Artificial Neural Network Models for Determining the Load-Bearing Capacity of Eccentrically Compressed Short Concrete-Filled Steel Tubular Columns
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tran, H.; Thai, H.T.; Ngo, T.; Uy, B.; Li, D.; Mo, J. Nonlinear inelastic simulation of high-rise buildings with innovative composite coupling shear walls and CFST columns. Struct. Des. Tall Spec. Build. 2021, 30, e1883. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, J.; Liu, Y.; Lin, X. Thin-walled CFST columns for enhancing seismic collapse performance of high-rise steel frames. Appl. Sci. 2017, 7, 53. [Google Scholar] [CrossRef]
- Kumari, B. Concrete filled steel tubular (CFST) columns in composite structures. IOSR J. Electr. Electron. Eng. 2018, 13, 11–18. [Google Scholar]
- Longarini, N.; Cabras, L.; Zucca, M.; Chapain, S.; Aly, A.M. Structural improvements for tall buildings under wind loads: Comparative study. Shock Vib. 2017, 2017, 2031248. [Google Scholar] [CrossRef]
- Xu, L.; Pan, J.; Yang, X. Mechanical performance of self-stressing CFST columns under uniaxial compression. J. Build. Eng. 2021, 44, 103366. [Google Scholar] [CrossRef]
- Wang, X.; Fan, F.; Lai, J. Strength behavior of circular concrete-filled steel tube stub columns under axial compression: A review. Constr. Build. Mater. 2022, 322, 126144. [Google Scholar] [CrossRef]
- Ilanthalir, A.; Regin, J.J.; Maheswaran, J. Concrete-filled steel tube columns of different cross-sectional shapes under axial compression: A review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 983, 012007. [Google Scholar] [CrossRef]
- Bhatia, S.; Tiwary, A.K. Axial Compression Behavior of Single-Skin and Double-Skin Concrete-Filled Steel Tube Columns: A Review. In Advances in Construction Materials and Sustainable Environment: Select Proceedings of ICCME 2020; Springer: Singapore, 2022; pp. 849–861. [Google Scholar] [CrossRef]
- Yang, C.; Gao, P.; Wu, X.; Chen, Y.F.; Li, Q.; Li, Z. Practical formula for predicting axial strength of circular-CFST columns considering size effect. J. Constr. Steel Res. 2020, 168, 105979. [Google Scholar] [CrossRef]
- Erdoğan, A.; Güneyisi, E.M.; Süleyman, I.P.E.K. Finite Element Modelling of Ultimate Strength of CFST Column and Its Comparison with Design Codes. Bilecik Şeyh Edebali Univ. Fen Bilim. Derg. 2022, 9, 324–339. [Google Scholar] [CrossRef]
- Ding, F.; Cao, Z.; Lyu, F.; Huang, S.; Hu, M.; Lin, Q. Practical design equations of the axial compressive capacity of circular CFST stub columns based on finite element model analysis incorporating constitutive models for high-strength materials. Case Stud. Constr. Mater. 2022, 16, e01115. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Hong, W.K.; Ko, H.J.; Kim, S.K. Finite element model for the interface between steel and concrete of CFST (concrete-filled steel tube). Eng. Struct. 2019, 185, 141–158. [Google Scholar] [CrossRef]
- İpek, S.; Güneyisi, E.M. Nonlinear finite element analysis of double skin composite columns subjected to axial loading. Arch. Civ. Mech. Eng. 2020, 20, 9. [Google Scholar] [CrossRef]
- Li, B.; Ding, F.; Lu, D.; Lyu, F.; Huang, S.; Cao, Z.; Wang, H. Finite Element Analysis of the Mechanical Properties of Axially Compressed Square High-Strength Concrete-Filled Steel Tube Stub Columns Based on a Constitutive Model for High-Strength Materials. Materials 2022, 15, 4313. [Google Scholar] [CrossRef]
- Hilo, S.J.; Sabih, S.M.; Abdulrazzaq, M.M. Numerical Analysis on the Behavior of Polygonal CFST Composite Columns under Axial Loading Using Finite Element. J. Eng. Sci. Technol. 2021, 16, 4975–4999. [Google Scholar]
- Gupta, A.; Mohan, R.; Bisht, H.; Sharma, A. Experimental testing and numerical modelling of CFST columns under axial compressive load. Asian J. Civ. Eng. 2022, 23, 415–424. [Google Scholar] [CrossRef]
- Isleem, H.F.; Chukka, N.D.K.R.; Bahrami, A.; Oyebisi, S.; Kumar, R.; Qiong, T. Nonlinear finite element and analytical modelling of reinforced concrete filled steel tube columns under axial compression loading. Results Eng. 2023, 19, 101341. [Google Scholar] [CrossRef]
- Tran, V.L.; Thai, D.K.; Kim, S.E. Application of ANN in predicting ACC of SCFST column. Compos. Struct. 2019, 228, 111332. [Google Scholar] [CrossRef]
- Tran, V.L.; Thai, D.K.; Nguyen, D.D. Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete. Thin-Walled Struct. 2020, 151, 106720. [Google Scholar] [CrossRef]
- Du, Y.; Chen, Z.; Zhang, C.; Cao, X. Research on axial bearing capacity of rectangular concrete-filled steel tubular columns based on artificial neural networks. Front. Comput. Sci. 2017, 11, 863–873. [Google Scholar] [CrossRef]
- Al-Khaleefi, A.M.; Terro, M.J.; Alex, A.P.; Wang, Y. Prediction of fire resistance of concrete filled tubular steel columns using neural networks. Fire Saf. J. 2002, 37, 339–352. [Google Scholar] [CrossRef]
- Moradi, M.J.; Daneshvar, K.; Ghazi-Nader, D.; Hajiloo, H. The prediction of fire performance of concrete-filled steel tubes (CFST) using artificial neural network. Thin-Walled Struct. 2021, 161, 107499. [Google Scholar] [CrossRef]
- Zarringol, M.; Thai, H.T.; Thai, S.; Patel, V. Application of ANN to the design of CFST columns. Structures 2020, 28, 2203–2220. [Google Scholar] [CrossRef]
- Khan, S.; Ali Khan, M.; Zafar, A.; Javed, M.F.; Aslam, F.; Musarat, M.A.; Vatin, N.I. Predicting the Ultimate Axial Capacity of Uniaxially Loaded CFST Columns Using Multiphysics Artificial Intelligence. Materials 2022, 15, 39. [Google Scholar] [CrossRef] [PubMed]
- Hanoon, A.N.; Al Zand, A.W.; Yaseen, Z.M. Designing new hybrid artificial intelligence model for CFST beam flexural performance prediction. Eng. Comput. 2022, 38, 3109–3135. [Google Scholar] [CrossRef]
- Jiang, H.; Mohammed, A.S.; Kazeroon, R.A.; Sarir, P. Use of the Gene-Expression Programming Equation and FEM for the High-Strength CFST Columns. Appl. Sci. 2021, 11, 10468. [Google Scholar] [CrossRef]
- Vu, Q.V.; Truong, V.H.; Thai, H.T. Machine learning-based prediction of CFST columns using gradient tree boosting algorithm. Compos. Struct. 2021, 259, 113505. [Google Scholar] [CrossRef]
- Hou, C.; Zhou, X.G. Strength prediction of circular CFST columns through advanced machine learning methods. J. Build. Eng. 2022, 51, 104289. [Google Scholar] [CrossRef]
- Zarringol, M.; Thai, H.T. Prediction of the load-shortening curve of CFST columns using ANN-based models. J. Build. Eng. 2022, 51, 104279. [Google Scholar] [CrossRef]
- SR 266.1325800.2016; Composite Steel and Concrete Structures. Design Rules. Ministry of Construction of Russia: Moscow, Russia, 2017. Available online: https://meganorm.ru/Data2/1/4293747/4293747659.htm (accessed on 18 December 2023).
