Nail–Plate Constructs for Treating Distal Femur Fractures: A Systematic Review of Biomechanical Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Creation
2.2. Inclusion and Exclusion Criteria
2.3. Study Definitions
2.4. Article Sorting Process
2.5. Data Extraction
2.6. Statistical Analysis
3. Results
3.1. Search Results
3.2. NPCs vs. DP Constructs
3.3. NPCs vs. DLFLP
3.4. NPCs vs. Parallel Plating and Orthogonal Plating
3.5. NPCs vs. Retrograde Intramedullary Nail
3.6. NPCs Using Variable Nail Size
3.7. Linked NPCs vs. Non-Linked NPCs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Elsoe, R.; Ceccotti, A.A.; Larsen, P. Population-based epidemiology and incidence of distal femur fractures. Int. Orthop. 2018, 42, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Gwathmey, F.W., Jr.; Jones-Quaidoo, S.M.; Kahler, D.; Hurwitz, S.; Cui, Q. Distal femoral fractures: Current concepts. J. Am. Acad. Orthop. Surg. 2010, 18, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Coon, M.S.; Best, B.J. Distal Femur Fractures. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- DeKeyser, G.J.; Hakim, A.J.; O’Neill, D.C.; Schlickewei, C.W.; Marchand, L.S.; Haller, J.M. Biomechanical and anatomical considerations for dual plating of distal femur fractures: A systematic literature review. Arch. Orthop. Trauma. Surg. 2022, 142, 2597–2609. [Google Scholar] [CrossRef] [PubMed]
- Merchan, E.C.; Maestu, P.R.; Blanco, R.P. Blade-plating of closed displaced supracondylar fractures of the distal femur with the AO system. J. Trauma. 1992, 32, 174–178. [Google Scholar] [CrossRef]
- Siliski, J.M.; Mahring, M.; Hofer, H.P. Supracondylar-intercondylar fractures of the femur. Treatment by internal fixation. J. Bone Jt. Surg. Am. 1989, 71, 95–104. [Google Scholar] [CrossRef]
- Giles, J.B.; DeLee, J.C.; Heckman, J.D.; Keever, J.E. Supracondylar-intercondylar fractures of the femur treated with a supracondylar plate and lag screw. J. Bone Jt. Surg. Am. 1982, 64, 864–870. [Google Scholar] [CrossRef]
- Neer, C.S.; Grantham, S.A.; Shelton, M.L. Supracondylar fracture of the adult femur. A study of one hundred and ten cases. J. Bone Jt. Surg. Am. 1967, 49, 591–613. [Google Scholar] [CrossRef]
- Hoskins, W.; Sheehy, R.; Edwards, E.R.; Hau, R.C.; Bucknill, A.; Parsons, N.; Griffin, X.L. Nails or plates for fracture of the distal femur? data from the Victoria Orthopaedic Trauma Outcomes Registry. Bone Jt. J. 2016, 98, 846–850. [Google Scholar] [CrossRef]
- Markmiller, M.; Konrad, G.; Sudkamp, N. Femur-LISS and distal femoral nail for fixation of distal femoral fractures: Are there differences in outcome and complications? Clin. Orthop. Relat. Res. 2004, 426, 252–257. [Google Scholar] [CrossRef]
- Schutz, M.; Muller, M.; Krettek, C.; Hontzsch, D.; Regazzoni, P.; Ganz, R.; Haas, N. Minimally invasive fracture stabilization of distal femoral fractures with the LISS: A prospective multicenter study. Results of a clinical study with special emphasis on difficult cases. Injury 2001, 32 (Suppl. S3), 48–54. [Google Scholar] [CrossRef]
- Rollo, G.; Pichierri, P.; Grubor, P.; Marsilio, A.; Bisaccia, M.; Grubor, M.; Pace, V.; Lanzetti, R.M.; Giaracuni, M.; Filipponi, M.; et al. The challenge of nonunion and malunion in distal femur surgical revision. Med. Glas. 2019, 16. [Google Scholar] [CrossRef]
