Duropathies: A Narrative Overview of a Neglected Concept—Part One: Anatomical, Embryological, and Pathophysiological Elements
Abstract
1. Introduction
2. Anatomical and Pathophysiological Background
2.1. Embryology
- -
- During early embryonic stages, mesenchymal cells proliferate around the hindbrain as the neural tube closes, and after they extend to the midbrain and forebrain [11].
- -
- By Carnegie stage 15 in humans (around the fifth gestational week), corresponding to embryonic day 9.5 in mice, the primary meninx appears from the organization in layer of mesenchymal cells. This is the precursor for the meninges, skull, and scalp [11]. This primary meninx is supported by a vascular network that later gives origin to the blood vessels supplying both the meninges and the brain [8].
- -
- In the following stage, the presence of cells within the vascular plexus signals the differentiation of the pia mater, where fibroblasts produce extracellular matrix proteins that create a basement membrane, effectively separating the meninges from the brain [11].
- -
- The next step is around embryonic day 10.5 in mice, when the primary meninx splits into an outer dense layer and an inner reticular layer. This last one is probably the main contributor to the formation of the three meningeal layers.
- -
- -
- The primitive meninx finally differentiates into the pachymeninx (composed of longitudinally arranged fibroblasts) and leptomeninx. The dural limiting layer, a sheet of packed cells, may contribute to the dura and arachnoid mater, explaining the inclusion of the outer arachnoid in the definition of pachymeninx [8].
- -
2.2. The Cranial Dura Mater
2.3. The Spinal Dura Mater
2.4. The Role of Spinal Leptomeniges
2.5. The Epidural and Subdural Space
3. Spinal Dura Mater and Its Functional Role
4. The Spectrum of Duropathies and Their Pathophysiology
4.1. Spontaneous Intracranial Hypotension
4.2. Multisegmental (or Bibrachial) Amyotrophy
4.3. Spontaneous Transdural Spinal Cord Herniation
4.4. Spinal Arachnoid Web
4.5. Superficial Siderosis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, N. Beyond superficial siderosis: Introducing “duropathies”. Neurology 2012, 78, 1992–1999. [Google Scholar] [CrossRef]
- Kumar, N. Neuroimaging in superficial siderosis: An in-depth look. Am. J. Neuroradiol. 2010, 31, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Ellika, S.; Marin, H.; Pace, M.; Newman, D.; Abdulhak, M.; Kole, M. Case Series: Long segment extra-arachnoid fluid collections: Role of dynamic CT myelography in diagnosis and treatment planning. Indian J. Radiol. Imaging 2012, 22, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Adeeb, N.; Mortazavi, M.M.; Tubbs, R.S.; Cohen-Gadol, A.A. The cranial dura mater: A review of its history, embryology, and anatomy. Child’s Nerv. Syst. 2012, 28, 827–837. [Google Scholar] [CrossRef] [PubMed]
- Aspelund, A.; Antila, S.; Proulx, S.T.; Karlsen, T.V.; Karaman, S.; Detmar, M.; Wiig, H.; Alitalo, K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 2015, 212, 991–999. [Google Scholar] [CrossRef]
- Da Mesquita, S.; Fu, Z.; Kipnis, J. The Meningeal Lymphatic System: A New Player in Neurophysiology. Neuron 2018, 100, 375–388. [Google Scholar] [CrossRef]
- Louveau, A.; Smirnov, I.; Keyes, T.J.; Eccles, J.D.; Rouhani, S.J.; Peske, J.D.; Derecki, N.C.; Castle, D.; Mandell, J.W.; Lee, K.S.; et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015, 523, 337–341, Erratum in Nature 2016, 533, 278. https://doi.org/10.1038/nature16999. [Google Scholar] [CrossRef]
- Decimo, I.; Fumagalli, G.; Berton, V.; Krampera, M.; Bifari, F. Meninges: From protective membrane to stem cell niche. Am. J. Stem Cells 2012, 1, 92–105. [Google Scholar]
- Dasgupta, K.; Jeong, J. Developmental biology of the meninges. Genesis 2019, 57, e23288. [Google Scholar] [CrossRef]
- Sakka, L.; Gabrillargues, J.; Coll, G. Anatomy of the Spinal Meninges. Oper. Neurosurg. 2016, 12, 168–188. [Google Scholar] [CrossRef]
- O’Rahilly, R.; Muller, F. The meninges in human development. J. Neuropathol. Exp. Neurol. 1986, 45, 588–608. [Google Scholar] [CrossRef] [PubMed]
- Roybal, P.G.; Wu, N.L.; Sun, J.; Ting, M.C.; Schafer, C.A.; Maxson, R.E. Inactivation of Msx1 and Msx2 in neural crest reveals an unexpected role in suppressing heterotopic bone formation in the head. Dev. Biol. 2010, 343, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Vivatbutsiri, P.; Morriss-Kay, G.; Saga, Y.; Iseki, S. Cell lineage in mammalian craniofacial mesenchyme. Mech. Dev. 2008, 125, 797–808. [Google Scholar] [CrossRef]
- Vivatbutsiri, P.; Ichinose, S.; Hytonen, M.; Sainio, K.; Eto, K.; Iseki, S. Impaired meningeal development in association with apical expansion of calvarial bone osteogenesis in the Foxc1 mutant. J. Anat. 2008, 212, 603–611. [Google Scholar] [CrossRef]
- Angelov, D.N.; Vasilev, V.A. Morphogenesis of rat cranial meninges. A light- and electron-microscopic study. Cell Tissue Res. 1989, 257, 207–216. [Google Scholar] [CrossRef]