- Luksha, L.K.; Nesterovich, A.P. Strength testing of large-diameter concrete filled steel tubular members. In Proceedings of the Third International Conference on Steel-Concrete Composite Structures, Fukuoka, Japan, 26–29 September 1991; Wakabayashi, M., Ed.; Association for International Cooperation and Research in Steel-Concrete Composite Structures: Bradford, UK, 1991; pp. 67–72. [Google Scholar]
- Matsui, C. Slender Concrete Filled Steel Tubular Columns Combined Compressionsnd Bending, Strutural Steel. Steel-Concert. Compos. Struct. 1995, 3, 29–36. [Google Scholar]
- Huixian, T.G.; Ximin, S. Study on the fundamental structural behavior of concrete filled steel tubular columns. J. Build. Struct. 1982, 3, 13. [Google Scholar]
- Zhong, S. Research of confining load of CFST under eccentric loading. J. Harbin Univ. Civ. Eng. Archit. 1983, 3, 1–18. [Google Scholar]
- Cai, Z. Behavior and ultimate strength of short concrete-filled steel tubular columns. J. Build. Struct. 1984, 6, 13–29. [Google Scholar]
- Lai, M.H.A.; Ho, J.C.M. Theoretical axial stress-strain model for circular concrete-filled-steel-tube columns. Eng. Struct. 2016, 25, 124–143. [Google Scholar] [CrossRef]
- Gardner, N.J.; Jacobson, E.R. Structural behavior of concrete-filled steel tubes. ACI J. 1967, 64, 404–412. [Google Scholar]
- Sakino, K.; Hayashi, H. Behavior of concrete filled steel tubular stub columns under concentric loading. In Proceedings of the Third International Conference on Steel-Concrete Composite Structures, Fukuoka, Japan, 26–29 September 1991; pp. 25–30. [Google Scholar]
- Kato, B. Compressive strength and deformation capacity of concrete-filled tubular stub columns. J. Struct. Constr. Eng. AIJ 1995, 468, 183–191. [Google Scholar] [CrossRef]
- Saisho, M.; Abe, T.; Nakaya, K. Ultimate bending strength of high-strength concrete filled steel tube column. J. Struct. Constr. Eng. AIJ 1999, 523, 133–140. [Google Scholar]
- Yamamoto, K.; Kawaguchi, J.; Morino, S. Experimental study of the size effect on the behaviour of concrete filled circular steel tube columns under axial compression. J. Struct. Constr. Eng. AIJ 2002, 561, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.P. Axially loaded concrete-filled steel tubes. J. Struct. Eng. 1998, 124, 1125–1138. [Google Scholar] [CrossRef]
- O’Shea, M.D.; Bridge, R.Q. Design of circular thin-walled concrete filled steel tubes. J. Struct. Eng. 2000, 126, 1295–1303. [Google Scholar] [CrossRef]
- Elremaily, A.; Azizinamini, A. Behavior and strength of circular concrete-filled tube columns. J. Constr. Steel Res. 2002, 58, 1567–1591. [Google Scholar] [CrossRef]
- Johansson, M. The efficiency of passive confinement in CFT columns. Steel Compos. Struct. 2002, 2, 379–396. [Google Scholar] [CrossRef]
- Yu, Z.W.; Ding, F.X.; Lin, S. Researches on behavior of high-performance concrete filled tubular steel short columns. J. Build. Struct. 2002, 23, 41–47. [Google Scholar]
- Giakoumelis, G. Axial capacity of circular concrete-filled tube columns. J. Constr. Steel Res. 2004, 60, 1049–1068. [Google Scholar] [CrossRef]
- Gu, W.; Guan, S.W.; Zhao, Y.H.; Cao, H. Experimental study on concentrically-compressed circular concrete filled CFRP-steel composite tubular short columns. J. Shenyang Arch. Civ. Eng. Inst. 2004, 20, 118–120. [Google Scholar]
- Han, L.H.; Yao, G.H. Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC). Thin-Wall Struct. 2004, 42, 1357–1377. [Google Scholar] [CrossRef]
- Sakino, K.; Nakahara, H.; Morino, S.; Nishiyama, I. Behavior of centrally loaded concrete-filled steel-tube short columns. J. Struct. Eng. ASCE 2004, 130, 180–188. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.Y. Failure modes of short columns of high-strength concrete filled steel tubes. China Civ. Eng. J. 2004, 37, 1–10. [Google Scholar]
- Han, L.H.; Yao, G.H.; Zhao, X.L. Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC). J. Constr. Steel Res. 2005, 61, 1241–1269. [Google Scholar] [CrossRef]
- Tan, K.F. Analysis of formulae for calculating loading bearing capacity of steel tubular high strength concrete. J. Southwest. Univ. Sci. Technol. 2006, 21, 7–10. [Google Scholar]
- Gupta, P.K.; Sarda, S.M.; Kumar, M.S. Experimental and computational study of concrete filled steel tubular columns under axial loads. J. Constr. Steel Res. 2007, 63, 182–193. [Google Scholar] [CrossRef]
- Yu, Z.W.; Ding, F.X.; Cai, C.S. Experimental behavior of circular concrete-filled steel tube stub. J. Constr. Steel Res. 2007, 63, 165–174. [Google Scholar] [CrossRef]
- Lai, M.H.; Ho, J.C.M. Confinement effect of ring-confined concrete-filled-steel-tube columns under uniaxial load. Eng. Struct. 2014, 67, 123–141. [Google Scholar] [CrossRef]