- Saxena, V.; Akshay, V.; Panwar, A.; Kumar, S. Management of Non-union Distal Femur Fractures With Augmentation Nail Plate Construct. Cureus 2023, 15, e37173. [Google Scholar] [CrossRef]
- Ricci, W.M.; Streubel, P.N.; Morshed, S.; Collinge, C.A.; Nork, S.E.; Gardner, M.J. Risk factors for failure of locked plate fixation of distal femur fractures: An analysis of 335 cases. J. Orthop. Trauma. 2014, 28, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Canton, G.; Giraldi, G.; Dussi, M.; Ratti, C.; Murena, L. Osteoporotic distal femur fractures in the elderly: Peculiarities and treatment strategies. Acta Biomed. 2019, 90, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Garala, K.; Ramoutar, D.; Li, J.; Syed, F.; Arastu, M.; Ward, J.; Patil, S. Distal femoral fractures: A comparison between single lateral plate fixation and a combined femoral nail and plate fixation. Injury 2022, 53, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Passias, B.J.; Emmer, T.C.; Sullivan, B.D.; Gupta, A.; Myers, D.; Skura, B.W.; Taylor, B.C. Treatment of Distal Femur Fractures with a Combined Nail-Plate Construct: Techniques and Outcomes. J. Long. Term. Eff. Med. Implant. 2021, 31, 15–26. [Google Scholar] [CrossRef]
- Medda, S.; Kessler, R.B.; Halvorson, J.J.; Pilson, H.T.; Babcock, S.; Carroll, E.A. Technical Trick: Dual Plate Fixation of Periprosthetic Distal Femur Fractures. J. Orthop. Trauma. 2021, 35, e148–e152. [Google Scholar] [CrossRef]
- Henderson, C.E.; Kuhl, L.L.; Fitzpatrick, D.C.; Marsh, J.L. Locking plates for distal femur fractures: Is there a problem with fracture healing? J. Orthop. Trauma. 2011, 25 (Suppl. S1), S8–S14. [Google Scholar] [CrossRef]
- Tank, J.C.; Schneider, P.S.; Davis, E.; Galpin, M.; Prasarn, M.L.; Choo, A.M.; Munz, J.W.; Achor, T.S.; Kellam, J.F.; Gary, J.L. Early Mechanical Failures of the Synthes Variable Angle Locking Distal Femur Plate. J. Orthop. Trauma. 2016, 30, e7–e11. [Google Scholar] [CrossRef]
- Yoon, B.H.; Park, I.K.; Kim, Y.; Oh, H.K.; Choo, S.K.; Sung, Y.B. Incidence of nonunion after surgery of distal femoral fractures using contemporary fixation device: A meta-analysis. Arch. Orthop. Trauma. Surg. 2021, 141, 225–233. [Google Scholar] [CrossRef]
- Martinet, O.; Cordey, J.; Harder, Y.; Maier, A.; Buhler, M.; Barraud, G.E. The epidemiology of fractures of the distal femur. Injury 2000, 31 (Suppl. S3), 62–94. [Google Scholar] [CrossRef] [PubMed]
- Myers, P.; Laboe, P.; Johnson, K.J.; Fredericks, P.D.; Crichlow, R.J.; Maar, D.C.; Weber, T.G. Patient Mortality in Geriatric Distal Femur Fractures. J. Orthop. Trauma. 2018, 32, 111–115. [Google Scholar] [CrossRef]
- Streubel, P.N.; Ricci, W.M.; Wong, A.; Gardner, M.J. Mortality after distal femur fractures in elderly patients. Clin. Orthop. Relat. Res. 2011, 469, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Consigliere, P.; Iliopoulos, E.; Ads, T.; Trompeter, A. Early versus delayed weight bearing after surgical fixation of distal femur fractures: A non-randomized comparative study. Eur. J. Orthop. Surg. Traumatol. 2019, 29, 1789–1794. [Google Scholar] [CrossRef] [PubMed]
