Real-Time Detection of Bud Degeneration in Oil Palms Using an Unmanned Aerial Vehicle
Abstract
1. Introduction
2. Materials and Methods
2.1. Database Acquisition
2.2. System Configuration
2.3. Crop Monitoring
2.4. Real-Time Detection
2.5. Data Transmissions
3. Experimental Results
3.1. Metrics
3.2. Database
3.3. Experiment 1: Detection Threshold Tuning
3.4. Experiment 2: Validation on the Test Dataset
3.5. Experiment 3: Real-Time BD Detection
3.6. Experiment 4: Comparison with Current Methodology
3.7. Experiment 5: Validation on the Scope Dataset
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ledezma Cellan, E.B. Manejo Integrado de Pudrición de la Flecha en el Cultivo de Palma Aceitera (Elaeis Guineensis Jacp) en Ecuador. Bachelor’s Thesis, Universidad Técnica de Babahoyo, Babahoyo, Ecuador, 2019. [Google Scholar]
- Torres, G.; Sarria, G.; Martinez, G.; Varon, F.; Drenth, A.; Guest, D. Bud rot caused by Phytophthora palmivora: A destructive emerging disease of oil palm. Phytopathology 2016, 106, 320–329. [Google Scholar] [CrossRef][Green Version]
- America, C.L. Bud Rot. Available online: https://www.croplifela.org/es/plagas/listado-de-plagas/pudricion-del-cogollo (accessed on 2 November 2022).
- Ponguillo López, J.S.; Romero Lino, O.D. La Enfermedad de Pudrición del Cogollo PC y su Efecto Economico en la Producción de Palma Africana del Cantón Quininde, Provincia de Esmeraldas. Bachelor’s Thesis, Facultad de Ciencias Económicas, Universidad de Guayaquil, Guayaquil, Ecuador, 2021. [Google Scholar]
- Li, F.; Jin, X.; Chen, X.; Wang, L. Unmanned aerial vehicle-based remote sensing for precision agriculture: A review. Remote Sens. 2020, 12, 1470. [Google Scholar]
- Qin, B.; Sun, F.; Shen, W.; Dong, B.; Ma, S.; Huo, X.; Lan, P. Deep Learning-Based Pine Nematode Trees Identification Using Multispectral and Visible UAV Imagery. Drones 2023, 7, 183. [Google Scholar] [CrossRef]
- Bisen, D. Deep convolutional neural network based plant species recognition through features of leaf. Multimed. Tools Appl. 2021, 80, 6443–6456. [Google Scholar] [CrossRef]
- Qin, Z.; Wang, W.; Dammer, K.H.; Guo, L.; Cao, Z. A real-time low-cost artificial intelligence system for autonomous spraying in palm plantations. arXiv 2021, arXiv:2103.04132. [Google Scholar]
- Jiang, B.; Chen, S.; Wang, B.; Luo, B. MGLNN: Semi-supervised learning via multiple graph cooperative learning neural networks. Neural Netw. 2022, 153, 204–214. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Y.; Lv, Q.; Wei, S.; Wang, X.; Sun, X.; Dong, J. Rrnet: A hybrid detector for object detection in drone-captured images. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Republic of Korea, 27–28 October 2019. [Google Scholar]
- Parico, A.I.B.; Ahamed, T. An aerial weed detection system for green onion crops using the you only look once (YOLOv3) deep learning algorithm. Eng. Agric. Environ. Food 2020, 13, 42–48. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Zhan, Q.; Yang, C.; Zhao, B.; Liu, J. Deep Learning for Identifying Diseased Turfgrass Using UAV-Based Multispectral Images. Remote Sens. 2022, 14, 243. [Google Scholar]
- Liu, G.; Nouaze, J.C.; Touko Mbouembe, P.L.; Kim, J.H. YOLO-tomato: A robust algorithm for tomato detection based on YOLOv3. Sensors 2020, 20, 2145. [Google Scholar] [CrossRef][Green Version]
- Roy, A.M.; Bhaduri, J. A computer vision enabled damage detection model with improved yolov5 based on transformer prediction head. arXiv 2023, arXiv:2303.04275. [Google Scholar]
- Directorioempresarialmexico.com. Zitihualt, S.P.R. DE R.L. Available online: https://directorioempresarialmexico.com/empresa/0006254771/ZITIHUALT,-S.P.R.-DE-RL/ (accessed on 10 December 2022).
