Effect of Beam Power on Intermetallic Compound Formation of Electron Beam-Welded Cu and Al6082-T6 Dissimilar Joints
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Structure and Properties of the Base Materials
3.2. Structure and Properties of the Weld Joints
4. Discussion
5. Conclusions
- (1)
- Preheating the samples does not affect the structure of the base copper plate, but does affect the Al6082-T6 plate by reversing the heat treatment process.
- (2)
- Obviously, the application of a higher-power electron beam leads to a higher penetration, and, as a result of which, at the highest beam power of 3000 W, full penetration was achieved when considering 8 mm thick plates.
- (3)
- At low power, poor bonding between copper and aluminum and the formed CuxAlx IMCs and the aluminum matrix was observed.
- (4)
- Increasing the power of the electron beam to 3000 W led to a more homogeneous spread of the formed IMCs, increased the bonding between Cu and Al, thus propagating the formation of IMCs. The last also had improved bonding with the aluminum matrix, leading to a change in the preferred crystallographic orientation of the matrix towards the {111} family of crystallographic planes.
- (5)
- As a result of the better bonding and the change in the preferred crystallographic orientation, improved mechanical properties of the weld seam formed at 3000 W were observed. The highest reached UTS was only 50 MPa. Much more is to be desired from the mechanical properties of the weld seams between Cu and Al6082, which could be the focus of future investigations.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sathishkumar, G.; Sethuraman, P.; Chanakyan, C.; Sundaraselvan, S.; Arockiam, A.; Alagarsamy, S.; Elmariung, A.; Meignanamoorthy, M.; Ravichandran, M.; Jayasathyakawin, S. Friction welding of similar and dissimilar materials: A revew. Mater. Today Proc. 2023, 81, 208–211. [Google Scholar] [CrossRef]
- Karim, M.; Park, Y. A Review on Welding of Dissimilar Metals in Car Body Manufacturing. J. Weld. Join. 2020, 38, 8–23. [Google Scholar] [CrossRef]
- Lei, L.; Shen, Y.; Chen, X.; Qian, L.; Lu, K. Ultrahigh Strength and High Electrical Conductivity in Copper. Science 2007, 304, 422–426. [Google Scholar]
- Zhang, H.; Joshi, S.; Schoenung, J.; Chin, E.; Gazonas, G.; Ramesh, K. Superlightweight Nanoengineered Aluminum for Strength under Impact. Adv. Eng. Mater. 2007, 9, 355–359. [Google Scholar] [CrossRef]
- Al-Rawajfeh, A.; Qawabah, S. Investigation of copper addition on the mechanical properties and corrosion resistance of commercially pure aluminum. Emir. J. Eng. Res. 2009, 14, 47–52. [Google Scholar]
- Zhao, D.; Guo, Z.; Shnag, Z.; Xu, C.; Gao, X.; Wang, X. The growth behavior and kinetics of intermetallic compounds in Cu-Al interface at 600–800 °C. Intermetallics 2024, 168, 108244. [Google Scholar] [CrossRef]
- Alam, S.; Shrivastava, P.; Panda, D.; Gunale, B.; Susmitha, K.; Pola, P. Synthesis of Al2Cu intermetallic compound by mechanical alloying. Mater. Today Commun. 2022, 31, 103267. [Google Scholar] [CrossRef]
- Mehta, K.; Badheka, V. A Review on Dissimilar Friction Stir Welding of Copper to Aluminum: Process, Properties, and Variants. Mater. Manuf. Process. 2016, 31, 233–254. [Google Scholar] [CrossRef]