- Liao, F.Y.; Han, L.H.; He, S.H. Behavior of CFST short column and beam with initial concrete imperfection: Experiments. J. Constr. Steel Res. 2011, 67, 1922–1935. [Google Scholar] [CrossRef]
- Uy, B.; Tao, Z.; Han, L.H. Behaviour of short and slender concrete-filled stainless steel tubular columns. J. Constr. Steel Res. 2011, 67, 360–378. [Google Scholar] [CrossRef]
- Xue, J.Q.; Briseghella, B.; Chen, B.C. Effects of debonding on circular CFST stub columns. J. Constr. Steel Res. 2012, 69, 64–76. [Google Scholar] [CrossRef]
- Abed, F.; AlHamaydeh, M.; Abdalla, S. Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs). J. Constr. Steel Res. 2013, 80, 429–439. [Google Scholar] [CrossRef]
- Chepurnenko, A.; Yazyev, B.; Meskhi, B.; Beskopylny, A.; Khashkhozhev, K.; Chepurnenko, V. Simplified 2D Finite Element Model for Calculation of the Bearing Capacity of Eccentrically Compressed Concrete-Filled Steel Tubular Columns. Appl. Sci. 2021, 11, 11645. [Google Scholar] [CrossRef]
- Chepurnenko, V.S.; Khashkhozhev, K.N.; Yazyev, S.B.; Avakov, A.A. Improving the calculation of flexible CFST-columns taking into account stresses in the section planes. Constr. Mater. Prod. 2021, 4, 41–53. [Google Scholar] [CrossRef]
- Chepurnenko, A.; Turina, V.; Akopyan, V. Simplified Method for Calculating the Bearing Capacity of Slender Concrete-Filled Steel Tubular Columns. CivilEng 2023, 4, 1000–1015. [Google Scholar] [CrossRef]
- Kandiri, A.; Shakor, P.; Kurda, R.; Deifalla, A.F. Modified Artificial neural networks and support vector regression to predict lateral pressure exerted by fresh concrete on formwork. Int. J. Concr. Struct. Mater. 2022, 16, 64. [Google Scholar] [CrossRef]
- Izadgoshasb, H.; Kandiri, A.; Shakor, P.; Laghi, V.; Gasparini, G. Predicting compressive strength of 3D printed mortar in structural members using machine learning. Appl. Sci. 2021, 11, 10826. [Google Scholar] [CrossRef]
№ | |||
---|---|---|---|
Min | Max | ||
1 | 102 | 1.8 | 5.5 |
2 | 108 | 1.8 | 5.5 |
3 | 114 | 1.8 | 5.5 |
4 | 127 | 1.8 | 5.5 |
5 | 133 | 1.8 | 5.5 |
6 | 140 | 1.8 | 5.5 |
7 | 152 | 1.8 | 5.5 |
8 | 159 | 1.8 | 8 |
9 | 168 | 1.8 | 8 |
10 | 177.8 | 1.8 | 8 |
11 | 180 | 4 | 5 |
12 | 193.7 | 2 | 8 |
13 | 219 | 2.5 | 22 |
14 | 244.5 | 3 | 22 |
15 | 273 | 3.5 | 22 |
16 | 325 | 4 | 22 |
17 | 355.6 | 4 | 22 |
18 | 377 | 4 | 22 |
19 | 406.4 | 4 | 22 |
20 | 426 | 4 | 22 |
21 | 478 | 5 | 12 |
22 | 508 | 4.5 | 24 |
23 | 530 | 5 | 20 |
24 | 630 | 7 | 24 |
25 | 720 | 7 | 30 |
26 | 820 | 7 | 30 |
27 | 920 | 7 | 20 |
28 | 1020 | 8 | 32 |
29 | 1120 | 8 | 20 |
30 | 1220 | 9 | 32 |
31 | 1420 | 10 | 32 |
№ | Experiment | e/Dp | Dp, mm | tp, mm | Ry, MPa | Rb, MPa | Nexp, kN | N1, kN | N2, kN | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Luksha and Nesterovich [31] | |||||||||||
1 | SB1 | 0.06 | 159 | 6 | 295 | 24.4 | 1406 | 1475 | 1.05 | 1044 | 0.74 |
2 | SB2 | 0.13 | 159 | 6 | 295 | 25 | 1210 | 1045 | 0.86 | 850 | 0.70 |
3 | SB3 | 0.26 | 159 | 6 | 295 | 26.9 | 932 | 831 | 0.89 | 700 | 0.75 |
4 | SB4 | 0.06 | 159 | 6 | 295 | 35.7 | 1559 | 1659 | 1.06 | 1228 | 0.79 |
5 | SB5 | 0.13 | 159 | 6 | 295 | 36.4 | 1412 | 1194 | 0.85 | 975 | 0.69 |
6 | SB6 | 0.26 | 159 | 6 | 295 | 39 | 1066 | 936 | 0.88 | 797 | 0.75 |
7 | SB7 | 0.06 | 219 | 8 | 290 | 36.1 | 2921 | 3084 | 1.06 | 2348 | 0.80 |
8 | SB8 | 0.13 | 219 | 8 | 290 | 33.9 | 2698 | 2141 | 0.79 | 1841 | 0.68 |
9 | SB9 | 0.26 | 219 | 8 | 290 | 35.7 | 1962 | 1667 | 0.85 | 1495 | 0.76 |
10 | SB10 | 0.06 | 219 | 8 | 290 | 51.2 | 3308 | 3570 | 1.08 | 2797 | 0.85 |
11 | SB11 | 0.13 | 219 | 8 | 290 | 48.2 | 3041 | 2498 | 0.82 | 2140 | 0.70 |
12 | SB12 | 0.26 | 219 | 8 | 290 | 50.7 | 2289 | 1922 | 0.84 | 1719 | 0.75 |
13 | SB13 | 0.13 | 159 | 6 | 440 | 43.2 | 1774 | 1624 | 0.92 | 1393 | 0.79 |
14 | SB14 | 0.25 | 159 | 6 | 440 | 46.2 | 1346 | 1315 | 0.98 | 1144 | 0.85 |
15 | SB15 | 0.38 | 159 | 6 | 440 | 42.2 | 1059 | 1004 | 0.95 | 888 | 0.84 |
16 | SB16 | 0.13 | 159 | 6 | 440 | 60.3 | 1842 | 1890 | 1.03 | 1565 | 0.85 |
17 | SB17 | 0.25 | 159 | 6 | 440 | 62.2 | 1515 | 1486 | 0.98 | 1269 | 0.84 |
18 | SB18 | 0.38 | 159 | 6 | 440 | 63.8 | 1238 | 1162 | 0.94 | 1011 | 0.82 |
19 | SB19 | 0.13 | 106 | 4 | 435 | 45 | 849 | 771 | 0.91 | 638 | 0.75 |
20 | SB20 | 0.25 | 106 | 4 | 435 | 45.8 | 633 | 623 | 0.98 | 521 | 0.82 |
21 | SB21 | 0.38 | 106 | 4 | 435 | 41.6 | 468 | 472 | 1.01 | 409 | 0.87 |
22 | SB22 | 0.13 | 106 | 4 | 435 | 59 | 839 | 888 | 1.06 | 698 | 0.83 |
23 | SB23 | 0.25 | 106 | 4 | 435 | 62.9 | 691 | 725 | 1.05 | 581 | 0.84 |
24 | SB24 | 0.38 | 106 | 4 | 435 | 62.5 | 572 | 557 | 0.97 | 464 | 0.81 |