- Arias, N.A.; Beltrán, J.A.; Guerrero, J.M.; Sánchez, A.C. Tecnologías para el manejo de la Pudricion del cogollo (PC) de la palma de aceite validadas en las zonas palmeras de Colombia. Rev. Palmas 2014, 35, 39–52. [Google Scholar]
- Butler, E.J. Pudricion del cogollo. In Proceedings of the CAB International. Available online: https://www.gob.mx/cms/uploads/attachment/file/172378/Ficha_T_cnica_de_Pudricion_del_cogollo.pdf (accessed on 10 December 2020).
- CENIPALMA. Centro De Investigación En Palma de Aceite. Available online: https://www.cenipalma.org/ (accessed on 5 December 2022).
- Martínez, G.; Torres L., G.A.; Sarria, G.A.; Salcedo, S.; Varón, F.; Aya, H.A. Opciones de manejo de la Pudrición del cogollo (PC) de la Palma de aceite en áreas de baja incidencia de la enfermedad. Palmas 2008, 29, 63–72. [Google Scholar]
- Iost Filho, F.H.; Heldens, W.B.; Kong, Z.; de Lange, E.S. Drones: Innovative technology for use in precision pest management. J. Econ. Entomol. 2020, 113, 1–25. [Google Scholar] [CrossRef][Green Version]
- Puri, V.; Nayyar, A.; Raja, L. Agriculture drones: A modern breakthrough in precision agriculture. J. Stat. Manag. Syst. 2017, 20, 507–518. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Nvidia. NVIDIA Jetson Nano. Available online: https://www.nvidia.com/es-la/autonomous-machines/embedded-systems/jetson-nano/ (accessed on 17 August 2022).
- Martínez, G.; Torres, G.A. Presencia de la Pudrición de Cogollo de la palma de aceite (PC) en plantas de vivero. Palmas 2007, 28, 13–20. [Google Scholar]
- Sarria Villa, G.; Aldana de la Torre, R.; Arango, U. Guía de Bolsillo para el Reconocimiento y Manejo de las Principales Enfermedades e Insectos Plaga en el Cultivo de la Palma de Aceite. Arango. Available online: https://repositorio.fedepalma.org/handle/123456789/108797 (accessed on 10 December 2022).
- Guerrero, E.D.N.; De La Torre, F.A.V. Desarrollo de un modelo matemático, cinemático y dinámico con la aplicación de software, para modificar el funcionamiento de un dron, para que este realice monitoreo automático. Recimundo 2020, 4, 332–343. [Google Scholar]
- Guevara, B.S.; Recalde, L.F.; Varela-Aldás, J.; Andaluz, V.H.; Gandolfo, D.C.; Toibero, J.M. A Comparative Study between NMPC and Baseline Feedback Controllers for UAV Trajectory Tracking. Drones 2023, 7, 144. [Google Scholar] [CrossRef]
- Saif, E.; Eminoğlu, İ. Modelling of quad-rotor dynamics and Hardware-in-the-Loop simulation. J. Eng. 2022, 2022, 937–950. [Google Scholar] [CrossRef]
- Du, J. Understanding of object detection based on CNN family and YOLO. J. Phys. Conf. Ser. 2018, 1004, 012029. [Google Scholar] [CrossRef]
- Martınez, G.M. Sistema Posicionamiento Global (GPS) y Teorías de la Relatividad, 2014. Martinez. Available online: https://diarium.usal.es/guillermo/files/2013/04/GPSyRelatividadporGuillermoSanchez.pdf (accessed on 10 December 2022).
