.; Poloprudský, J.; Kuběna, I.; Schneeweiss, O.; Sojka, M.; Šiška, Z.; Pongrácz, J.; Pizúrová, N. Kinetics of spontaneous phase transitions from wüstite to magnetite in superparamagnetic core–shell nanocubes of iron oxides. Nanoscale 2024, 16, 5551–5560. [Google Scholar] [CrossRef]
- Yenice, H.; Dünya, H. Mechanical Cleaning of Calcite Scaling with Rotating Control Head Preventer in a Geothermal Well. Energy Explor. Exploit. 2007, 25, 451–465. [Google Scholar] [CrossRef]
- Guo, H.; You, F.; Yu, S.; Li, L.; Zhao, D. Mechanisms of chemical cleaning of ion exchange membranes: A case study of plant-scale electrodialysis for oily wastewater treatment. J. Membr. Sci. 2015, 496, 310–317. [Google Scholar] [CrossRef]
- Mavredaki, E.; Stathoulopoulou, A.; Neofotistou, E.; Demadis, K.D. Environmentally benign chemical additives in the treatment and chemical cleaning of process water systems: Implications for green chemical technology. Desalination 2007, 210, 257–265. [Google Scholar] [CrossRef]
- Elwan, M.; Mousa, H.; Shahin, E.; Elshiekh, M.; Wahib, O.; Mansour, M. Application of Multi-Oriented Nozzle for Clean Out Sand Fill in Highly Deviated Well had Succeed to Unlock Oil Reserve in Hpht Oil Well. In Proceedings of the SPE Gas & Oil Technology Showcase and Conference, Dubai, United Arab Emirates, 7–9 May 2024; p. D021S022R001. [Google Scholar] [CrossRef]
- Jarrahian, K.; Mackay, E.; Singleton, M.; Mohammadi, S.; Heath, S.; Pessu, F. Control in Geothermal Wells—What are the Options for Effective and Economic Scale Management? In Proceedings of the SPE International Oilfield Scale Conference and Exhibition, Aberdeen, UK, 5–6 June 2024. [Google Scholar] [CrossRef]
- Flores-Armenta, M.; Alcalá, L.M. How Much Stimulation Can We Afford? In Proceedings of the Short Course on Geothermal Development and Geothermal Wells, Santa Tecla, El Salvador, 11–17 March 2012. [Google Scholar]
- Aka, H.S.; Ermanda, M.B.; Sofyan, A. Planning and Evaluation of Scale Cleansing in Well ‘X’ Using Broaching Method in Field ‘Y’. 2020. Available online: https://www.researchgate.net/publication/359083920_Planning_and_Evaluation_of_Scale_Cleansing_in_Well_X_Using_Broaching_Method_in_Field_Y (accessed on 8 December 2024).