25 | SB25 | 0.06 | 530 | 7.8 | 349.2 | 38.3 | 12,500 | 13,604 | 1.09 | 13,163 | 1.05 |
26 | SB26 | 0.12 | 530 | 7.8 | 349.2 | 38.3 | 10,700 | 10,600 | 0.99 | 9227 | 0.86 |
27 | SB27 | 0.06 | 530 | 11.95 | 322.6 | 38.3 | 14,500 | 15,636 | 1.08 | 15,350 | 1.06 |
28 | SB28 | 0.12 | 530 | 11.95 | 322.6 | 38.3 | 12,500 | 11,519 | 0.92 | 10,636 | 0.85 |
29 | SB29 | 0.06 | 630 | 6.6 | 303 | 28.4 | 12,000 | 13,351 | 1.11 | 12,977 | 1.08 |
30 | SB30 | 0.13 | 630 | 6.6 | 303 | 28.4 | 10,500 | 9857 | 0.94 | 8877 | 0.85 |
31 | SB31 | 0.06 | 630 | 9.8 | 311 | 38.8 | 17,000 | 18,821 | 1.11 | 18,655 | 1.10 |
32 | SB32 | 0.13 | 630 | 9.8 | 311 | 38.8 | 15,000 | 13,189 | 0.88 | 12,613 | 0.84 |
33 | SB33 | 0.06 | 720 | 7.7 | 395.4 | 31.4 | 18,500 | 20,793 | 1.12 | 20,405 | 1.10 |
34 | SB34 | 0.13 | 720 | 7.7 | 395.4 | 31.4 | 16,000 | 15,096 | 0.94 | 13,589 | 0.85 |
35 | SB35 | 0.06 | 720 | 9.6 | 315.6 | 31.4 | 18,500 | 20,587 | 1.11 | 20,504 | 1.11 |
36 | SB36 | 0.13 | 720 | 9.6 | 315.6 | 31.4 | 16,000 | 14,660 | 0.92 | 13,751 | 0.86 |
37 | SB37 | 0.06 | 720 | 11.74 | 274 | 31.4 | 19,000 | 20,943 | 1.10 | 20,377 | 1.07 |
38 | SB38 | 0.13 | 720 | 11.74 | 274 | 31.4 | 16,650 | 14,649 | 0.88 | 13,765 | 0.83 |
Matsui et al. [32] | |||||||||||
39 | 4-21 | 0.13 | 165.2 | 4.17 | 358.7 | 40.9 | 1265 | 1190 | 0.94 | 1053 | 0.83 |
40 | 4-63 | 0.38 | 165.2 | 4.17 | 358.7 | 40.9 | 767 | 726 | 0.95 | 661 | 0.86 |
41 | 4-105 | 0.64 | 165.2 | 4.17 | 358.7 | 40.9 | 558 | 482 | 0.86 | 447 | 0.80 |
42 | P-78-2 | 0.07 | 106 | 3 | 298.9 | 37.1 | 603 | 639 | 1.06 | 441 | 0.73 |
43 | P-78-3 | 0.13 | 106 | 3 | 298.9 | 37.1 | 531 | 491 | 0.92 | 406 | 0.76 |
44 | P-78-4 | 0.23 | 106 | 3 | 298.9 | 37.1 | 405 | 411 | 1.01 | 346 | 0.85 |
45 | P-78-5 | 0.3 | 106 | 3 | 298.9 | 37.1 | 345 | 354 | 1.03 | 308 | 0.89 |
46 | P-78-6 | 0.42 | 106 | 3 | 298.9 | 37.1 | 256 | 285 | 1.11 | 257 | 1.00 |
47 | P-78-7 | 0.57 | 106 | 3 | 298.9 | 37.1 | 200 | 230 | 1.15 | 214 | 1.07 |
Huixian et al. [33] | |||||||||||
48 | 0.07 | 106 | 3 | 299 | 35.2 | 603 | 624 | 1.03 | 431 | 0.71 | |
49 | 0.14 | 106 | 3 | 299 | 35.2 | 531 | 491 | 0.92 | 392 | 0.74 | |
50 | 0.24 | 106 | 3 | 299 | 35.2 | 405 | 394 | 0.97 | 334 | 0.82 | |
51 | 0.32 | 106 | 3 | 299 | 35.2 | 345 | 333 | 0.97 | 294 | 0.85 | |
52 | 0.45 | 106 | 3 | 299 | 35.2 | 255 | 267 | 1.05 | 244 | 0.96 | |
53 | 0.6 | 106 | 3 | 299 | 35.2 | 200 | 218 | 1.09 | 205 | 1.03 | |
54 | 0.1 | 108.6 | 4.6 | 271.9 | 30.7 | 674 | 630 | 0.93 | 444 | 0.66 | |
55 | 0.15 | 108.6 | 4.6 | 271.9 | 30.7 | 612 | 561 | 0.92 | 408 | 0.67 | |
56 | 0.2 | 108.6 | 4.6 | 271.9 | 30.7 | 551 | 504 | 0.91 | 379 | 0.69 | |
57 | 0.25 | 108.6 | 4.6 | 271.9 | 30.7 | 431 | 452 | 1.05 | 351 | 0.81 | |
58 | 0.3 | 108.6 | 4.6 | 271.9 | 30.7 | 433 | 408 | 0.94 | 326 | 0.75 | |
59 | 0.33 | 108.6 | 4.6 | 271.9 | 30.7 | 445 | 385 | 0.87 | 311 | 0.70 | |
60 | 0.35 | 108.6 | 4.6 | 271.9 | 30.7 | 433 | 372 | 0.86 | 302 | 0.70 | |
Zhong et al. [34] | |||||||||||
61 | A1 | 0.05 | 108.1 | 4.21 | 300.9 | 21.5 | 776 | 754 | 0.97 | 547 | 0.70 |
62 | A2 | 0.1 | 103 | 2 | 300.9 | 21.5 | 285 | 348 | 1.22 | 310 | 1.09 |
63 | A3 | 0.15 | 108 | 4.21 | 300.9 | 21.5 | 623 | 505 | 0.81 | 385 | 0.62 |
64 | A4 | 0.15 | 108.5 | 4.75 | 300.9 | 21.5 | 669 | 551 | 0.82 | 409 | 0.61 |
65 | A5 | 0.15 | 103 | 1.81 | 300.9 | 21.5 | 333 | 306 | 0.92 | 280 | 0.84 |
66 | A6 | 0.2 | 108.1 | 4.33 | 300.9 | 21.5 | 563 | 466 | 0.83 | 362 | 0.64 |
67 | A7 | 0.25 | 103 | 4.83 | 300.9 | 21.5 | 314 | 434 | 1.38 | 334 | 1.06 |
68 | A8 | 0.25 | 103.3 | 2.02 | 300.9 | 21.5 | 289 | 265 | 0.92 | 248 | 0.86 |
69 | A9 | 0.3 | 105.3 | 3.1 | 300.9 | 21.5 | 353 | 304 | 0.86 | 265 | 0.75 |
Cai et al. [35] | |||||||||||
70 | PA2-3 | 0.06 | 166 | 5 | 277.3 | 38.2 | 1642 | 1589 | 0.97 | 1208 | 0.74 |
71 | PA2-4 | 0.06 | 166 | 5 | 277.3 | 38.2 | 1568 | 1589 | 1.01 | 1208 | 0.77 |
72 | PA2-5 | 0.12 | 166 | 5 | 329.3 | 38.2 | 1568 | 1286 | 0.82 | 1078 | 0.69 |
73 | PA2-6 | 0.12 | 166 | 5 | 294 | 41.1 | 1568 | 1250 | 0.80 | 1032 | 0.66 |
74 | PA2-7 | 0.18 | 166 | 5 | 286.2 | 41.1 | 1127 | 1079 | 0.96 | 896 | 0.80 |
75 | PA2-8 | 0.18 | 166 | 5 | 248.9 | 41.1 | 1201 | 1009 | 0.84 | 817 | 0.68 |
76 | PA2-9 | 0.24 | 166 | 5 | 313.6 | 38.2 | 1039 | 962 | 0.93 | 836 | 0.80 |
77 | PA2-10 | 0.24 | 166 | 5 | 279.3 | 38.2 | 990 | 902 | 0.91 | 763 | 0.77 |
78 | PA2-11 | 0.36 | 166 | 5 | 279.3 | 38.2 | 735 | 702 | 0.96 | 615 | 0.84 |
79 | PA2-12 | 0.36 | 166 | 5 | 296 | 38.2 | 843 | 726 | 0.86 | 647 | 0.77 |
80 | PA2-13 | 0.6 | 166 | 5 | 296 | 41.1 | 564 | 507 | 0.90 | 459 | 0.81 |
81 | PA2-14 | 0.6 | 166 | 5 | 296 | 41.1 | 510 | 507 | 0.99 | 459 | 0.90 |
№ | Experiment | Dp, mm | tp, mm | Ry, MPa | Rb, MPa | Nexp, kN | N1, kN | |