- Rzaev, R.; Sundetov, M.; Valisheva, A.; Derzhavin, I.; Merkulov, D. Distribution of the temperature in friction stir welding of aluminum and copper alloys. E3S Web of Conf. 2023, 458, 02005. [Google Scholar] [CrossRef]
- Xiaommeng, L.; Quanlin, D.; Pengfei, W.; He, C. Review of Electron Beam Welding Technology in Space Environment. Optik 2021, 225, 165720. [Google Scholar]
- Kuryntsev, S. A Review: Laser Welding of Dissimilar Materials (Al/Fe, Al/Ti, Al/Cu)—Methods and Techniques, Microstructure and Properties. Materials 2022, 15, 122. [Google Scholar] [CrossRef] [PubMed]
- Kaisheva, D.; Anchev, A.; Dunchev, V.; Kotlarski, G.; Stoyanov, B.; Ormanova, M.; Valkov, S. Electron-Beam Welding of Cu and Al6082T6 Aluminum Alloys with Circular Beam Oscillations. Crystals 2022, 12, 1757. [Google Scholar] [CrossRef]
- Kaisheva, D.; Kotlarski, G.; Ormanova, M.; Anchev, A.; Dunchev, V.; Stoyanov, B.; Valkov, S. Electron Beam Welding of Copper and Aluminum Alloy with Magnetron Sputtered Titanium Filler. Crystals 2024, 14, 752. [Google Scholar] [CrossRef]
- Kosicek, M.; Zavasnik, J.; Barnov, O.; Batic, B.; Cvelbar, U. Understanding the Growth of Copper Oxide Nanowires and Layers by Thermal Oxidation over a Broad Temperature Range at Atmospheric Pressure. Cryst. Growth Des. 2022, 22, 6656–6666. [Google Scholar] [CrossRef]
- Iordanova, I.; Kelly, P.; Mirchev, R.; Antonov, V. Crystallography of magnetron sputtered TiN coatings on steel substrates. Vacuum 2007, 81, 830–842. [Google Scholar] [CrossRef]
- Brinker, M.; Walter, T.; Kristensen, P.; Popok, V. Thermo-mechanically induced texture evolution and micro-structural change of aluminum metallization. J. Mater. Sci. Mater. Electron. 2017, 29, 3898–3904. [Google Scholar] [CrossRef]
- Peng, S.; Wang, Z.; Li, J.; Fang, Q.; Wei, Y. Beyond Orowan hardening: Mapping the four distinct mechanisms associated with dislocation-precipitate interaction. Int. J. Plast. 2023, 169, 103710. [Google Scholar] [CrossRef]
- Woelke, P.; Hiriyur, B.; Nahshon, K.; Hutchinson, J. A practical approach to modeling aluminum weld fracture for structural applications. Eng. Fract. Mech. 2017, 175, 72–85. [Google Scholar] [CrossRef]
- Schempp, P.; Cross, C.; Hacker, R.; Pittner, A.; Rethmeier, M. Influence of grain size on mechanical properties of aluminum GTA weld metal. Weld. World 2013, 57, 293–304. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, D.; Pan, S.; Zhu, M. Microporosity formation and dendrite growth during solidification of aluminum alloys: Modeling and experiment. Int. J. Heat Mass Transf. 2020, 146, 118838. [Google Scholar] [CrossRef]
- Jin, G. The impacts of nanotechnology on catalysis by precious metal nanoparticles. Nanotechnol. Rev. 2012, 1, 31–56. [Google Scholar] [CrossRef]
- Gogate, M. New perspectives on the nature and imaging of active site in small metallic particles: I. Geometric effects. Chem. Eng. Commun. 2019, 208, 89–109. [Google Scholar] [CrossRef]
- Chen, G.; Liu, J.; Dong, Z.; Shu, X.; Zhang, B. Underlying reasons of poor mechanical performance of thick plate aluminum-copper alloy vacuum electron beam welded joints. Vacuum 2020, 182, 109667. [Google Scholar] [CrossRef]
- Petrov, P.; Tongov, M. Numerical modelling of heat source during electron beam welding. Vacuum 2020, 171, 108991. [Google Scholar] [CrossRef]
- Liang, G.; Tan, Q.; Liu, Y.; Wu, T.; Yang, X.; Tian, Z.; Atrens, A.; Zhang, M. Effect of cooling rate on microstructure and mechanical properties of a low-carbon low-alloy steel. J. Mater. Sci. 2021, 56, 3995–4005. [Google Scholar] [CrossRef]