- Lieder, C.M.; Gaski, G.E.; Virkus, W.W.; Kempton, L.B. Is Immediate Weight-Bearing Safe After Single Implant Fixation of Elderly Distal Femur Fractures? J. Orthop. Trauma. 2021, 35, 49–55. [Google Scholar] [CrossRef]
- Schandelmaier, P.; Partenheimer, A.; Koenemann, B.; Grun, O.A.; Krettek, C. Distal femoral fractures and LISS stabilization. Injury 2001, 32 (Suppl. S3), 55–63. [Google Scholar] [CrossRef]
- Black, D.M.; Bauer, D.C.; Vittinghoff, E.; Lui, L.Y.; Grauer, A.; Marin, F.; Khosla, S.; de Papp, A.; Mitlak, B.; Cauley, J.A.; et al. Treatment-related changes in bone mineral density as a surrogate biomarker for fracture risk reduction: Meta-regression analyses of individual patient data from multiple randomised controlled trials. Lancet Diabetes Endocrinol. 2020, 8, 672–682. [Google Scholar] [CrossRef]
- Ellingsen Husebye, E.; Lyberg, T.; Madsen, J.E.; Nordsletten, L.; Roise, O. The early effects of intramedullary reaming of the femur on bone mineral density; an experimental study in pigs. Scand. J. Surg. 2009, 98, 189–194. [Google Scholar] [CrossRef]
- Johnson, K.D.; Hicken, G. Distal femoral fractures. Orthop. Clin. N. Am. 1987, 18, 115–132. [Google Scholar] [CrossRef]
- Leslie, W.D.; Martineau, P.; Bryanton, M.; Lix, L.M. Which is the preferred site for bone mineral density monitoring as an indicator of treatment-related anti-fracture effect in routine clinical practice? A registry-based cohort study. Osteoporos. Int. 2019, 30, 1445–1453. [Google Scholar] [CrossRef]
- Cirnigliaro, C.M.; Myslinski, M.J.; La Fountaine, M.F.; Kirshblum, S.C.; Forrest, G.F.; Bauman, W.A. Bone loss at the distal femur and proximal tibia in persons with spinal cord injury: Imaging approaches, risk of fracture, and potential treatment options. Osteoporos. Int. 2017, 28, 747–765. [Google Scholar] [CrossRef] [PubMed]
- Inacio, J.V.; Malige, A.; Schroeder, J.T.; Nwachuku, C.O.; Dailey, H.L. Mechanical characterization of bone quality in distal femur fractures using pre-operative computed tomography scans. Clin. Biomech. 2019, 67, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Kannus, P.; Jarvinen, M.; Sievanen, H.; Jarvinen, T.A.; Oja, P.; Vuori, I. Reduced bone mineral density in men with a previous femur fracture. J. Bone Miner. Res. 1994, 9, 1729–1736. [Google Scholar] [CrossRef]
- Leppala, J.; Kannus, P.; Niemi, S.; Sievanen, H.; Vuori, I.; Jarvinen, M. An early-life femoral shaft fracture and bone mineral density at adulthood. Osteoporos. Int. 1999, 10, 337–342. [Google Scholar] [CrossRef]
- Schmidt, C.; Riedel, C.; Sturznickel, J.; Mushumba, H.; Delsmann, M.M.; Ries, C.; Kleiss, S.; Bannas, P.; Beil, F.T.; Amling, M.; et al. Investigation of distal femur microarchitecture and factors influencing its deterioration: An ex vivo high-resolution peripheral quantitative computed tomography study. J. Orthop. Res. 2022, 40, 2057–2064. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, H.; Goodnough, H.L.; Sharma, J.; Maschhoff, C.W.; Van Rysselberghe, N.L.; Bishop, J.A.; Gardner, M.J. Supplemental fixation of distal femur fractures: A review of biomechanical and clinical evidence. Curr. Orthop. Pract. 2023, 34, 201–207. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Basci, O.; Karakasli, A.; Kumtepe, E.; Guran, O.; Havitcioglu, H. Combination of anatomical locking plate and retrograde intramedullary nail in distal femoral fractures: Comparison of mechanical stability. Eklem Hastalik. Cerrahisi 2015, 26, 21–26. [Google Scholar] [CrossRef]