- Antila, S.; Karaman, S.; Nurmi, H.; Airavaara, M.; Voutilainen, M.H.; Mathivet, T.; Chilov, D.; Li, Z.; Koppinen, T.; Park, J.-H.; et al. Development and plasticity of meningeal lymphatic vessels. J. Exp. Med. 2017, 214, 3645–3667. [Google Scholar] [CrossRef]
- Harvey, S.C.; Burr, H.S. An experimental study of the origin of the meninges. Proc. Soc. Exp. Biol. Med. 1924, 22, 52–53. [Google Scholar] [CrossRef]
- Harvey, S.C.; Burr, H.S. The development of the meninges. Arch. Neurol. Psychiatry 1926, 15, 545–567. [Google Scholar] [CrossRef]
- Le Douarin, N. The Neural Crest; Cambridge University Press Inc.: Cambridge, UK; London, UK, 1982. [Google Scholar]
- Bagnall, K.M.; Higgins, S.J.; Sanders, E.J. The contribution made by cells from a single somite to tissues within a body segment and assessment of their integration with similar cells from adjacent segments. Development 1989, 107, 931–943. [Google Scholar] [CrossRef]
- Halata, Z.; Grim, M.; Christ, B. Origin of spinal cord meninges, sheaths of peripheral nerves, and cutaneous receptors including merkel cells, an experimental and ultrastructural study with avian chimeras. Anat. Embryol. 1990, 182, 529–537. [Google Scholar] [CrossRef]
- Le Lièvre, C. Contribution des Crêtes Neurales à la Genèse des Structures Céphaliques et Cervicales Chez les Oiseaux. Thèse d’Etat, University of Nantes, Nantes, France, 1976. [Google Scholar]
- Catala, M. Embryonic and fetal development of structures associated with the cerebro-spinal fluid in man and other species. Part I: The ventricular system, meninges and choroid plexuses. Arch. Anat. Cytol. Pathol. 1998, 46, 153–169. [Google Scholar]
- Kamiryo, T.; Orita, T.; Nishizaki, T.; Aoki, H. Development of the rat meninx: Experimental study using bromodeoxyuridine. Anat. Rec. 1990, 227, 207–210. [Google Scholar] [CrossRef]
- Couly, G.F.; Coltey, P.M.; Le Douarin, N.M. The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development 1992, 114, 1–15. [Google Scholar] [CrossRef]
- Couly, G.F.; Le Douarin, N.M. Mapping of the early neural primordium in quail-chick chimeras. II. The prosencephalic neural plate and neural folds: Implications for the genesis of cephalic human congenital abnormalities. Dev. Biol. 1987, 120, 198–214. [Google Scholar] [CrossRef]
- Soriano, P. Generalized lacZ expression with the ROSA26 Crereporter strain. Nat. Genet. 1999, 21, 70–71. [Google Scholar] [CrossRef]
- Jiang, X.; Iseki, S.; Maxson, R.E.; Sucov, H.M.; Morriss-Kay, G.M. Tissue origins and interactions in the mammalian skull vault. Dev. Biol. 2002, 241, 106–116. [Google Scholar] [CrossRef]
- Kume, T.; Deng, K.Y.; Winfrey, V.; Gould, D.B.; Walter, M.A.; Hogan, B.L.M. The forkhead/winged helix gene Mf1 is disrupted in the pleiotropic mouse mutation congenital hydrocephalus. Cell 1998, 93, 985–996. [Google Scholar] [CrossRef]
- Mishra, S.; Choe, Y.; Pleasure, S.J.; Siegenthaler, J.A. Cerebrovascular defects in Foxc1 mutants correlate with aberrant WNT and VEGF-A pathways downstream of retinoic acid from the meninges. Dev. Biol. 2016, 420, 148–165. [Google Scholar] [CrossRef] [PubMed]
- Gruneberg, H. The development of some external features in mouse embryos. J. Hered. 1943, 34, 89–92. [Google Scholar] [CrossRef]
- Inoue, T.; Ogawa, M.; Mikoshiba, K.; Aruga, J. Zic deficiency in the cortical marginal zone and meninges results in cortical lamination defects resembling those in type II lissencephaly. J. Neurosci. 2008, 28, 4712–4725. [Google Scholar] [CrossRef] [PubMed]
- Tischfield, M.A.; Robson, C.D.; Gilette, N.M.; Chim, S.M.; Sofela, F.A.; DeLisle, M.M.; Gelber, A.; Barry, B.J.; MacKinnon, S.; Dagi, L.R.; et al. Cerebral vein malformations result from loss of Twist1 expression and BMP signaling from skull progenitor cells and Dura. Dev. Cell 2017, 42, 445–461.e445. [Google Scholar] [CrossRef]
- Ito, Y.; Yeo, J.Y.; Chytil, A.; Han, J.; Bringas, P., Jr.; Nakajima, A.; Shuler, C.F.; Moses, H.L.; Chai, Y. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Development 2003, 130, 5269–5280. [Google Scholar] [CrossRef] [PubMed]
- Choe, Y.; Siegenthaler, J.A.; Pleasure, S.J. A cascade of morphogenic signaling initiated by the meninges controls corpus callosum formation. Neuron 2012, 73, 698–712. [Google Scholar] [CrossRef] [PubMed]
- Guenette, S.; Chang, Y.; Hiesberger, T.; Richardson, J.A.; Eckman, C.B.; Eckman, E.A.; Hammer, R.E.; Herz, J. Essential roles for the FE65 amyloid precursor protein-interacting proteins in brain development. EMBO J. 2006, 25, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Labelle-Dumais, C.; Dilworth, D.J.; Harrington, E.P.; de Leau, M.; Lyons, D.; Kabaeva, Z.; Manzini, M.C.; Dobyns, W.B.; A Walsh, C.; E Michele, D.; et al. COL4A1 mutations cause ocular dysgenesis, neuronal localization defects, and myopathy in mice and Walker-Warburg syndrome in humans. PLoS Genet. 2011, 7, e1002062. [Google Scholar] [CrossRef]
- Ferguson, J.W.; Atit, R.P. A tale of two cities: The genetic mechanisms governing calvarial bone development. Genesis 2018, 57, e23246. [Google Scholar] [CrossRef]