- Bjerstedt, T.W.; Shedd, W.W.; Natter, M.G.; Abadie, P.B.; Moridis, G.J.; Reagan, M.T. Evaluation of hydrocarbon broaching after subsurface containment failure, Gulf of Mexico. AAPG Bull. 2020, 104, 845–862. [Google Scholar] [CrossRef]
Data Tools Sample Catcher SC | ||
---|---|---|
Tools | Length | Weight |
Scale Catcher 5.5″ | 60 cm | 3.50 kg |
Scale Catcher 3.5″ | 60 cm | 2.00 kg |
Jars | 200 cm | 7.25 kg |
Socket | 10 cm | 0.40 kg |
Extension sinkers | 45 cm | 1.95 kg |
Bull Nose | 20 cm | 0.90 kg |
Slickline 0.92″. Max Tension 640 kg 0.108″. Max 930 kg |
Well Name | KMJ-X | KMJ-X | KMJ-X | KMJ-X | KMJ-X | KMJ-X | KMJ-X | KMJ-X |
---|---|---|---|---|---|---|---|---|
Type of Well | PROD | PROD | PROD | PROD | PROD | PROD | PROD | PROD |
Sampling Date | 21 July 2019 | 27 August 2019 | 28 November 2019 | 27 March 2020 | 8 December 2020 | 18 March 2021 | 10 August 2021 | 9 November 2021 |
Conductivity µS/cm | 16.60 | 23.55 | 24.60 | 27.00 | 20.00 | 21.00 | 25.00 | |
pH at TEMP 25° | 4.75 | 4.60 | 4.51 | 4.31 | 3.91 | 4.41 | 4.32 | 4.04 |
TDS (ppm) | 1.28 | 1.13 | 0.80 | 0.82 | 2.15 | 1.28 | 0.96 | 0.69 |
Sodium (Na) (ppm) | 0.20 | 0.10 | 0.04 | 0.03 | 0.03 | 0.08 | 0.03 | 0.03 |
Potassium (K) (ppm) | 0.20 | 0.10 | - | - | - | - | - | - |
Calcium (Ca) (ppm) | 0.05 | 0.05 | - | - | - | - | - | - |
Magnesium (Mg) (ppm) | 0.05 | 0.05 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 |
Lithium (Li) (ppm) | 0.05 | 0.05 | - | - | - | - | - | - |
Ammonium (NH4) (ppm) | 1.73 | 2.16 | - | - | - | - | - | - |
Iron (Fe) (ppm) | 0.01 | 0.05 | 0.07 | 0.01 | 0.43 | 0.03 | 0.02 | 0.03 |
Fluor (F) (ppm) | 0.21 | 0.20 | 0.26 | 0.20 | 0.21 | 0.29 | 0.30 | 0.21 |
Bicarbonate (HCO3) (ppm) | 7.44 | 9.24 | - | - | - | - | - | - |
Chloride (Cl) (ppm) | 0.01 | 0.14 | 0.09 | 0.11 | 0.04 | 0.79 | 0.10 | 0.05 |
Sulfate (SO4) (ppm) | 0.67 | 0.84 | 0.35 | 0.52 | 1.51 | 0.32 | 0.45 | 0.35 |
Hydrogen Sulfide (H2S) (ppm) | 16.63 | 26.53 | - | - | - | - | - | - |
Boron (B) (ppm) | 4.76 | 4.82 | 4.19 | 3.97 | 5.31 | 4.24 | 5.21 | 4.60 |
Silica (SiO2) (ppm) | 0.05 | 0.06 | 0.24 | 0.14 | 0.18 | 0.06 | 0.41 | 0.26 |
Date | CO2 | H2S | NH3 | Ar | N2 | CH4 | H2 | Air Cont | Total NCG |
---|---|---|---|---|---|---|---|---|---|
% Moles | (% wt) | ||||||||
28 November 2019 | 93.96 | 3.25 | 0.03 | 0.01 | 0.93 | 0.13 | 1.69 | - | 0.56 |
27 February 2020 | 95.02 | 3.06 | 0.06 | 0.00 | 0.54 | 0.11 | 1.21 | - | 0.61 |
8 December 2020 | 95.84 | 2.54 | 0.05 | 0.00 | 0.55 | 0.08 | 0.93 | 0.01 | 0.71 |
19 March 2021 | 95.06 | 3.00 | 0.05 | 0.01 | 0.59 | 0.09 | 1.20 | 0.00 | 0.65 |
10 August 2021 | 95.57 | 2.24 | 0.05 | 0.00 | 0.71 | 0.12 | 1.31 | 0.01 | 0.72 |
Phase | SI | log IAP | log K(443 K, 8 atm) | |
---|---|---|---|---|