- Cheung, Z.B.; Nasser, P.; Iatridis, J.C.; Forsh, D.A. Orthogonal plating of distal femur fractures: A biomechanical comparison with plate-nail and parallel plating constructs. J. Orthop. 2023, 37, 34–40. [Google Scholar] [CrossRef]
- Fontenot, P.B.; Diaz, M.; Stoops, K.; Barrick, B.; Santoni, B.; Mir, H. Supplementation of Lateral Locked Plating for Distal Femur Fractures: A Biomechanical Study. J. Orthop. Trauma. 2019, 33, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Wright, D.J.; DeSanto, D.J.; McGarry, M.H.; Lee, T.Q.; Scolaro, J.A. Supplemental Fixation of Supracondylar Distal Femur Fractures: A Biomechanical Comparison of Dual-Plate and Plate-Nail Constructs. J. Orthop. Trauma. 2020, 34, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Wright, D.J.; DeSanto, D.J.; McGarry, M.H.; Lee, T.Q.; Scolaro, J.A. Nail diameter significantly impacts stability in combined plate-nail constructs used for fixation of supracondylar distal femur fractures. OTA Int. 2022, 5, e174. [Google Scholar] [CrossRef]
- Lin, C.C.; Parody, N.; Anil, U.; Egol, K.A. Effect of Implant Linkage on Axial and Rotational Stiffness of Nail-Plate Constructs for Comminuted Distal Femoral Fractures. J. Orthop. Trauma. 2023, 37, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Andring, N.A.; Kaupp, S.M.; Henry, K.A.; Helmig, K.C.; Babcock, S.; Halvorson, J.J.; Pilson, H.T.; Carroll, E.A. Dual Plate Fixation of Periprosthetic Distal Femur Fractures. J. Orthop. Trauma. 2024, 38, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Bologna, M.G.; Claudio, M.G.; Shields, K.J.; Katz, C.; Salopek, T.; Westrick, E.R. Dual plate fixation results in improved union rates in comminuted distal femur fractures compared to single plate fixation. J. Orthop. 2020, 18, 76–79. [Google Scholar] [CrossRef]
- Tripathy, S.K.; Mishra, N.P.; Varghese, P.; Panigrahi, S.; Purudappa, P.P.; Goel, A.; Sen, R.K. Dual-Plating in Distal Femur Fracture: A Systematic Review and Limited Meta-analysis. Indian. J. Orthop. 2022, 56, 183–207. [Google Scholar] [CrossRef]
- Lee, S.K.; Kim, K.J.; Park, K.H.; Choy, W.S. A comparison between orthogonal and parallel plating methods for distal humerus fractures: A prospective randomized trial. Eur. J. Orthop. Surg. Traumatol. 2014, 24, 1123–1131. [Google Scholar] [CrossRef]
- Taylor, P.A.; Owen, J.R.; Benfield, C.P.; Wayne, J.S.; Boardman, N.D., 3rd. Parallel Plating of Simulated Distal Humerus Fractures Demonstrates Increased Stiffness Relative to Orthogonal Plating With a Distal Humerus Locking Plate System. J. Orthop. Trauma. 2016, 30, e118–e122. [Google Scholar] [CrossRef]
- Yu, X.; Xie, L.; Wang, J.; Chen, C.; Zhang, C.; Zheng, W. Orthogonal plating method versus parallel plating method in the treatment of distal humerus fracture: A systematic review and meta-analysis. Int. J. Surg. 2019, 69, 49–60. [Google Scholar] [CrossRef]