- Ishii, M.; Sun, J.; Ting, M.C.; Maxson, R.E. The development of the Calvarial bones and sutures and the pathophysiology of Craniosynostosis. Curr. Top. Dev. Biol. 2015, 115, 131–156. [Google Scholar] [CrossRef]
- Hobar, P.C.; Masson, J.A.; Wilson, R.; Zerwekh, J. The importance of the dura in craniofacial surgery. Plast. Reconstr. Surg. 1996, 98, 217–225. [Google Scholar] [CrossRef]
- Mabbutt, L.W.; Kokich, V.G. Calvarial and sutural re-development following craniectomy in the neonatal rabbit. J. Anat. 1979, 129 Pt 2, 413–422. [Google Scholar]
- Levine, J.P.; Bradley, J.P.; Roth, D.A.; McCarthy, J.G.; Longaker, M.T. Studies in cranial suture biology: Regional dura mater determines overlying suture biology. Plast. Reconstr. Surg. 1998, 101, 1441–1447. [Google Scholar] [CrossRef]
- Opperman, L.A.; Sweeney, T.M.; Redmon, J.; Persing, J.A.; Ogle, R.C. Tissue interactions with underlying dura mater inhibit osseous obliteration of developing cranial sutures. Dev. Dyn. 1993, 198, 312–322. [Google Scholar] [CrossRef]
- Kim, H.J.; Rice, D.P.; Kettunen, P.J.; Thesleff, I. FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development. Development 1998, 125, 1241–1251. [Google Scholar] [CrossRef]
- Lenton, K.A.; Nacamuli, R.P.; Wan, D.C.; Helms, J.A.; Longaker, M.T. Cranial suture biology. Curr. Top. Dev. Biol. 2005, 66, 287–328. [Google Scholar] [CrossRef]
- Levi, B.; Wan, D.C.; Wong, V.W.; Nelson, E.; Hyun, J.; Longaker, M.T. Cranial suture biology: From pathways to patient care. J. Craniofacial Surg. 2012, 23, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Spector, J.A.; Greenwald, J.A.; Warren, S.M.; Bouletreau, P.J.; Detch, R.C.; Fagenholz, P.J.; Crisera, F.E.; Longaker, M.T. Dura mater biology: Autocrine and paracrine effects of fibroblast growth factor 2. Plast. Reconstr. Surg. 2002, 109, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Warren, S.M.; Brunet, L.J.; Harland, R.M.; Economides, A.N.; Longaker, M.T. The BMP antagonist noggin regulates cranial suture fusion. Nature 2003, 422, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Deckelbaum, R.A.; Holmes, G.; Zhao, Z.C.; Tong, C.X.; Basilico, C.; Loomis, C.A. Regulation of cranial morphogenesis and cell fate at the neural crest-mesoderm boundary by engrailed 1. Development 2012, 139, 1346–1358. [Google Scholar] [CrossRef]
- Twigg, S.R.; Wilkie, A.O. A genetic-pathophysiological framework for craniosynostosis. Am. J. Hum. Genet. 2015, 97, 359–377. [Google Scholar] [CrossRef]
- Rice, R.; Rice, D.P.; Olsen, B.R.; Thesleff, I. Progression of calvarial bone development requires Foxc1 regulation of Msx2 and Alx4. Dev. Biol. 2003, 262, 75–87. [Google Scholar] [CrossRef]
- Visel, A.; Thaller, C.; Eichele, G. GenePaint.org: An atlas of gene expression patterns in the mouse embryo. Nucleic Acids Res. 2004, 32, D552–D556. [Google Scholar] [CrossRef]
- Maclean, G.; Dolle, P.; Petkovich, M. Genetic disruption of CYP26B1 severely affects development of neural crest derived head structures, but does not compromise hindbrain patterning. Dev. Dyn. 2009, 238, 732–745. [Google Scholar] [CrossRef]
- Etchevers, H.C.; Couly, G.; Vincent, C.; Le Douarin, N.M. Anterior cephalic neural crest is required for forebrain viability. Development 1999, 126, 3533–3543. [Google Scholar] [CrossRef] [PubMed]
- Borrell, V.; Marin, O. Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling. Nat. Neurosci. 2006, 9, 1284–1293. [Google Scholar] [CrossRef] [PubMed]
- Zarbalis, K.; Choe, Y.; Siegenthaler, J.A.; Orosco, L.A.; Pleasure, S.J. Meningeal defects alter the tangential migration of cortical interneurons in Foxc1hith/hith mice. Neural Dev. 2012, 7, 2. [Google Scholar] [CrossRef]
- Bagri, A.; Gurney, T.; He, X.; Zou, Y.R.; Littman, D.R.; Tessier-Lavigne, M.; Pleasure, S.J. The chemokine SDF1 regulates migration of dentate granule cells. Development 2002, 129, 4249–4260. [Google Scholar] [CrossRef] [PubMed]
- Choe, Y.; Huynh, T.; Pleasure, S.J. Migration of oligodendrocyte progenitor cells is controlled by transforming growth factor beta family proteins during corticogenesis. J. Neurosci. 2014, 34, 14973–14983. [Google Scholar] [CrossRef]
- Haushalter, C.; Schuhbaur, B.; Dolle, P.; Rhinn, M. Meningeal retinoic acid contributes to neocortical lamination and radial migration during mouse brain development. Biol. Open 2017, 6, 148–160. [Google Scholar] [CrossRef]
- Siegenthaler, J.A.; Pleasure, S.J. We have got you ‘covered’: How the meninges control brain development. Curr. Opin. Genet. Dev. 2011, 21, 249–255. [Google Scholar] [CrossRef]
- Chou, F.S.; Li, R.; Wang, P.S. Molecular components and polarity of radial glial cells during cerebral cortex development. Cell. Mol. Life Sci. 2018, 75, 1027–1041. [Google Scholar] [CrossRef]
- Zarbalis, K.; Siegenthaler, J.A.; Choe, Y.; May, S.R.; Peterson, A.S.; Pleasure, S.J. Cortical dysplasia and skull defects in mice with a Foxc1 allele reveal the role of meningeal differentiation in regulating cortical development. Proc. Natl. Acad. Sci. USA 2007, 104, 14002–14007. [Google Scholar] [CrossRef]