- Prasad, A.; Yuan, L.; Lee, P.; Patel, M.; Qiu, D.; Easton, M.; Stjohn, D. Towards understanding grain nucleation under Additive Manufacturing solidification conditions. Acta Mater. 2020, 195, 392–403. [Google Scholar] [CrossRef]
- Xu, R.; Li, F.; Zhao, X.; Yan, W.; Zhang, Y.; Yuan, C. Joint Strengthening Mechanism in Electron Beam Welding of Al/Cu Bilayer Laminated Composite Using Double-Sided Method. J. Mater. Eng. Perf. 2021, 30, 6355–6363. [Google Scholar] [CrossRef]
- Li, F.; Xu, R.; Wei, Z.; Sun, X.; Wang, P.; Li, X.; Li, Z. Investigation on the Electron Beam Welding of Al/Cu Composite Plates. Trans. Indian Inst. Met. 2019, 73, 353–363. [Google Scholar] [CrossRef]
- Otten, C.; Reisgen, U.; Schmachtenberg, M. Electron beam welding of aluminum to copper: Mechanical properties and their relation to microstructure. Weld. World. 2016, 60, 21–31. [Google Scholar] [CrossRef]
- Toth, T.; Hensel, J.; Thiemer, S.; Siebar, P.; Dilger, K. Electron beam welding of rectangular copper wires applied in electrical drives. Weld. World. 2021, 65, 2077–2091. [Google Scholar] [CrossRef]
- Bergmann, J.; Schricker, K.; Seibold, M. Investigation on indirect laser welding of copper to aluminum. Procedia CIRP 2024, 124, 30–35. [Google Scholar] [CrossRef]
- Kah, P.; Vimalraj, C.; Martikainen, J.; Suoranta, R. Factors influencing Al-Cu weld properties by intermetallic compound formation. Int. J. Mech. Mater. Eng. 2015, 10, 10. [Google Scholar] [CrossRef]
- Nesper, R. Bonding Patterns in Intermetallic Compounds. Angew. Chem. Int. Ed. Engl. 1991, 30, 789–817. [Google Scholar] [CrossRef]
- Bardel, D.; Nalias, D.; Robin, V.; Pirling, T.; Boulnat, X.; Perez, M. Residual stresses induced by electron beam welding in a 6061 aluminum alloy. J. Mater. Process. Technol. 2016, 235, 1–12. [Google Scholar] [CrossRef]
- Jackson, A. Handbook of Crystallography; Springer: New York, NY, USA, 1999. [Google Scholar]
- Weigl, M.; Albert, F.; Schmidt, M. Enhancing the Ductility of Laser-Welded Copper-Aluminum Connections by using Adapted Filler Materials. Phys. Procedia 2011, 12, 332–338. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaisheva, D.; Kotlarski, G.; Ormanova, M.; Stoyanov, B.; Dunchev, V.; Anchev, A.; Valkov, S. Effect of Beam Power on Intermetallic Compound Formation of Electron Beam-Welded Cu and Al6082-T6 Dissimilar Joints. Eng 2025, 6, 6. https://doi.org/10.3390/eng6010006
Kaisheva D, Kotlarski G, Ormanova M, Stoyanov B, Dunchev V, Anchev A, Valkov S. Effect of Beam Power on Intermetallic Compound Formation of Electron Beam-Welded Cu and Al6082-T6 Dissimilar Joints. Eng. 2025; 6(1):6. https://doi.org/10.3390/eng6010006
Chicago/Turabian StyleKaisheva, Darina, Georgi Kotlarski, Maria Ormanova, Borislav Stoyanov, Vladimir Dunchev, Angel Anchev, and Stefan Valkov. 2025. "Effect of Beam Power on Intermetallic Compound Formation of Electron Beam-Welded Cu and Al6082-T6 Dissimilar Joints" Eng 6, no. 1: 6. https://doi.org/10.3390/eng6010006
APA StyleKaisheva, D., Kotlarski, G., Ormanova, M., Stoyanov, B., Dunchev, V., Anchev, A., & Valkov, S. (2025). Effect of Beam Power on Intermetallic Compound Formation of Electron Beam-Welded Cu and Al6082-T6 Dissimilar Joints. Eng, 6(1), 6. https://doi.org/10.3390/eng6010006