- Liporace, F.A.; Yoon, R.S. Nail Plate Combination Technique for Native and Periprosthetic Distal Femur Fractures. J. Orthop. Trauma. 2019, 33, e64–e68. [Google Scholar] [CrossRef] [PubMed]
- Liporace, F.A.; Tang, A.; Jankowski, J.M.; Yoon, R.S. Distal femur: Nail plate combination and the linked construct. OTA Int. 2022, 5, e172. [Google Scholar] [CrossRef]
- Attum, B.; Douleh, D.; Whiting, P.S.; White-Dzuro, G.A.; Dodd, A.C.; Shen, M.S.; Mir, H.R.; Obremskey, W.T.; Sethi, M.K. Outcomes of Distal Femur Nonunions Treated With a Combined Nail/Plate Construct and Autogenous Bone Grafting. J. Orthop. Trauma. 2017, 31, e301–e304. [Google Scholar] [CrossRef]
- Espey, R.; Stevenson, L.; Tucker, A. Combined nail-plate constructs in the management of osteoporotic native distal femoral fractures: A systematic review of the available evidence. Eur. J. Orthop. Surg. Traumatol. 2023, 33, 3215–3223. [Google Scholar] [CrossRef] [PubMed]
- Adesina, S.A.; Amole, I.O.; Adefokun, I.G.; Adegoke, A.O.; Akinwumi, A.I.; Odekhiran, E.O.; Durodola, A.O.; Ojo, S.A.; Eyesan, S.U. Retrograde intramedullary nailing with supplemental plate and lag screws allows early weight bearing following distal end-segment femur fractures (AO/OTA 33) in a low-resource setting. Eur. J. Orthop. Surg. Traumatol. 2024, 34, 1519–1527. [Google Scholar] [CrossRef]
- Liu, J.; Wang, K.; Li, X.; Zhang, X.; Gong, X.; Zhu, Y.; Ren, Z.; Zhang, B.; Cheng, J. Biocompatibility and osseointegration properties of a novel high strength and low modulus beta- Ti10Mo6Zr4Sn3Nb alloy. Front. Bioeng. Biotechnol. 2023, 11, 1127929. [Google Scholar] [CrossRef]
- Sommer, U.; Laurich, S.; de Azevedo, L.; Viehoff, K.; Wenisch, S.; Thormann, U.; Alt, V.; Heiss, C.; Schnettler, R. In Vitro and In Vivo Biocompatibility Studies of a Cast and Coated Titanium Alloy. Molecules 2020, 25, 3399. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, J.; Zhao, X.; Xu, M.; Liu, H.; Zhou, H. Stability, biomechanics and biocompatibility analysis following different preparation strategies of hierarchical zeolite coatings on titanium alloy surfaces. Front. Bioeng. Biotechnol. 2023, 11, 1337709. [Google Scholar] [CrossRef]
- He, S.; Zhu, J.; Jing, Y.; Long, S.; Tang, L.; Cheng, L.; Shi, Z. Effect of 3D-Printed Porous Titanium Alloy Pore Structure on Bone Regeneration: A Review. Coatings 2024, 14, 253. [Google Scholar] [CrossRef]
- Al-Mukhtar, A.M.; Könke, C. Fracture Mechanics and Micro Crack Detection in Bone: A Short Communication. In Proceedings of the MPMD, Minneapolis, MN, USA, 8–10 August 2011. [Google Scholar]
Author (Year) | Model Type Used | Constructs Brand | Subgroup Comparison Type | # of Models Tested | Biomechanical Test | Biomechanical Analysis Data | Key Findings from Biomechanical Analysis | |
---|---|---|---|---|---|---|---|---|
Torsional Stiffness (Nm/Degree) | Axial Stiffness (N/mm) | |||||||
Basci (2015) [40] | Synthetic Composite Femurs | Sawbones | Nail–plate | n = 7 | Torsional Load Testing, Axial Load Testing | N/A | N/A | The NPC was significantly more resistant than the femoral plate and RIMN constructs in the axial load test and torsional load test (p ≤ 0.012). The NPC had a significantly higher resistance than the femoral plate (p = 0.008) but not RIMN (p = 0.059) in the load to failure test. |