- Chatzi, C.; Cunningham, T.J.; Duester, G. Investigation of retinoic acid function during embryonic brain development using retinal dehyde rescued Rdh10 knockout mice. Dev. Dyn. 2013, 242, 1056–1065. [Google Scholar] [CrossRef]
- Choe, Y.; Kozlova, A.; Graf, D.; Pleasure, S.J. Bone Morphogenic protein signaling is a major determinant of dentate development. J. Neurosci. 2013, 33, 6766–6775. [Google Scholar] [CrossRef]
- Bonney, S.; Harrison-Uy, S.; Mishra, S.; MacPherson, A.M.; Choe, Y.; Li, D.; Jaminet, S.-C.; Fruttiger, M.; Pleasure, S.J.; Siegenthaler, J.A. Diverse functions of retinoic acid in brain vascular development. J. Neurosci. 2016, 36, 7786–7801. [Google Scholar] [CrossRef] [PubMed]
- Bifari, F.; Berton, V.; Pino, A.; Kusalo, M.; Malpeli, G.; Di Chio, M.; Bersan, E.; Amato, E.; Scarpa, A.; Krampera, M.; et al. Meninges harbor cells expressing neural precursor markers during development and adulthood. Front. Cell. Neurosci. 2015, 9, 383. [Google Scholar] [CrossRef] [PubMed]
- Bifari, F.; Decimo, I.; Chiamulera, C.; Bersan, E.; Malpeli, G.; Johansson, J.; Lisi, V.; Bonetti, B.; Fumagalli, G.; Pizzolo, G.; et al. Novel stem/progenitor cells with neuronal differentiation potential reside in the leptomeningeal niche. J. Cell. Mol. Med. 2009, 13, 3195–3208. [Google Scholar] [CrossRef]
- Bifari, F.; Decimo, I.; Pino, A.; Llorens-Bobadilla, E.; Zhao, S.; Lange, C.; Panuccio, G.; Boeckx, B.; Thienpont, B.; Vinckier, S.; et al. Neurogenic radial glia-like cells in meninges migrate and differentiate into functionally integrated neurons in the neonatal cortex. Cell Stem Cell 2017, 20, 360. [Google Scholar] [CrossRef] [PubMed]
- Devisme, L.; Bouchet, C.; Gonzales, M.; Alanio, E.; Bazin, A.; Bessieres, B.; Bigi, N.; Blanchet, P.; Bonneau, D.; Bonnières, M.; et al. Cobblestone lissencephaly: Neuropathological subtypes and correlations with genes of dystroglycanopathies. Brain 2012, 135 Pt 2, 469–482. [Google Scholar] [CrossRef]
- Verrotti, A.; Spalice, A.; Ursitti, F.; Papetti, L.; Mariani, R.; Castronovo, A.; Mastrangelo, M.; Iannetti, P. New trends in neuronal migration disorders. Eur. J. Paediatr. Neurol. 2010, 14, 1–12. [Google Scholar] [CrossRef]
- Imataka, G.; Yamanouchi, H.; Arisaka, O. Dandy-Walker syndrome and chromosomal abnormalities. Congenit. Anom. 2007, 47, 113–118. [Google Scholar] [CrossRef]
- Aldinger, K.A.; Lehmann, O.J.; Hudgins, L.; Chizhikov, V.V.; Bassuk, A.G.; Ades, L.C.; Krantz, I.D.; Dobyns, W.B.; Millen, K.J. FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation. Nat. Genet. 2009, 41, 1037–1042. [Google Scholar] [CrossRef]
- Haines, D.E.; Harkey, H.; Mefty, O. The “Subdural” Space: A New Look at an Outdated Concept. Neurosurgery 1993, 32, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Ziablov, V.I.; Shapovalov, I.; Toskin, K.D.; Tkach, V.; Zhebrovskiĭ, V.V. Structure and Physicomechanical Properties of the Human Dura Mater from the Age Aspect. Arkhiv Anat. Gistol. Embriol. 1982, 82, 29–36. [Google Scholar]
- Arbuckle, B.E. The Selected Writings of Beryl E. Arbuckle, DO, FACOP; American Academy of Osteopathy: Indianapolis, IN, USA, 1994; pp. 74–91. [Google Scholar]
- Hamann, M.C.; Sacks, M.S.; Malinin, T.I. Quantification of the Collagen Fibre Architecture of Human Cranial Dura Mater. J. Anat. 1998, 192, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Von Lanz, T. Über die Rückenmarkshäute. I. Die konstruktive Form der harten Haut des menschlichen Rückenmarkes und ihre Bänder. Wilhelm Roux’ Arch. Für Entwicklungsmechanik Der Org. 1929, 118, 252–307. [Google Scholar] [CrossRef]
- Westbrook, J. Anatomy of the Epidural Space. Anaesth. Intensive Care Med. 2012, 13, 551–554. [Google Scholar] [CrossRef]
- Rutten, H.; Szpak, K.; Van Mameren, H.; Ten Holter, J.; De Jong, J.C. Anatomic Relation between the Rectus Capitis Posterior Minor Muscle and the Dura Mater (Letter; Comment). Spine 1997, 22, 924–925. [Google Scholar] [CrossRef]
- Kahkeshani, K.; Ward, P.J. Connection between the Spinal Dura Mater and Suboccipital Musculature: Evidence for the Myodural Bridge and a Route for Its Dissection—A Review. Clin. Anat. 2012, 25, 415–422. [Google Scholar] [CrossRef]
- Hack, G.D.; Koritzer, R.T.; Robinson, W.L.; Hallgren, R.C.; Greenman, P.E. Anatomic Relation between the Rectus Capitis Posterior Minor Muscle and the Dura Mater. Spine 1995, 20, 2484–2485. [Google Scholar] [CrossRef]
- Pontell, M.E.; Scali, F.; Enix, D.; Battaglia, P.J.; Marshall, E. Histological Examination of the Human Obliquus Capitis Inferior Myodural Bridge. Ann. Anat. 2013, 195, 522–526. [Google Scholar] [CrossRef]
- Scali, F.; Pontell, M.E.; Welk, A.B.; Malmstrom, T.K.; Marshall, E.; Kettner, N.W. Magnetic Resonance Imaging Investigation of the Atlanto-Axial Interspace. Clin. Anat. 2012, 26, 444–449. [Google Scholar] [CrossRef]