- LabelImg. Available online: https://github.com/heartexlabs/labelImg (accessed on 12 December 2022).
- Park, S.H.; Goo, J.M.; Jo, C.H. Receiver operating characteristic (ROC) curve: Practical review for radiologists. Korean J. Radiol. 2004, 5, 11–18. [Google Scholar] [CrossRef][Green Version]
- Martínez, G.; Villa, G.A.S.; Torres, G.; Varón, F.; Drenth, A.; Guest, D. Nuevos hallazgos sobre la enfermedad de la Pudrición del cogollo de la palma de aceite en Colombia: Biología, detección y estrategias de manejo. Palmas 2014, 35, 11–17. [Google Scholar]
- Femexpalma. Federacion Mexicana de Palma de Aceite. Available online: https://www.femexpalma.com.mx/ (accessed on 9 May 2023).
Set | Size | Format | Quality |
---|---|---|---|
Train | 2000 | JPG | 5 Mpx. |
Test | 400 | JPG | 8 Mpx. |
Scope | 400 | JPG | 64 Mpx. |
Condition of the Crop | Age of Crop | Detection Time | Precision | Recall | F1-Score | ||||
---|---|---|---|---|---|---|---|---|---|
Current | Proposed | Current | Proposed | Current | Proposed | Current | Proposed | ||
Clean crop | 5 | 2:20 | 0:25 | 86% | 100% | 86% | 86% | 67% | 92% |
Dirty crop | 5 | 3:18 | 0:23 | 75% | 83% | 60% | 100% | 67% | 89% |
Clean crop | 9 | 2:50 | 0:24 | 100% | 75% | 67% | 100% | 80% | 100% |
Dirty crop | 9 | 3:15 | 0:15 | 50% | 80% | 25% | 100% | 33% | 89% |
Clean crop | 15 | 3:00 | 0:23 | 100% | 67% | 67% | 100% | 80% | 100% |
Dirty crop | 15 | 3:30 | 0:30 | 50% | 100% | 67% | 67% | 57% | 100% |
Clean crop | 22 | 3:10 | 0:26 | 35% | 100% | 50% | 100% | 33% | 100% |
Dirty crop | 22 | 3:35 | 0:30 | 67% | 100% | 40% | 80% | 40% | 89% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Ramírez, A.; Mújica-Vargas, D.; Luna-Álvarez, A.; Matuz-Cruz, M.; Rubio, J.d.J. Real-Time Detection of Bud Degeneration in Oil Palms Using an Unmanned Aerial Vehicle. Eng 2023, 4, 1581-1596. https://doi.org/10.3390/eng4020090
Vázquez-Ramírez A, Mújica-Vargas D, Luna-Álvarez A, Matuz-Cruz M, Rubio JdJ. Real-Time Detection of Bud Degeneration in Oil Palms Using an Unmanned Aerial Vehicle. Eng. 2023; 4(2):1581-1596. https://doi.org/10.3390/eng4020090
Chicago/Turabian StyleVázquez-Ramírez, Alexis, Dante Mújica-Vargas, Antonio Luna-Álvarez, Manuel Matuz-Cruz, and José de Jesus Rubio. 2023. "Real-Time Detection of Bud Degeneration in Oil Palms Using an Unmanned Aerial Vehicle" Eng 4, no. 2: 1581-1596. https://doi.org/10.3390/eng4020090
APA StyleVázquez-Ramírez, A., Mújica-Vargas, D., Luna-Álvarez, A., Matuz-Cruz, M., & Rubio, J. d. J. (2023). Real-Time Detection of Bud Degeneration in Oil Palms Using an Unmanned Aerial Vehicle. Eng, 4(2), 1581-1596. https://doi.org/10.3390/eng4020090