Lateral locked distal femur plate | n = 7 | |||||||
Retrograde intramedullary nail | n = 7 | |||||||
Cheung (2023) [41] | Synthetic Osteoporotic Femurs | Sawbones, SKU 3503 | Nail–plate | n = 5 | Torsional Load Testing, | 74.5 ± 20.7 (baseline) | 3.57 × 105 ± 1.63 × 105 (baseline) | No difference found in torsional stiffness or axial stiffness ((p = 0.51), p = 0.53)) between the NPC, parallel plating construct, and orthogonal plating construct. |
Parallel plating | n = 5 | Axial Load Testing | 81.2 ± 23.7 (baseline) | 4.31 × 105 ± 3.62 × 105 (baseline) | ||||
Orthogonal plating | n = 5 | 66.2 ± 31.1 (baseline) | 2.44 × 105 ± 1.32 × 105 (baseline) | |||||
Fontenot (2019) [42] | Synthetic Composite Femurs | Sawbones | Nail–plate | n = 7 | Axial Load Testing | N/A | 366.0 ± 31.8 (baseline) | The lateral locked NPC and LLP + medial reconstruction plate construct have significantly higher baseline axial stiffness (p < 0.001) compared with LLP only or the LLP + medial distal tibia plate construct. |
Lateral locked distal femoral plate alone | n = 7 | 213.9 ± 18.3 (baseline) | ||||||
Lateral locked distal femoral plate + medial distal tibial plate | n = 7 | 258.5 ± 40.4 (baseline) | ||||||
Lateral locked distal femoral plate + medial reconstruction plate | n = 7 | 364.0 ± 32.5 (baseline) | ||||||
Lin (2023) [45] | Synthetic Osteoporotic Femurs | Sawbones, SKU 3503 | Linked nail–plate construct | n = 8 | Torsional Load Testing, Axial Load Testing | 3.95 ± 0.45 (average) | 3067.1 ± 332.0 (average) | No significant difference in mean torsional or axial stiffness (p = 0.675, p = 0.308) between the linked and unlinked NPC. |
Non-linked nail–plate construct | n = 8 | 3.85 ± 0.53 (average) | 3345.2 ± 665.3 (average) | |||||
Wright (2022) [44] | Synthetic Osteoporotic Femurs | Sawbones, SKU 1130–130 | Lateral plate + 9 mm retrograde intramedullary nail | n = 6 | Torsional Load Testing, Axial Load Testing | 1.44 ± 0.17 (average) | 376.77 ± 37.65 (average) | The 11 mm NPC was significantly stiffer than the 9 mm NPC across all torsional (1.6 times more, p < 0.005) and axial loads (1.3 times more, p < 0.005). |
Lateral plate + 11 mm retrograde intramedullary nail | n = 6 | 2.39 ± 0.41 (average) | 506.84 ± 44.50 (average) | |||||
Wright (2020) [43] | Synthetic Osteoporotic Femurs | Sawbones, SKU 1130–130 | Nail–plate | n = 6 | Torsional Load Testing, Axial Load Testing | 1.44 ± 0.17 (average) | 371.4 ± 41.9 (average) | The average torsional (p = 0.001) and axial (p < 0.05) stiffness were significantly different between the NPC, DP, DLFLP, and rIMN constructs. The NPC had less torsional stiffness than both the DP and RIMN constructs and less axial stiffness than the DP construct. |
Dual-plate | n = 6 | 1.76 ± 0.33 (average) | 507.9 ± 83.1 (average) | |||||
Distal lateral femoral locking llate (DLFLP) | n = 6 | 0.68 ± 0.10 (average) | 255.0 ± 45.3 (average) | |||||
Retrograde intramedullary nail (rIMN) | n = 6 | 1.67 ± 0.14 (average) | 109.2 ± 47.6 (average) | |||||