- Scali, F.; Marsili, E.S.; Pontell, M.E. Anatomical Connection between the Rectus Capitis Posterior Major and the Dura Mater. Spine 2011, 36, E1612–E1614. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, B.K.; Kenin, S.; Hubbard, B.B.; Cramer, G.D. Investigation of Connective Tissue Attachments to the Cervical Spinal Dura Mater. Clin. Anat. 2003, 16, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Dean, N.A.; Mitchell, B.S. Anatomic Relation between the Nuchal Ligament (Ligamentum Nuchae) and the Spinal Dura Mater in the Craniocervical Region. Clin. Anat. 2002, 15, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Kubo, Y.; Waga, S.; Kojima, T.; Matsubara, T.; Kuga, Y.; Nakagawa, Y. Microsurgical Anatomy of the Lower Cervical Spine and Cord. Neurosurgery 1994, 34, 895–902. [Google Scholar] [CrossRef]
- Hayashi, K.; Yabuki, T.; Kurokawa, T.; Seki, H.; Hogaki, M.; Minoura, S. The Anterior and the Posterior Longitudinal Ligaments of the Lower Cervical Spine. J. Anat. 1977, 124, 633–636. [Google Scholar] [CrossRef]
- Shinomiya, K.; Dawson, J.; Spengler, D.M.; Konrad, P.; Blumenkopf, B. An Analysis of the Posterior Epidural Ligament Role on the Cervical Spine Cord. Spine 1996, 21, 2081–2088. [Google Scholar] [CrossRef]
- Loughenbury, P.R.; Wadhwani, S.; Soames, R.W. The Posterior Longitudinal Ligament and Peridural (Epi-dural) Membrane. Clin. Anat. 2006, 19, 487–492. [Google Scholar] [CrossRef]
- Rossitti, S. Biomechanics of the Pons-Cord Tract and Its Enveloping Structures: An Overview. Acta Neurochirugica 1993, 124, 144–152. [Google Scholar] [CrossRef]
- Breig, A. Adverse Mechanical Tension in the Central Nervous System: An Analysis of Cause and Effect; Relief by Functional Neurosurgery; John Wiley & Sons: New York, NY, USA, 1978. [Google Scholar]
- Sensenig, E.C. The Early Development of the Meninges of the Spinal Cord in Human Embryos. Contributions to Embryology, Carnegie Institution of Washington Publication, 611. 1951. Available online: https://embryology.med.unsw.edu.au/embryology/index.php?title=Paper_-_The_early_development_of_the_meninges_of_the_spinal_cord_in_human_embryos_(1951) (accessed on 10 September 2025).
- Rai, R.; Iwanaga, J.; Shokouhi, G.; Oskouian, R.J.; Tubbs, R.S. The Tentorium Cerebelli: A Comprehensive Review Including Its Anatomy, Embryology, and Surgical Techniques. Cureus 2018, 10, e3079. [Google Scholar] [CrossRef]
- Sensenig, E.C. The early development of the human vertebral column. Contr Embryol. 1949, 33, 21–42. [Google Scholar]
- Osaka, K.; Handad, H.; Matsumoto, S.; Yasuda, M. Development of the cerebrospinal fluid pathway in the normal and abnormal human development. Childs Brain 1980, 6, 26–38. [Google Scholar]
- Kido, D.K.; Gomez, D.G.; Pavese, A.M., Jr.; Potts, D.G. Human spinal arachnoid villi and granulations. Neuroradiology 1976, 11, 221–228. [Google Scholar] [CrossRef]
- Tencer, A.F.; Allen, B.L.; Ferguson, R.L. A biomechanical study of thoracolumbar spine fractures with bone in the canal. Part III. Mechanical properties of the dura and its tethering ligaments. Spine 1985, 10, 741–747. [Google Scholar] [CrossRef]
- Garceau, G.J. The filum terminal syndrome (The cord traction syndrome). J. Bone Jt. Surg. Am. 1953, 35-A, 711–716. [Google Scholar] [CrossRef]
- Hoffman, H.J.; Hendrick, E.B.; Humphreys, R. The tethered spinal cord: Its protean manifestations, diagnosis and surgical correction. Childs Brain 1976, 2, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Lazorthes, G.; Gouazé, A.; Djindjian, R. Vascularisation et Circulation de la Moelle Épinière, Anatomie, Physiologie, Pathologie, Angiographie; Masson Inc.: Paris, France, 1973. [Google Scholar]
- Pollay, M. The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid. Res. 2010, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Brierley, J.B.; Field, E.J. The connexions of the spinal sub-arachnoid space with the lymphatic. J. Anat. 1948, 82, 153–166. [Google Scholar] [PubMed]
- Ivanow, G.; Romodanowsky, K. Uber den anatomischen Zusammenhang der cerebralenund spinalen submeningealen Raume mit den Lymphsystem. Z. Gee Exp. Med. 1928, 58, 596–607. [Google Scholar]
- Foldi, M.; Csillik, B.; Zoltan, O.T. Lymphatic drainage of the brain. Experientia 1968, 24, 1283–1287. [Google Scholar] [CrossRef]
- Voelz, K.; Kondziella, D.; von Rautenfeld, D.B.; Brinker, T.; Ludemann, W. A ferritin tracer study of compensatory spinal CSF outflow pathways in kaolin-induced hydrocephalus. Acta Neuropathol. 2007, 113, 569–575. [Google Scholar] [CrossRef]
- Pan, W.; Banks, W.A.; Kastin, A.J. Permeability of the blood-brain and blood-spinal cord barriers to interferons. J. Neuroimmunol. 1997, 76, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Parkinson, D.; Del Bigio, M.R. Posterior “septum” of human spinal cord: Normal developmental variations, composition, and terminology. Anat. Rec. 1996, 244, 572–578. [Google Scholar] [CrossRef]
- Nicholas, D.S.; Weller, R.O. The fine anatomy of the human spinal meninges. A light and scanning electron microscopy study. J. Neurosurg. 1988, 69, 276–282. [Google Scholar] [CrossRef] [PubMed]