---|---|---|---|---|---|---|---|---|
M.H. Lai, J.C.M. Ho [36] | ||||||||
1 | CNO-1-114-30 | 111.5 | 0.96 | 370 | 31.4 | 479 | 513 | 1.07 |
2 | CNO-1-114-30_1 | 111.6 | 0.95 | 370 | 31.4 | 456 | 513 | 1.13 |
3 | CNO-1-114-80 | 111.6 | 0.96 | 370 | 79.9 | 955 | 1041 | 1.09 |
4 | CNO-1-114-80_1 | 111.8 | 0.96 | 370 | 79.9 | 979 | 1043 | 1.07 |
5 | CNO-3-114-30 | 114.8 | 2.86 | 284.9 | 31.4 | 719 | 709 | 0.99 |
6 | CNO-3-114-80 | 114.7 | 2.86 | 284.9 | 79.9 | 1199 | 1198 | 1.00 |
7 | CND-4-139-30_S | 139 | 3.96 | 289.5 | 31.7 | 1010 | 1073 | 1.06 |
8 | CN0-4-139-30_R | 139 | 3.97 | 289.5 | 30.6 | 1022 | 1059 | 1.04 |
9 | CNO-4-139-50 | 139 | 3.99 | 289.5 | 51.7 | 1297 | 1362 | 1.05 |
10 | CNO-4-139-100_S | 138.7 | 4 | 289.5 | 104.5 | 2070 | 1883 | 0.91 |
11 | CNO-4-139-100_R | 139.1 | 3.94 | 289.5 | 101.6 | 2040 | 1887 | 0.93 |
12 | CNO-5-114-50 | 114.5 | 4.98 | 422.6 | 51.4 | 1274 | 1429 | 1.12 |
13 | CNO-5-114-50_1 | 114 | 5.03 | 422.6 | 51.4 | 1379 | 1430 | 1.04 |
14 | CNO-5-114-120 | 114.3 | 5.01 | 422.6 | 114.3 | 1876 | 1691 | 0.90 |
15 | CN0-5-168-30 | 169.2 | 4.93 | 369 | 29.1 | 1727 | 1743 | 1.01 |
16 | CNO-5-168-60 | 169.2 | 5.04 | 369 | 61.2 | 2556 | 2442 | 0.96 |
17 | CNO-5-168-80 | 168.7 | 4.97 | 369 | 85.4 | 2926 | 2855 | 0.98 |
18 | CNO-8-168-30 | 168.7 | 7.76 | 383.6 | 38.1 | 2507 | 2591 | 1.03 |
19 | CNO-8-168-80 | 168.2 | 7.8 | 361.6 | 75.2 | 3101 | 3181 | 1.03 |
20 | CNO-10-168-30 | 168.4 | 9.91 | 386.4 | 27 | 2533 | 2879 | 1.14 |
21 | CNO-10-168-90 | 168.7 | 9.96 | 386.4 | 95.1 | 3940 | 3873 | 0.98 |
Gardner and Jacobson [37] | ||||||||
22 | 3 | 101.7 | 3.07 | 650.1 | 34.1 | 1112 | 987 | 0.89 |
23 | 4 | 101.7 | 3.07 | 650.1 | 31.2 | 1067 | 958 | 0.90 |
24 | 8 | 120.8 | 4.06 | 451.6 | 34.4 | 1200 | 1198 | 1.00 |
25 | 9 | 120.8 | 4.09 | 451.6 | 34.1 | 1200 | 1200 | 1.00 |
26 | 10 | 120.8 | 4.09 | 451.6 | 29.6 | 1112 | 1149 | 1.03 |
27 | 13 | 152.6 | 3.18 | 415.1 | 25.9 | 1200 | 1191 | 0.99 |
28 | 14 | 152.6 | 3.07 | 415.1 | 20.9 | 1200 | 1083 | 0.90 |
Luksha and Nesterovich [31] | ||||||||
29 | SB1 | 530 | 7.8 | 349.2 | 38.3 | 14,000 | 13,518 | 0.97 |
30 | SB2 | 630 | 6.6 | 303 | 28.4 | 13,700 | 13,327 | 0.97 |
31 | SB3 | 630 | 7 | 225 | 40 | 16,200 | 15,588 | 0.96 |
32 | SB4 | 630 | 7 | 291.4 | 40 | 16,660 | 16,775 | 1.01 |
33 | SB5 | 630 | 7.61 | 349.5 | 38.9 | 18,000 | 17,982 | 1.00 |
34 | SB6 | 630 | 7.9 | 300 | 40 | 17,200 | 17,540 | 1.02 |
35 | SB7 | 630 | 7.9 | 300 | 77.8 | 28,700 | 28,830 | 1.00 |
36 | SB8 | 630 | 8.44 | 350 | 38.3 | 18,600 | 18,476 | 0.99 |
37 | SB9 | 630 | 10.21 | 323.3 | 42.7 | 20,500 | 20,433 | 1.00 |
38 | SB10 | 630 | 11.6 | 347.2 | 51.1 | 24,400 | 24,500 | 1.00 |
39 | SB11 | 720 | 7.7 | 395.4 | 31.4 | 21,000 | 20,820 | 0.99 |
40 | SB12 | 720 | 7.93 | 388.4 | 37.8 | 25,500 | 23,313 | 0.91 |
41 | SB13 | 720 | 8.3 | 312 | 16.7 | 15,000 | 13,796 | 0.92 |
42 | SB14 | 820 | 8.93 | 331 | 50 | 33,600 | 34,696 | 1.03 |
43 | SB15 | 1020 | 9.64 | 336 | 18.8 | 30,000 | 27,689 | 0.92 |
44 | SB16 | 1020 | 13.25 | 368.7 | 32.1 | 46,000 | 44,305 | 0.96 |
Sakino and Hayashi [38] | ||||||||
45 | L-20-1 | 178 | 9 | 283 | 21.3 | 2120 | 2191 | 1.03 |
46 | L-20-2 | 178 | 9 | 283 | 21.3 | 2060 | 2191 | 1.06 |
47 | H-20-1 | 178 | 9 | 283 | 43.6 | 2720 | 2624 | 0.96 |
48 | H-20-2 | 178 | 9 | 283 | 43.6 | 2730 | 2624 | 0.96 |
49 | L-32-1 | 179 | 5.5 | 249 | 21.2 | 1410 | 1447 | 1.03 |
50 | L-32-2 | 179 | 5.5 | 249 | 22.9 | 1560 | 1484 | 0.95 |
51 | H-32-1 | 179 | 5.5 | 249 | 42 | 2080 | 1898 | 0.91 |
52 | H-32-2 | 179 | 5.5 | 249 | 42 | 2070 | 1898 | 0.92 |
53 | L-58-1 | 174 | 3 | 266 | 22.9 | 1220 | 1042 | 0.85 |
54 | L-58-2 | 174 | 3 | 266 | 22.9 | 1220 | 1042 | 0.85 |
55 | H-58-1 | 174 | 3 | 266 | 43.9 | 1640 | 1494 | 0.91 |
56 | H-58-2 | 174 | 3 | 266 | 43.9 | 1710 | 1494 | 0.87 |
Kato [39] | ||||||||
57 | C04LB | 301.5 | 4.5 | 381.2 | 26.6 | 3851 | 3758 | 0.98 |
58 | C06LB | 298.5 | 5.74 | 399.8 | 26.6 | 4537 | 4361 | 0.96 |
59 | C08LB | 298.4 | 7.65 | 384.2 | 26.6 | 4919 | 5046 | 1.03 |
60 | C12LB | 297 | 11.88 | 347.9 | 26.6 | 5909 | 6197 | 1.05 |
61 | C04MB | 301.5 | 4.5 | 381.2 | 34.2 | 4547 | 4251 | 0.93 |
62 | C06MB | 298.5 | 5.74 | 399.8 | 31 | 5125 | 4635 | 0.90 |
63 | C08MB | 298.4 | 7.65 | 384.2 | 34.1 | 5821 | 5501 | 0.95 |
64 | C12MB | 297 | 11.88 | 347.9 | 34.2 | 7222 | 6632 | 0.92 |
65 | C2MBH | 301.3 | 11.59 | 471.4 | 34.2 | 8594 | 8312 | 0.97 |
66 | C06HB | 298.5 | 5.74 | 399.8 | 79.1 | 7938 | 7685 | 0.97 |
67 | C08HB | 298.4 | 7.65 | 384.2 | 79.1 | 8388 | 8262 | 0.98 |
68 | C12HB | 297 | 11.88 | 347.9 | 79.1 | 9388 | 9170 | 0.98 |
Saisho et al. [40] | ||||||||