Anhydrite | −4.85 | −11.15 | −6.30 | CaSO4 |
Aragonite | −7.30 | −17.80 | −10.50 | CaCO3 |
Calcite | −6.42 | −17.80 | −11.38 | CaCO3 |
CH4(g) | −62.12 | −64.96 | −2.84 | CH4 |
Chalcedony | −3.66 | −6.08 | −2.42 | SiO2 |
Chrysotile | −20.73 | −0.80 | 19.93 | Mg3Si2O5(OH)4 |
CO2(g) | −1.84 | −3.92 | −2.08 | CO2 |
Dolomite | −12.37 | −35.39 | −23.02 | CaMg(CO3)2 |
Fe(OH)3(a) | −5.52 | −0.63 | 4.89 | Fe(OH)3 |
FeS(ppt) | −60.27 | −64.19 | −3.91 | FeS |
Fluorite | −6.03 | −16.26 | −10.23 | CaF2 |
Goethite | 3.84 | −0.63 | −4.47 | FeOOH |
Gypsum | −5.80 | −11.15 | −5.35 | CaSO4:2H2O |
H2(g) | −18.16 | −21.07 | −2.92 | H2 |
H2O(g) | 0.88 | 0.00 | −0.88 | H2O |
H2S(g) | −57.15 | −65.51 | −8.36 | H2S |
Halite | −13.27 | −11.62 | 1.65 | NaCl |
Hematite | 10.14 | −1.26 | −11.41 | Fe2O3 |
Jarosite-K | −15.17 | −31.89 | −16.72 | KFe3(SO4)2(OH)6 |
Mackinawite | −59.54 | −64.19 | −4.65 | FeS |
Melanterite | −11.91 | −13.41 | −1.50 | FeSO4:7H2O |
O2(g) | −15.77 | −18.75 | −2.98 | O2 |
Pyrite | −96.43 | −112.19 | −15.77 | FeS2 |
Quartz | −3.54 | −6.08 | −2.54 | SiO2 |
Sepiolite | −23.87 | −10.67 | 13.20 | Mg2Si3O7,5OH:3H2O |
Sepiolite(d) | −29.32 | −10.67 | 18.65 | Mg2Si3O7,5OH:3H2O |
Siderite | −8.58 | −20.06 | −11.48 | FeCO3 |
SiO2(a) | −4.17 | −6.08 | −1.91 | SiO2 |
Smithsonite | −7.92 | −18.96 | −11.04 | ZnCO3 |
Sphalerite | −53.45 | −63.09 | −9.64 | ZnS |
Sulfur | −43.81 | −41.21 | 2.60 | S |
Sylvite | −13.24 | −11.85 | 1.39 | KCI |
Talc | −23.25 | −12.96 | 10.29 | Mg3Si4O10(OH)2 |
Willemite | −8.57 | −1.24 | 7.33 | Zn2SiO4 |
Zn(OH)2(e) | −9.08 | 2.42 | 11.50 | Zn(OH)2 |
Stimulation Method | Cost |
---|---|
Drilling equipment | USD 1,195,339 |
Coiled Tubing Hole cleaning | USD 866,181 |
Bull heading | USD 628,147 |
Broaching | USD 42,690 |
Cost Component | Cost (USD) | Details |
---|---|---|
Broaching Tools | 5000 | Single-use tools (3.5″–5.5″) |
Slickline unit Mobilization | 15,000 | 1 day of rig time at USD 15,000/day. |
Labor | 8000 | 2 technicians × 2 days × USD 2000/day. |
Fluid Circulation | 2000 | Brine or water used for debris flushing during operation. |
Well Downtime | 12,690 | 1 day of lost production: 689 tons/day × USD 18.40/ton (steam price). |
Total Cost | 42,690 | Sum of all components. |
Surface Equipment | Technical Function |
---|---|
Wireline Unit | Primary equipment carrier and operational base |
Generator | Electrical power generation system |
Compressor | Hydraulic system air supply unit |
Control Room | Centralized operational command center |
Wireline Drum | Cable spooling and storage system |
Wireline | Primary tool deployment and retrieval cable |
Measuring Wheel | Depth and velocity monitoring system |
Down Sheave Wheel | Intermediate cable guidance system |
Upper Wheel | Primary cable routing mechanism |