- McCabe, J.S.; Low, F.N. The subarachnoid angle: An area of transition in peripheral nerve. Anat. Rec. 1969, 164, 15–33. [Google Scholar] [CrossRef]
- Himango, W.A.; Low, F.N. The fine structure of a lateral recess of the subarachnoid space in the rat. Anat. Rec. 1971, 171, 1–19. [Google Scholar] [CrossRef]
- Elman, R. Spinal arachnoid granulations with special reference to the CSF. Bull. Johns. Hopkins Hosp. 1923, 34, 99–104. [Google Scholar]
- Welch, K.; Pollay, M. The spinal arachnoid villi of the monkeys cercopithecus aethiops and macaca irus. Anat. Rec. 1963, 145, 43–48. [Google Scholar] [CrossRef]
- Tubbs, R.S.; Hansasuta, A.; Stetler, W.; Kelly, D.R.; Blevins, D.; Humphrey, R.; Chua, G.D.; Shoja, M.M.; Loukas, M.; Oakes, W.J. Human spinal arachnoid villi revisited: Immunohistological study and review of the literature. J. Neurosurg. Spine 2007, 7, 328–331. [Google Scholar] [CrossRef]
- Marmarou, A.; Shulman, K.; LaMorgese, J. Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J. Neurosurg. 1975, 43, 523–534. [Google Scholar] [CrossRef]
- Clarot, F.; Callonnec, F.; Douvrin, F.; Hannequin, D.; Simonet, J.; Proust, B.; Thiébot, J. Giant cervical epidural veins after lumbar puncture in a case of intracranial hypotension. Am. J. Neuroradiol. 2000, 21, 787–789. [Google Scholar] [PubMed]
- Lasjaunias, P.; Berenstein, A. Surgical Neuro-Angiography. 3 Functional Vascular Anatomy of Brain, Spinal Cord and Spine; Springer Inc.: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Buffington, C.W.; Nichols, L.; Moran, P.L.; Blix, E.U. Direct connections between the spinal epidural space and the venous circulation in humans. Reg. Anesth. Pain. Med. 2011, 36, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Reina, M.A.; De Leon Casasola, O.; López, A.; De Andrés, J.A.; Mora, M.; Fernández, A. The origin of the spinal subdural space: Ultrastructure findings. Anesth. Analg. 2002, 94, 991–995. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, F.; Haddad, B. Lumbar and sacral cysts causing pain. J. Neurosurg. 1951, 8, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Holt, S.; Yates, P.O. Cervical nerve root cysts. Brain 1964, 87, 481–490. [Google Scholar] [CrossRef]
- Tarlov, I.M. Spinal perineurial and meningeal cysts. J. Neurol. Neurosurg. Psychiatry 1970, 33, 833–843. [Google Scholar] [CrossRef]
- Rexed, B.A.; Wennstrom, K.G. Arachnoidal proliferation and cystic formation in the spinal nerve-root pouches of man. J. Neurosurg. 1959, 16, 73–84. [Google Scholar] [CrossRef]
- Kao, C.C.; Uihlein, A.; Bickel, W.H.; Soule, E.H. Lumbar intraspinal extradural ganglion cyst. J. Neurosurg. 1968, 29, 168–172. [Google Scholar] [CrossRef]
- Kharytaniuk, N.; Cowley, P.; Sayal, P.; Eleftheriou, P.; Farmer, S.F.; Chan, E.; Bamiou, D.E.; Werring, D.J. Classical infratentorial superficial siderosis of the central nervous system: Pathophysiology, clinical features and management. Pract. Neurol. 2022, 22, 274–284. [Google Scholar] [CrossRef]
- Schievink, W.I. Spontaneous intracranial hypotension. N. Engl. J. Med. 2021, 385, 2173–2178. [Google Scholar] [CrossRef]
- Mokri, B.; Hunter, S.F.; Atkinson, J.L.; Piepgras, D.G. Orthostatic headaches caused by CSF leak but with normal CSF pressures. Neurology 1998, 51, 786–790. [Google Scholar] [CrossRef]
- Quencer, R.M.; Hawighorst, H. Fortschritte im Verständnis der Rückenmarkverletzungen. Klinik, Bildgebung, pathologische Korrelationen [Progress in understanding spinal cord injuries. Clinical aspects, imaging, pathological correlations]. Der Radiol. 2001, 41, 1029–1032. [Google Scholar] [CrossRef]
- Schievink, W.I. Spontaneous spinal cerebrospinal fluid leaks and intracranial hypotension. JAMA 2006, 295, 2286–2296. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Cohen-Gadol, A.A.; Wright, R.A.; Miller, G.M.; Piepgras, D.G.; Ahlskog, J.E. Superficial siderosis. Neurology 2006, 66, 1144–1152. [Google Scholar] [CrossRef] [PubMed]
- Morishima, R.; Takai, K.; Ando, T.; Nakata, Y.; Shimizu, T.; Taniguchi, M. Brachial multisegmental amyotrophy caused by cervical anterior horn cell disorder associated with a spinal CSF leak: A report of five cases. J. Neurol. 2019, 266, 2679–2684. [Google Scholar] [CrossRef] [PubMed]
- Dobrocky, T.; Nicholson, P.; Häni, L.; Mordasini, P.; Krings, T.; Brinjikji, W.; Cutsforth-Gregory, J.K.; Schär, R.; Schankin, C.; Gralla, J.; et al. Spontaneous intracranial hypotension: Searching for the CSF leak. Lancet Neurol. 2022, 21, 369–380. [Google Scholar] [CrossRef]
- Schievink, W.I.; Schwartz, M.S.; Maya, M.M.; Moser, F.G.; Rozen, T.D. Lack of causal association between spontaneous intracranial hypotension and cranial cerebrospinal fluid leaks. J. Neurosurg. 2012, 116, 749–754. [Google Scholar] [CrossRef]
- HIS Classification ICH-3. Headache Attributed to Spontaneous Intracranial Hypotension. ICHD-3. Available online: https://ichd-3.org/7-headache-attributed-to-non-vascular-intracranial-disorder/7-2-headache-attributed-to-low-cerebrospinal-fluid-pressure/7-2-3-headache-attributed-to-spontaneous-intracranial-hypotension/ (accessed on 10 September 2025).
