Exploring the Role of Artificial Intelligence in Enhancing Surgical Education During Consultant Ward Rounds
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Scenario Development
- Flexor tenosynovitis following a rose thorn injury
- Postoperative monitoring of bilateral deep inferior epigastric perforator (DIEP) flaps
- Acute flame burns to the lower limbs
- Right forearm abscess in an intravenous drug user
2.3. AI Prompting Procedure
- Generate consultant-level questions that a senior surgeon might ask during ward rounds.
- Provide structured, evidence-based answers aligned with surgical teaching principles and recognised competencies of the Royal Australasian College of Surgeons (RACS).
2.4. Assessment of Outputs
- Relevance—appropriateness of generated questions for ward-round teaching.
- Accuracy—alignment of answers with established surgical principles and guidelines.
- Educational Value—ability of responses to support trainee preparedness and post-round consolidation.
2.5. Ethical Considerations
3. Results
Scenario | Model | Accuracy | Clinical Relevance | Depth of Explanation | Clarity & Structure | Usefulness for Trainee Learning | Mean Score (/5) |
---|---|---|---|---|---|---|---|
1. Flexor Tenosynovitis (rose thorn injury) | ChatGPT-4.5 | 5 | 5 | 4 | 5 | 5 | 4.8 |
Gemini 2.0 | 4 | 4 | 3 | 3 | 3 | 3.4 | |
2. DIEP Flap Post-Op Monitoring | ChatGPT-4.5 | 5 | 5 | 5 | 5 | 4 | 4.8 |
Gemini 2.0 | 4 | 4 | 3 | 3 | 3 | 3.4 | |
3. Acute Burns (12% TBSA lower limbs) | ChatGPT-4.5 | 5 | 5 | 5 | 4 | 5 | 4.8 |
Gemini 2.0 | 4 | 4 | 3 | 3 | 3 | 3.4 | |
4. IVDU Forearm Abscess | ChatGPT-4.5 | 5 | 5 | 4 | 5 | 5 | 4.8 |
Gemini 2.0 | 4 | 4 | 3 | 3 | 3 | 3.4 |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
LLM | Large Language Model |
RACS | Royal Australasian College of Surgeons |
DIEP | Deep Inferior Epigastric Perforator |
IVDU | Intravenous Drug Use |
TBSA | Total Body Surface Area |
MCQ | Multiple Choice Question |
NPWT | Negative Pressure Wound Therapy |
References
- Greenberg, C.C.; Regenbogen, S.E.; Studdert, D.M.; Lipsitz, S.R.; Rogers, S.O.; Zinner, M.J.; Gawande, A.A. Patterns of communication breakdowns resulting in injury to surgical patients. J. Am. Coll. Surg. 2007, 204, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Tam, A.; Bateman, S.; Buckingham, G.; Wilson, M.; Melendez-Torres, G.J.; Vine, S.; Clark, J. The effects of stress on surgical performance: A systematic review. Surg. Endosc. 2025, 39, 77–98. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, D.A.; Rosman, G.; Rus, D.; Meireles, O.R.M. Artificial intelligence in surgery: Promises and perils. Ann. Surg. 2018, 268, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Seth, I.; Hunter-Smith, D.J.; Seifman, M.A.; Rozen, W.M. Response to: Investigating the impact of innovative AI chatbot on post-pandemic medical education and clinical assistance: A comprehensive analysis. ANZ J. Surg. 2024, 94, 493. [Google Scholar] [CrossRef] [PubMed]
- Rao, L.; Yang, E.; Dissanayake, S.; Cuomo, R.; Seth, I.; Rozen, W.M. The use of generative artificial intelligence in surgical education: A narrative review. Plast. Aesthet. Res. 2024, 11, 57. [Google Scholar] [CrossRef]
- Williams, B.; Olagunju, O.; Richardson, S.; Jameson, G. How Are Inpatient Psychiatric Ward Rounds Understood in Research Literature? A Scoping Review. BJPsych Open 2024, 10, S69–S70. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Seth, I.; Xie, Y.; Ross, R.J.; Hunter-Smith, D.J.; Rozen, W.M.; Cuomo, R. Artificial intelligence language model performance for rapid intraoperative queries in plastic surgery: ChatGPT and the deep inferior epigastric perforator flap. J. Clin. Med. 2024, 13, 900. [Google Scholar] [CrossRef]
- Seth, I.; Marcaccini, G.; Lim, K.; Castrechini, M.; Cuomo, R.; Ng, S.K.-H.; Ross, R.J.; Rozen, W.M. Management of Dupuytren’s Disease: A Multi-Centric Comparative Analysis Between Experienced Hand Surgeons Versus Artificial Intelligence. Diagnostics 2025, 15, 587. [Google Scholar] [CrossRef] [PubMed]