Stuffing Box | Pressure containment and cable sealing system |
Lubricator | Tool staging and pressure control chamber |
BOP | Well control safety system |
Flange | Wellhead connection interface |
Subsurface Equipment | Technical Function |
---|---|
Wireline Cable | Primary connection and deployment cable system |
Weight Bar | Downhole weight enhancement component |
Jar | Mechanical impact generation mechanism |
Spiral Catcher | Scale debris collection and containment system |
Broaching Tool | Scale disintegration and removal apparatus |
Tool Specification | Length | Weight |
---|---|---|
Broaching 2.5″ | 60 cm | 3.50 kg |
Broaching 3.5″ | 60 cm | 4.50 kg |
Broaching 5.5″ | 60 cm | 6.50 kg |
Broaching 8.0″ | 60 cm | 9.00 kg |
Broaching 10.0″ | 60 cm | 11.00 kg |
Broaching 12.0″ | 60 cm | 13.00 kg |
Jar 3.0″ | 200 cm | 7.25 kg |
Weight Bar (Matches broaching size) | 50 cm | 10.00 kg |
Spiral (Matches broaching size) | 60 cm | 3.50 kg |
Assembly Specifications | 3.5″ Assembly | 5.5″ Assembly | 8.0″ Assembly | 10.0″ Assembly |
---|---|---|---|---|
Length Components | ||||
Broaching Tool | 60 cm | 60 cm | 60 cm | 60 cm |
Jars | 200 cm | 200 cm | 200 cm | 200 cm |
Weight Bar | 50 cm | 50 cm | 50 cm | 50 cm |
Spiral/Catcher | 60 cm | 60 cm | 60 cm | 60 cm |
Connections | 20 cm | 20 cm | 20 cm | 20 cm |
Total Length | 370 cm | 370 cm | 370 cm | 370 cm |
Mass Components | ||||
Broaching Tool | 4.50 kg | 6.50 kg | 9.00 kg | 11.00 kg |
Jars | 7.25 kg | 7.25 kg | 7.25 kg | 7.25 kg |
Weight Bar | 10.00 kg | 10.00 kg | 10.00 kg | 10.00 kg |
Spiral/Catcher | 3.50 kg | 3.50 kg | 3.50 kg | 3.50 kg |
Total Mass | 25.25 kg | 27.25 kg | 29.25 kg | 31.75 kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sofyan, A.; Jaya, R.; Susanto, H.; Njeru, R.M.; Bozsó, G.; Szanyi, J. Scale Treatment Planning Using Broaching Method in a Vapor-Dominated Geothermal Well X at Kamojang Geothermal Field. Eng 2025, 6, 67. https://doi.org/10.3390/eng6040067
Sofyan A, Jaya R, Susanto H, Njeru RM, Bozsó G, Szanyi J. Scale Treatment Planning Using Broaching Method in a Vapor-Dominated Geothermal Well X at Kamojang Geothermal Field. Eng. 2025; 6(4):67. https://doi.org/10.3390/eng6040067
Chicago/Turabian StyleSofyan, Akhmad, Rista Jaya, Hari Susanto, Rita Mwendia Njeru, Gábor Bozsó, and János Szanyi. 2025. "Scale Treatment Planning Using Broaching Method in a Vapor-Dominated Geothermal Well X at Kamojang Geothermal Field" Eng 6, no. 4: 67. https://doi.org/10.3390/eng6040067
APA StyleSofyan, A., Jaya, R., Susanto, H., Njeru, R. M., Bozsó, G., & Szanyi, J. (2025). Scale Treatment Planning Using Broaching Method in a Vapor-Dominated Geothermal Well X at Kamojang Geothermal Field. Eng, 6(4), 67. https://doi.org/10.3390/eng6040067