69 | H-30.1 | 101.6 | 2.99 | 377.3 | 59.9 | 921 | 991 | 1.08 |
70 | H-30.2 | 101.6 | 2.99 | 377.3 | 59.9 | 921 | 991 | 1.08 |
71 | H-30.3 | 101.6 | 2.96 | 377.3 | 59.9 | 901 | 987 | 1.10 |
72 | H-50.1 | 139.8 | 2.78 | 341 | 55 | 1323 | 1330 | 1.01 |
73 | H-50.2 | 139.8 | 2.78 | 341 | 55 | 1391 | 1330 | 0.96 |
74 | H-50.3 | 139.8 | 2.78 | 341 | 55 | 1313 | 1330 | 1.01 |
75 | 11-60.1 | 139.8 | 2.37 | 462.6 | 59.9 | 1558 | 1509 | 0.97 |
76 | H-60.2 | 139.8 | 2.37 | 462.6 | 68 | 1577 | 1648 | 1.05 |
77 | H-60.3 | 139.8 | 2.37 | 462.6 | 68 | 1577 | 1648 | 1.05 |
78 | H-60.4 | 139.8 | 2.37 | 462.6 | 68 | 1626 | 1648 | 1.01 |
79 | L-30.1 | 101.6 | 2.96 | 377.3 | 24.4 | 676 | 658 | 0.97 |
80 | L-30.2 | 101.6 | 2.99 | 377.3 | 26.6 | 715 | 679 | 0.95 |
81 | L-30.3 | 101.6 | 2.99 | 377.3 | 28.2 | 715 | 693 | 0.97 |
82 | L-50.1 | 139.8 | 2.78 | 341 | 24.4 | 931 | 867 | 0.93 |
83 | L-50.2 | 139.8 | 2.78 | 341 | 26.6 | 950 | 899 | 0.95 |
84 | L-60.1 | 139.8 | 2.37 | 462.6 | 26.6 | 1098 | 964 | 0.88 |
85 | L-60.2 | 139.8 | 2.37 | 462.6 | 26.6 | 1107 | 964 | 0.87 |
86 | L-60.3 | 139.8 | 2.37 | 462.6 | 26.6 | 1078 | 964 | 0.89 |
Yamamoto et al. [41] | ||||||||
87 | C10A-2A-1 | 101.4 | 3.02 | 371 | 22.3 | 660 | 642 | 0.97 |
88 | C10A-2A-2 | 101.9 | 3.07 | 371 | 22.3 | 649 | 652 | 1.00 |
89 | C10A-2A-3 | 101.8 | 3.05 | 371 | 22.3 | 682 | 649 | 0.95 |
90 | C20A-2A | 216.4 | 6.66 | 452 | 22.3 | 3568 | 3184 | 0.89 |
91 | C30A-2A | 318.3 | 10.34 | 331 | 23.2 | 6565 | 5783 | 0.88 |
92 | C10A-3A-1 | 101.7 | 3.04 | 371 | 38.6 | 800 | 785 | 0.98 |
93 | C10A-3A-2 | 101.3 | 3.03 | 371 | 38.6 | 742 | 780 | 1.05 |
94 | C20A-3A | 216.4 | 6.63 | 452 | 36.7 | 4023 | 3619 | 0.90 |
95 | C30A-3A | 318.3 | 10.35 | 339 | 37.6 | 7933 | 6861 | 0.86 |
96 | C10A-4A-1 | 101.9 | 3.04 | 371 | 49.2 | 877 | 887 | 1.01 |
97 | C10A-4A-2 | 101.5 | 3.05 | 371 | 49.2 | 862 | 885 | 1.03 |
98 | C20A-4A | 216.4 | 6.65 | 452 | 44.9 | 4214 | 3890 | 0.92 |
99 | C30A-4A | 318.5 | 10.38 | 339 | 50.1 | 8289 | 7739 | 0.93 |
Schneider [42] | ||||||||
100 | C1 | 140.8 | 3 | 285 | 28.2 | 881 | 891 | 1.01 |
101 | C2 | 141.4 | 6.5 | 313 | 23.8 | 1367 | 1445 | 1.06 |
102 | C3 | 140 | 6.68 | 537 | 28.2 | 2010 | 2192 | 1.09 |
O’Shea and Bridge [43] | ||||||||
103 | S30CS50B | 165 | 2.82 | 363.3 | 48.3 | 1662 | 1611 | 0.97 |
104 | S20CS50A | 190 | 1.94 | 256.4 | 41 | 1678 | 1421 | 0.85 |
105 | S16CS5013 | 190 | 1.52 | 293.1 | 48.3 | 1695 | 1586 | 0.94 |
106 | S12CS50A | 190 | 1.13 | 185.7 | 41 | 1377 | 1178 | 0.86 |
107 | S10CS50A | 190 | 0.86 | 165.8 | 41 | 1350 | 1108 | 0.82 |
108 | S30CS80A | 165 | 2.82 | 363.3 | 80.2 | 2295 | 2260 | 0.98 |
109 | S20CS80B | 190 | 1.94 | 256.4 | 74.7 | 2592 | 2300 | 0.89 |
110 | S16CS80A | 190 | 1.52 | 293.1 | 80.2 | 2602 | 2427 | 0.93 |
111 | S12CS80A | 190 | 1.13 | 185.7 | 80.2 | 2295 | 2139 | 0.93 |
112 | S10CS80B | 190 | 0.86 | 165.8 | 74.7 | 2451 | 1933 | 0.79 |
113 | S30CS10A | 165 | 2.82 | 363.3 | 108 | 2673 | 2506 | 0.94 |
114 | S20CS10A | 190 | 1.94 | 256.4 | 108 | 3360 | 2813 | 0.84 |
115 | S16CS10A | 190 | 1.52 | 293.1 | 108 | 3260 | 2828 | 0.87 |
116 | S12CS10A | 190 | 1.13 | 185.7 | 108 | 3058 | 2478 | 0.81 |
117 | SI10CSI10A | 190 | 0.86 | 165.8 | 108 | 3070 | 2371 | 0.77 |
Elremaily et al. [44] | ||||||||
118 | CU-040 | 200 | 5 | 265.8 | 27.2 | 2004 | 1798 | 0.90 |
119 | CU-070 | 280 | 4 | 272.6 | 31.2 | 3025 | 2925 | 0.97 |
120 | CU-150 | 300 | 2 | 244.2 | 27.2 | 2608 | 2261 | 0.87 |
Johansson [45] | ||||||||
121 | SFE4 | 159 | 5 | 390 | 36.6 | 1770 | 1812 | 1.02 |
122 | SFE5 | 159 | 6.8 | 402 | 36.6 | 2130 | 2244 | 1.05 |
123 | SFE6 | 159 | 10 | 355 | 36.6 | 2500 | 2680 | 1.07 |
124 | SFE7 | 159 | 5 | 390 | 93.8 | 2740 | 2758 | 1.01 |
125 | SFE8 | 159 | 6.8 | 402 | 93.8 | 3220 | 3110 | 0.97 |
Yu et al. [46] | ||||||||
126 | G4-1a | 165 | 1 | 222 | 73.4 | 1773 | 1568 | 0.88 |
127 | G2-2b | 151 | 2 | 405 | 69.6 | 1933 | 1707 | 0.88 |
128 | G4-2c | 165 | 2 | 338 | 73.4 | 2077 | 1927 | 0.93 |
129 | G4-2d | 165 | 2 | 338 | 73.4 | 1930 | 1927 | 1.00 |
130 | G4-2e | 165 | 2 | 338 | 73.4 | 1920 | 1927 | 1.00 |
131 | G2-4.5b | 151 | 4.5 | 438 | 69.6 | 2572 | 2292 | 0.89 |
132 | G2-6a | 159 | 6 | 405 | 69.6 | 2957 | 2686 | 0.91 |
133 | G2-8a | 159 | 8 | 438 | 69.6 | 3173 | 3235 | 1.02 |
134 | G2-8b | 159 | 8 | 438 | 69.6 | 3267 | 3235 | 0.99 |
135 | G2-8c | 159 | 8 | 438 | 69.6 | 3330 | 3235 | 0.97 |
Giakoumelis and Lam [47] | ||||||||
136 | C3 | 114.4 | 3.98 | 343 | 25.1 | 826 | 863 | 1.04 |
137 | C4 | 114.6 | 3.99 | 343 | 78.1 | 1308 | 1420 | 1.09 |
138 | C7 | 114.9 | 4.91 | 365 | 27.9 | 1050 | 1068 | 1.02 |
139 | C8 | 115 | 4.92 | 365 | 87.7 | 1787 | 1663 | 0.93 |
140 | C9 | 115 | 5.02 | 365 | 47.4 | 1390 | 1285 | 0.92 |