Fresh-frozen cadaveric femurs | N/A | Nail–plate | n = 7 | Torsional Load Testing, Axial Load Testing | 4.24 ± 1.09 (average) | 1387.7 ± 467.9 (average) | DP construct was almost twice as stiff as the NPC under torsional load (p < 0.001) and over one-and-a-half times stiffer under axial compression (p = 0.02). | |
Dual-plate | n = 7 | 8.41 ± 1.55 (average) | 2148.1 ± 820.4 (average) |
Author | Groups Being Compared | Parameters Measured | Significant Difference in Torsinal Parameters? | Significant Difference in Axial Parameters? | Conclusions |
---|---|---|---|---|---|
Cheung (2023) [41] | Nail–plate combination vs. parallel plates vs. orthogonal plates | Baseline stiffness | No | No | N/A |
Fontenot (2019) [42] | Nail–plate combination vs. lateral-plate-only vs. lateral plate + medial distal tibial plate vs. lateral plate + medial reconstruction plate | Baseline stiffness | - | Yes | The NPC and DP (lateral plate + medial reconstruction plate) had more torsional and axial stiffness than the plate-only and DP with medial distal tibial plate constructs. |
Wright (2022) [44] | 11 mm nail–plate construct vs. 9 mm nail–plate construct | Average stiffness across multiple loads | Yes | Yes | The 11 mm NPC had more torsional and axial stiffness than the 9 mm NPC. |
Lin (2023) [45] | Linked nail–plate construct vs. non-linked nail–plate construct | Average stiffness across multiple loads | No | No | N/A |
Wright (2020) [43] | Nail–plate vs. dual-plate vs. plate-only vs. nail-only (dynthetic femurs) | Average stiffness across multiple loads | Yes | Yes | The DP and nail-only constructs had more torsional stiffness than the NPC. The DP construct had more axial stiffness than the NPC. |
Nail–plate vs. dual-plate (cadaveric femurs) | Average stiffness across multiple loads | Yes | Yes | The DP construct had more torsional and axial stiffness than the NPC. | |
Basci (2015) [40] | Nail–plate vs. plate-only vs. nail-only | Average torque/displacement across multiple loads | Yes | Yes | The NPC had less displacement and torque than the plate-only and nail-only constructs under axial and torsional loads. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anaspure, O.S.; Patel, S.; Baumann, A.N.; Anastasio, A.T.; Pean, C.; DeBaun, M.R. Nail–Plate Constructs for Treating Distal Femur Fractures: A Systematic Review of Biomechanical Studies. Surgeries 2024, 5, 799-816. https://doi.org/10.3390/surgeries5030064
Anaspure OS, Patel S, Baumann AN, Anastasio AT, Pean C, DeBaun MR. Nail–Plate Constructs for Treating Distal Femur Fractures: A Systematic Review of Biomechanical Studies. Surgeries. 2024; 5(3):799-816. https://doi.org/10.3390/surgeries5030064
Chicago/Turabian StyleAnaspure, Omkar S., Shiv Patel, Anthony N. Baumann, Albert T. Anastasio, Christian Pean, and Malcolm R. DeBaun. 2024. "Nail–Plate Constructs for Treating Distal Femur Fractures: A Systematic Review of Biomechanical Studies" Surgeries 5, no. 3: 799-816. https://doi.org/10.3390/surgeries5030064
APA StyleAnaspure, O. S., Patel, S., Baumann, A. N., Anastasio, A. T., Pean, C., & DeBaun, M. R. (2024). Nail–Plate Constructs for Treating Distal Femur Fractures: A Systematic Review of Biomechanical Studies. Surgeries, 5(3), 799-816. https://doi.org/10.3390/surgeries5030064