- Schievink, W.I.; Maya, M.; Moser, F.; Nuño, M. Long-term Risks of Persistent Ventral Spinal CSF Leaks in SIH: Superficial Siderosis and Bibrachial Amyotrophy. Neurology 2021, 97, e1964–e1970. [Google Scholar] [CrossRef]
- Mihaylova, T.; Biondo, A.; Zak, I.; Lewis, R.A. Anteriorn horn cell loss from subdural hygroma: A consequence of spontaneous spinal fluid leak. J. Neurol. Sci. 2011, 305, 156–159. [Google Scholar] [CrossRef]
- Deluca, G.C.; Boes, C.J.; Krueger, B.R.; Mokri, B.; Kumar, N. Ventral intraspinal fluid-filled collection secondary to CSF leak presenting as bibrachial amyotrophy. Neurology 2011, 76, 1439–1440. [Google Scholar] [CrossRef]
- Schievink, W.I.; Chu, R.M.; Maya, M.M.; Johnson, J.P.; Cohen, H.C.M. Spinal manifestations of spontaneous intracranial hypotension. J. Neurosurg. Spine 2013, 18, 96–101. [Google Scholar] [CrossRef]
- Fearnley, J.M.; Stevens, J.M.; Rudge, P. Superficial siderosis of the central nervous system. Brain 1995, 118 Pt 4, 1051–1066. [Google Scholar] [CrossRef]
- Quattrocchi, S.; Bonan, L.; Cirillo, L.; Avoni, P.; Di Stasi, V.; Rizzo, G.; Liguori, R.; Vacchiano, V. Bibrachial amyotrophy as a rare mani¬festation of intraspinal fluid collection: A case report and systematic review. Neurol. Sci. 2023, 45, 2279–2288. [Google Scholar] [CrossRef]
- Brus-Ramer, M.; Dillon, W.P. Idiopathic thoracic spinal cord herniation: Retrospective analysis supporting a mechanism of diskogenic dural injury and subsequent tamponade. Am. J. Neuroradiol. 2012, 33, 52–56. [Google Scholar] [CrossRef]
- Ulrich, C.T.; Fung, C.; Piechowiak, E.; Gralla, J.; Raabe, A.; Beck, J. Disc herniation, occult on preoperative imaging but visualized microsurgically, as the cause of idiopathic thoracic spinal cord herniation. Acta Neurochir. 2018, 160, 467–470. [Google Scholar] [CrossRef] [PubMed]
- Vishteh, A.G.; Schievink, W.I.; Baskin, J.J.; Sonntag, V.K. Cervical bone spur presenting with spontaneous intracranial hypotension: Case report. J. Neurosurg. 1998, 89, 483–484. [Google Scholar] [CrossRef] [PubMed]
- Beck, J.; Ulrich, C.T.; Fung, C.; Fichtner, J.; Seidel, K.; Fiechter, M.; Hsieh, K.; Murek, M.; Bervini, D.; Meier, N.; et al. Diskogenic microspurs as a major cause of intractable spontaneous intracranial hypotension. Neurology 2016, 87, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Schievink, W.I.; Wasserstein, P.; Maya, M.M. Intraspinal hemorrhage in spontaneous intracranial hypotension: Link to superficial siderosis? Report of 2 cases. J. Neurosurg. Spine 2016, 24, 454–456. [Google Scholar] [CrossRef]
- Groen, R.J.M.; Lukassen, J.N.M.; Boer, G.J.; Vergeer, R.A.; Coppes, M.H.; Drost, G.; Middel, B. Anterior Thoracic Spinal Cord Herniation: Surgical Treatment and Postoperative Course. An Individual Participant Data Meta-Analysis of 246 Cases. World Neurosurg. 2019, 123, 453–463.e15. [Google Scholar] [CrossRef]
- Bhatia, K.; Madhavan, A.; Coutinho, C.; Mathur, S. Idiopathic spinal cord herniation. Clin. Radiol. 2020, 75, 721–729. [Google Scholar] [CrossRef]
- van Dun, P.L.S.; Girardin, M.R.G. Embryological study of the spinal dura and its attachment into the vertebral canal. Int. J. Osteopath. Med. 2006, 9, 85–93. [Google Scholar] [CrossRef]
- Reardon, M.A.; Raghavan, P.; Carpenter-Bailey, K.; Mukherjee, S.; Smith, J.S.; Matsumoto, J.A.; Yen, C.P.; Shaffrey, M.E.; Lee, R.R.; Shaffrey, C.I.; et al. Dorsal thoracic arachnoid web and the “scalpel sign”: A distinct clinical-radiologic entity. Am. J. Neuroradiol. 2013, 34, 1104–1110. [Google Scholar] [CrossRef]
- Ben Ali, H.; Hamilton, P.; Zygmunt, S.; Yakoub, K.M. Spinal arachnoid web—A review article. J. Spine Surg. 2018, 4, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, A.; Heilman, C.B. Transverse dorsal arachnoid web and syringomyelia: Case report. Neurosurgery 2009, 65, E216–E217; discussion E217. [Google Scholar] [CrossRef] [PubMed]
- Paramore, C.G. Dorsal arachnoid web with spinal cord compression: Variant of an arachnoid cyst? Report of two cases. J. Neurosurg. 2000, 93, 287–290. [Google Scholar] [CrossRef]