141 | C11 | 114.3 | 3.75 | 343 | 47.4 | 1013 | 1060 | 1.05 |
142 | C12 | 114.3 | 3.85 | 343 | 25.6 | 826 | 848 | 1.03 |
143 | C14 | 114.5 | 3.84 | 343 | 82.6 | 1359 | 1438 | 1.06 |
Gu et al. [48] | ||||||||
144 | 0-1.5 | 127 | 1.5 | 350 | 48.2 | 890 | 888 | 1.00 |
145 | 0-2.5 | 129 | 2.5 | 350 | 48.2 | 1140 | 1063 | 0.93 |
146 | 0-3.5 | 131 | 3.5 | 310 | 48.2 | 1173 | 1178 | 1.00 |
147 | 0-4.5 | 133 | 4.5 | 310 | 48.2 | 1408 | 1347 | 0.96 |
Han and Yao [49] | ||||||||
148 | scsc1-1 | 100 | 3 | 303.5 | 48.2 | 708 | 780 | 1.10 |
149 | sch1-1 | 100 | 3 | 303.5 | 48.2 | 766 | 780 | 1.02 |
150 | scv1-1 | 100 | 3 | 303.5 | 48.2 | 780 | 780 | 1.00 |
151 | scsc2-1 | 200 | 3 | 303.5 | 48.2 | 2320 | 2083 | 0.90 |
152 | scsc2-2 | 200 | 3 | 303.5 | 48.2 | 2330 | 2083 | 0.89 |
153 | sch2-1 | 200 | 3 | 303.5 | 48.2 | 2160 | 2083 | 0.96 |
154 | sch2-2 | 200 | 3 | 303.5 | 48.2 | 2160 | 2083 | 0.96 |
155 | scv2-1 | 200 | 3 | 303.5 | 48.2 | 2383 | 2083 | 0.87 |
156 | scv2-2 | 200 | 3 | 303.5 | 48.2 | 2256 | 2083 | 0.92 |
Sakino et al. [50] | ||||||||
157 | CC4-A-2 | 149 | 2.96 | 308 | 25.4 | 941 | 942 | 1.00 |
158 | CC4-A-8 | 149 | 2.96 | 308 | 77 | 1781 | 1789 | 1.00 |
159 | CC6-A-2 | 122 | 4.54 | 576 | 25.4 | 1509 | 1409 | 0.93 |
160 | CC6-A-4-1 | 122 | 4.54 | 576 | 40.5 | 1657 | 1587 | 0.96 |
161 | CC6-A-4-2 | 122 | 4.54 | 576 | 40.5 | 1663 | 1587 | 0.95 |
162 | CC6-A-8 | 122 | 4.54 | 576 | 77 | 2100 | 2098 | 1.00 |
163 | CC6-C-2 | 239 | 4.54 | 507 | 25.4 | 3035 | 3159 | 1.04 |
164 | CC6-C-4-1 | 238 | 4.54 | 507 | 40.5 | 3583 | 3734 | 1.04 |
165 | CC6-C-4-2 | 238 | 4.54 | 507 | 40.5 | 3647 | 3734 | 1.02 |
166 | CC6-C-8 | 238 | 4.54 | 507 | 77 | 5578 | 5218 | 0.94 |
167 | CC6-D-2 | 361 | 4.54 | 460.7 | 25.4 | 5633 | 5482 | 0.97 |
168 | CC6-D-4-1 | 361 | 4.54 | 460.7 | 41.1 | 7260 | 6923 | 0.95 |
169 | CC6-D-4-2 | 360 | 4.54 | 462 | 41.1 | 7045 | 6902 | 0.98 |
170 | CC6-D-8 | 360 | 4.54 | 462 | 85.1 | 11,505 | 11,056 | 0.96 |
171 | CC8-A-2 | 108 | 6.47 | 853 | 25.4 | 2275 | 1944 | 0.85 |
172 | CC8-A-4-1 | 109 | 6.47 | 853 | 40.5 | 2446 | 2161 | 0.88 |
173 | CC8-A-4-2 | 108 | 6.47 | 853 | 40.5 | 2402 | 2137 | 0.89 |
174 | CC8-A-8 | 108 | 6.47 | 853 | 77 | 2713 | 2730 | 1.01 |
175 | CC8-C-2 | 222 | 6.47 | 843 | 25.4 | 4964 | 5401 | 1.09 |
176 | CC8-C-4-1 | 222 | 6.47 | 843 | 40.5 | 5638 | 5822 | 1.03 |
177 | CC8-C-4-2 | 222 | 6.47 | 843 | 40.5 | 5714 | 5822 | 1.02 |
178 | CC8-C-8 | 222 | 6.47 | 843 | 77 | 7304 | 6972 | 0.95 |
179 | CC8-D-2 | 337 | 6.47 | 703.3 | 25.4 | 8475 | 8587 | 1.01 |
180 | CC8-D-4-1 | 337 | 6.47 | 703.3 | 41.1 | 9668 | 9635 | 1.00 |
181 | CC8-D-4-2 | 337 | 6.47 | 703.3 | 41.1 | 9835 | 9635 | 0.98 |
182 | CC8-D-8 | 337 | 6.47 | 703.3 | 85.1 | 13,776 | 12,735 | 0.92 |
Zhang and Wang [51] | ||||||||
183 | L-A-1-92h | 167.4 | 3.32 | 354 | 39.9 | 1704 | 1554 | 0.91 |
184 | L-A-2-99h | 167.3 | 3.35 | 354 | 39.9 | 1668 | 1559 | 0.93 |
185 | L-A-3-98h | 167.5 | 3.33 | 354 | 39.9 | 1700 | 1558 | 0.92 |
186 | L-B-1-85h | 138.9 | 3.29 | 332 | 34.8 | 1140 | 1081 | 0.95 |
187 | L-B-3-89h | 139.5 | 3.37 | 332 | 34.8 | 1180 | 1100 | 0.93 |
188 | L-C-1-87h | 139.9 | 3.58 | 325 | 34.8 | 1222 | 1128 | 0.92 |
189 | L-C-2-101h | 139.9 | 3.54 | 325 | 34.8 | 1242 | 1121 | 0.90 |
190 | M-A-1-97h | 167 | 3.37 | 354 | 56.1 | 2075 | 1907 | 0.92 |
191 | M-A-2-100h | 167.1 | 3.33 | 354 | 56.1 | 2105 | 1900 | 0.90 |
192 | M-A-3-95h | 167.8 | 3.33 | 354 | 56.1 | 2055 | 1912 | 0.93 |
193 | M-B-1-20h | 138.6 | 3.31 | 332 | 49.5 | 1480 | 1300 | 0.88 |
194 | M-C-3-86h | 139.7 | 3.61 | 325 | 48.6 | 1540 | 1337 | 0.87 |
195 | M-E-1-21h | 133.4 | 5.17 | 351 | 56.1 | 1810 | 1655 | 0.91 |
196 | M-E-2-27h | 133.2 | 5.03 | 351 | 56.1 | 1770 | 1630 | 0.92 |
197 | H-B-2-309h | 138.7 | 3.28 | 332 | 61.4 | 1680 | 1478 | 0.88 |
198 | H-D-1-311h | 159.3 | 5.36 | 356 | 61.4 | 2480 | 2261 | 0.91 |
199 | H-D-2-308h | 160.2 | 5.01 | 356 | 61.4 | 2440 | 2213 | 0.91 |
200 | H-F-1-307h | 133.3 | 5.43 | 392 | 61.4 | 1820 | 1873 | 1.03 |
201 | H-F-2-313h | 133.1 | 5.44 | 392 | 61.4 | 1915 | 1871 | 0.98 |
Han et al. [52] | ||||||||
202 | CA2-1 | 100 | 1.87 | 282 | 70.9 | 822 | 834 | 1.01 |
203 | CA2-2 | 100 | 1.87 | 282 | 70.9 | 845 | 834 | 0.99 |
204 | CA3-1 | 150 | 1.87 | 282 | 70.9 | 1701 | 1501 | 0.88 |
205 | CA3-2 | 150 | 1.87 | 282 | 70.9 | 1670 | 1501 | 0.90 |
206 | CA4-1 | 200 | 1.87 | 282 | 70.9 | 2783 | 2461 | 0.88 |
207 | CA4-2 | 200 | 1.87 | 282 | 70.9 | 2824 | 2461 | 0.87 |
208 | CA5-1 | 250 | 1.87 | 274 | 70.9 | 3950 | 3706 | 0.94 |
209 | CA5-2 | 250 | 1.87 | 274 | 70.9 | 4102 | 3706 | 0.90 |
210 | CB2-1 | 100 | 2 | 404 | 70.9 | 930 | 982 | 1.06 |
211 | CB2-2 | 100 | 2 | 404 | 70.9 | 920 | 982 | 1.07 |