- Paranjape, K.; Schinkel, M.; Panday, R.N.; Car, J.; Nanayakkara, P. Introducing artificial intelligence training in medical education. JMIR Med. Educ. 2019, 5, e16048. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, X.; Deng, X.; Wen, H.; You, M.; Liu, W.; Li, Q.; Li, J. Prompt engineering in consistency and reliability with the evidence-based guideline for LLMs. npj Digit. Med. 2024, 7, 41. [Google Scholar] [CrossRef] [PubMed]
- Hartman, V.; Zhang, X.; Poddar, R.; McCarty, M.; Fortenko, A.; Sholle, E.; Sharma, R.; Campion, T., Jr.; Steel, P.A.D. Developing and Evaluating Large Language Model–Generated Emergency Medicine Handoff Notes. JAMA Netw. Open 2024, 7, e2448723. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.Y.K.; Subramanian, C.R.; Ali, S.S.; Apolinario, M.; Askin, E.; Barish, P.; Cheng, M.; Deardorff, W.J.; Donthi, N.; Ganeshan, S.; et al. Physician- and Large Language Model–Generated Hospital Discharge Summaries. JAMA Intern. Med. 2025, 185, 818–825. [Google Scholar] [CrossRef] [PubMed]
- Dehkordi, M.K.H.; Perl, Y.; Deek, F.P.; He, Z.; Keloth, V.K.; Liu, H.; Elhanan, G.; Einstein, A.J. Improving Large Language Models’ Summarization Accuracy by Adding Highlights to Discharge Notes: Comparative Evaluation. JMIR Med. Inform. 2025, 13, e66476. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, F.; Hong, N.; Li, M.; Roberts, K.; Cui, L.; Tao, C.; Xu, H. A comparative study of recent large language models on generating hospital discharge summaries for lung cancer patients. J. Biomed. Inform. 2025, 168, 104867. [Google Scholar] [CrossRef] [PubMed]
- Shemtob, L.; Nouri, A.; Harvey-Sullivan, A.; Qiu, C.S.; Martin, J.; Martin, M.; Noden, S.; Rob, T.; Neves, A.L.; Majeed, A.; et al. Comparing artificial intelligence- vs clinician-authored summaries of simulated primary care electronic health records. JAMIA Open 2025, 8, ooaf082. [Google Scholar] [CrossRef] [PubMed]
- Merriman, C.; Freeth, D. Conducting a good ward round: How do leaders do it? J. Eval. Clin. Pract. 2022, 28, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Luxton, D.D. Recommendations for the ethical use and design of artificial intelligent care providers. Artif. Intell. Med. 2014, 62, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Loftus, T.J.; Tighe, P.J.; Filiberto, A.C.; Efron, P.A.; Brakenridge, S.C.; Mohr, A.M.; Rashidi, P.; Upchurch, G.R.; Bihorac, A. Artificial intelligence and surgical decision-making. JAMA Surg. 2020, 155, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Seth, I.; Lim, B.; Cevik, J.; Sofiadellis, F.; Ross, R.J.; Cuomo, R.; Rozen, W.M. Utilizing GPT-4 and generative artificial intelligence platforms for surgical education: An experimental study on skin ulcers. Eur. J. Plast. Surg. 2024, 47, 19. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seth, I.; Shadid, O.; Xie, Y.; Bacchi, S.; Cuomo, R.; Rozen, W.M. Exploring the Role of Artificial Intelligence in Enhancing Surgical Education During Consultant Ward Rounds. Surgeries 2025, 6, 83. https://doi.org/10.3390/surgeries6040083
Seth I, Shadid O, Xie Y, Bacchi S, Cuomo R, Rozen WM. Exploring the Role of Artificial Intelligence in Enhancing Surgical Education During Consultant Ward Rounds. Surgeries. 2025; 6(4):83. https://doi.org/10.3390/surgeries6040083
Chicago/Turabian StyleSeth, Ishith, Omar Shadid, Yi Xie, Stephen Bacchi, Roberto Cuomo, and Warren M. Rozen. 2025. "Exploring the Role of Artificial Intelligence in Enhancing Surgical Education During Consultant Ward Rounds" Surgeries 6, no. 4: 83. https://doi.org/10.3390/surgeries6040083
APA StyleSeth, I., Shadid, O., Xie, Y., Bacchi, S., Cuomo, R., & Rozen, W. M. (2025). Exploring the Role of Artificial Intelligence in Enhancing Surgical Education During Consultant Ward Rounds. Surgeries, 6(4), 83. https://doi.org/10.3390/surgeries6040083