212 | CB3-1 | 150 | 2 | 404 | 70.9 | 1870 | 1711 | 0.91 |
213 | CB3-2 | 150 | 2 | 404 | 70.9 | 1743 | 1711 | 0.98 |
214 | CB4-1 | 200 | 2 | 366.3 | 70.9 | 3020 | 2662 | 0.88 |
215 | CB4-2 | 200 | 2 | 366.3 | 70.9 | 3011 | 2662 | 0.88 |
216 | CB5-1 | 250 | 2 | 293.1 | 70.9 | 4442 | 3789 | 0.85 |
217 | CB5-2 | 250 | 2 | 293.1 | 70.9 | 4550 | 3789 | 0.83 |
218 | CC2-1 | 150 | 2 | 404 | 75 | 1980 | 1783 | 0.90 |
219 | CC2-2 | 150 | 2 | 404 | 75 | 1910 | 1783 | 0.93 |
220 | CC3-1 | 250 | 2 | 293.1 | 75 | 4720 | 3974 | 0.84 |
221 | CC3-2 | 250 | 2 | 293.1 | 75 | 4800 | 3974 | 0.83 |
Tan [53] | ||||||||
222 | GH1-1 | 125 | 1 | 232 | 97.2 | 1275 | 1181 | 0.93 |
223 | GH1-2 | 125 | 1 | 232 | 97.2 | 1239 | 1181 | 0.95 |
224 | GH2-1 | 127 | 2 | 258 | 97.2 | 1491 | 1366 | 0.92 |
225 | GH3-1 | 133 | 3.5 | 352 | 97.2 | 1995 | 1843 | 0.92 |
226 | GH3-2 | 133 | 3.5 | 352 | 97.2 | 1991 | 1843 | 0.93 |
227 | GH3-3 | 133 | 3.5 | 352 | 97.2 | 1962 | 1843 | 0.94 |
228 | GH4-1 | 133 | 4.7 | 352 | 97.2 | 2273 | 2001 | 0.88 |
229 | GH4-2 | 133 | 4.7 | 352 | 97.2 | 2158 | 2001 | 0.93 |
230 | GH4-3 | 133 | 4.7 | 352 | 97.2 | 2253 | 2001 | 0.89 |
231 | GH5-1 | 127 | 7 | 429 | 97.2 | 2404 | 2397 | 1.00 |
232 | GH5-2 | 127 | 7 | 429 | 97.2 | 2370 | 2397 | 1.01 |
233 | GH5-3 | 127 | 7 | 429 | 97.2 | 2364 | 2397 | 1.01 |
234 | GH6-3 | 108 | 4.5 | 358 | 88.6 | 1518 | 1479 | 0.97 |
Gupta et al. [54] | ||||||||
235 | D4M3C1 | 112.6 | 2.89 | 360 | 19.8 | 670 | 662 | 0.99 |
236 | D4M3C2 | 112.6 | 2.89 | 360 | 23 | 646 | 693 | 1.07 |
237 | D4M3C3 | 112.6 | 2.89 | 360 | 22.4 | 661 | 687 | 1.04 |
238 | D4M4C1 | 112.6 | 2.89 | 360 | 30.4 | 786 | 764 | 0.97 |
239 | D4M4C2 | 112.6 | 2.89 | 360 | 32.5 | 752 | 786 | 1.05 |
240 | D4M4C3 | 112.6 | 2.89 | 360 | 30.6 | 765 | 766 | 1.00 |
Yu et al. [55] | ||||||||
241 | SZ3S6A1 | 165 | 2.73 | 350 | 64.1 | 2080 | 1903 | 0.91 |
242 | SZ3S4A1 | 165 | 2.72 | 350 | 46.9 | 1750 | 1537 | 0.88 |
243 | SZ3C4A1 | 165 | 2.75 | 350 | 37.8 | 1560 | 1353 | 0.87 |
Lai et al. [56] | ||||||||
244 | F0-102 | 204 | 2 | 226 | 42.2 | 1864 | 1596 | 0.86 |
245 | F0-135 | 203 | 1.5 | 242 | 42.1 | 1699 | 1509 | 0.89 |
246 | F0-202 | 202 | 1 | 181.4 | 35.9 | 1380 | 1141 | 0.83 |
Liao et al. [57] | ||||||||
247 | cn-1 | 180 | 3.8 | 360 | 53 | 2110 | 2177 | 1.03 |
248 | cn-2 | 180 | 3.8 | 360 | 53 | 2070 | 2177 | 1.05 |
Uy et al. [58] | ||||||||
249 | C20-100*1.6A | 101.6 | 1.6 | 320 | 20 | 421 | 417 | 0.99 |
250 | C20-100*1.6B | 101.6 | 1.6 | 320 | 20 | 426 | 417 | 0.98 |
251 | C30-100*1.6A | 101.6 | 1.6 | 320 | 30 | 477 | 497 | 1.04 |
252 | C30-100*1.6B | 101.6 | 1.6 | 320 | 30 | 477 | 497 | 1.04 |
253 | C30-150*1.6A | 152.4 | 1.6 | 279 | 30 | 904 | 792 | 0.88 |
254 | C30-150*1.6B | 152.4 | 1.6 | 279 | 30 | 890 | 792 | 0.89 |
255 | C30-200*2.0A | 203.2 | 2 | 259 | 30 | 1537 | 1285 | 0.84 |
256 | C30 200*2.0B | 203.2 | 2 | 259 | 30 | 1550 | 1285 | 0.83 |
Xue et al. [59] | ||||||||
257 | N3-0-A | 219 | 3 | 313 | 51.6 | 2647 | 2571 | 0.97 |
258 | N4-0-A | 219 | 4 | 313 | 51.6 | 2896 | 2822 | 0.97 |
259 | N5-0-A | 219 | 5 | 313 | 51.6 | 3218 | 3066 | 0.95 |
Abed et al. [60] | ||||||||
260 | CFSTf60D167t3.1 | 167 | 3.1 | 300 | 60 | 1873 | 1820 | 0.97 |
261 | CFSTf60D114t3.6 | 114 | 3.6 | 300 | 60 | 1095 | 1106 | 1.01 |
262 | CFSTf60D114t5.6 | 114 | 5.6 | 300 | 60 | 1297 | 1338 | 1.03 |
263 | CFSTf44D167t3.1 | 167 | 3.1 | 300 | 44 | 1710 | 1486 | 0.87 |
264 | CFSTf44D114t3.6 | 114 | 3.6 | 300 | 44 | 1034 | 938 | 0.91 |
265 | CFSTf44D114t5.6 | 114 | 5.6 | 300 | 44 | 1240 | 1181 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chepurnenko, A.; Turina, V.; Akopyan, V. Artificial Neural Network Models for Determining the Load-Bearing Capacity of Eccentrically Compressed Short Concrete-Filled Steel Tubular Columns. CivilEng 2024, 5, 150-168. https://doi.org/10.3390/civileng5010008
Chepurnenko A, Turina V, Akopyan V. Artificial Neural Network Models for Determining the Load-Bearing Capacity of Eccentrically Compressed Short Concrete-Filled Steel Tubular Columns. CivilEng. 2024; 5(1):150-168. https://doi.org/10.3390/civileng5010008
Chicago/Turabian StyleChepurnenko, Anton, Vasilina Turina, and Vladimir Akopyan. 2024. "Artificial Neural Network Models for Determining the Load-Bearing Capacity of Eccentrically Compressed Short Concrete-Filled Steel Tubular Columns" CivilEng 5, no. 1: 150-168. https://doi.org/10.3390/civileng5010008
APA StyleChepurnenko, A., Turina, V., & Akopyan, V. (2024). Artificial Neural Network Models for Determining the Load-Bearing Capacity of Eccentrically Compressed Short Concrete-Filled Steel Tubular Columns. CivilEng, 5(1), 150-168. https://doi.org/10.3390/civileng5010008