- Arai, A.; Aihara, H.; Miyake, S.; Hanada, Y.; Kohmura, E. Syringomyelia due to thoracic spinal stenosis with ossified ligamentum flavum—Case report. Neurol. Med. Chir. 2011, 51, 157–159. [Google Scholar] [CrossRef][Green Version]
- Chang, H.S.; Nagai, A.; Oya, S.; Matsui, T. Dorsal spinal arachnoid web diagnosed with the quantitative measurement of cerebrospinal fluid flow on magnetic resonance imaging. J. Neurosurg. Spine 2014, 20, 227–233. [Google Scholar] [CrossRef]
- Aiyer, R.; El-Sherif, Y.; Voutsinas, L. Dorsal thoracic arachnoid web presenting as neuropathic pain: ‘Scalpel’ sign found on MRI. Neuroradiol. J. 2016, 29, 393–395. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Hida, K.; Takeda, M.; Mitsuhara, T.; Morishige, M.; Yamada, N.; Kurisu, K. Visualization of regional cerebrospinal fluid flow with a dye injection technique in focal arachnoid pathologies. J. Neurosurg. Spine 2015, 22, 554–557. [Google Scholar] [CrossRef]
- Abou-Fakhr, F.S.; Kanaan, S.V.; Youness, F.M.; Hourani, M.H.; Haddad, M.C. Thoracic spinal intradural arachnoid cyst: Report of two cases and review of literature. Eur. Radiol. 2002, 12, 877–882. [Google Scholar] [CrossRef]
- Mohindra, S.; Gupta, R.; Bal, A. Intra-dural spinal arachnoid cysts: A short series of 10 patients. Br. J. Neurosurg. 2010, 24, 679–683. [Google Scholar] [CrossRef]
- Sklar, E.; Quencer, R.M.; Green, B.A.; Montalvo, B.M.; Post, M.J. Acquired spinal subarachnoid cysts: Evaluation with MR, CT myelography, and intraoperative sonography. Am. J. Neuroradiol. 1989, 10, 1097–1104. [Google Scholar] [CrossRef]
- Srinivasan, V.M.; Fridley, J.S.; Thomas, J.G.; Omeis, I. Nuances in Localization and Surgical Treatment of Syringomyelia Associated with Fenestrated and Webbed Intradural Spinal Arachnoid Cyst: A Retrospective Analysis. World Neurosurg. 2016, 87, 176–186. [Google Scholar] [CrossRef]
- Greitz, D. Unraveling the riddle of syringomyelia. Neurosurg. Rev. 2006, 29, 251–263; discussion 264. [Google Scholar] [CrossRef] [PubMed]
- Ruschel, L.G.; Agnoletto, G.J.; Aurich, L.A.; Vosgerau, R.P. Dorsal Arachnoid Web and Scalpel Sign: A Diagnostic Imaging Entity. Turk. Neurosurg. 2018, 28, 689–690. [Google Scholar] [CrossRef] [PubMed]
| Issues | Features |
|---|---|
| Neural Crest Contributions | Neural crest-derived cells from the caudal forebrain and midbrain contribute to the forebrain meninges; mesoderm-derived cells form the midbrain and hindbrain meninges [19,25,26]. |
| Endothelial Cell Origin | Endothelial cells in all meningeal regions are of mesoderm origin [19]. |
| Histological Findings | Cranial meninges originate from both neural crest (ectoderm) and mesoderm, specifically the prechordal plate and paraxial mesoderm [11]. |
| Lineage Tracing in Mice | Cre-loxP technology allows for the tracing of specific cell populations [27]. Studies show neural crest cells populate forebrain meninges but not midbrain or hindbrain [28]. |
| Mesp1-Cre Findings | Mesp1-Cre indicates midbrain and hindbrain meninges are of mesoderm origin, while forebrain meninges come from neural crest [13]. |
| Molecular Regulation | Poorly understood. |
| Foxc1 Gene | Key transcription factor in meningeal development; expressed throughout the primary meninx [29,30]. Linked to congenital hydrocephalus via a mutation, causing severe meningeal defects [31]. |
| Foxc1 Mutants | Show compact meningeal mesenchyme and loss of arachnoid and dura mater differentiation [14]. |
| Zic Family Genes | Zic1 and Zic3 expressed in meninges; double mutation reduces meningeal fibroblast proliferation and disrupts pial basement membrane [32]. |
| Twist1 Gene | A transcription factor involved in meningeal development; deletion causes hypoplasia of dura and arachnoid mater [33]. |
| TGFβ Signaling | Required for normal meningeal development; Tgfbr2 deletion results in failure of forebrain meningeal development [34]. |
| WNT/β-Catenin Signaling | Promotes cell proliferation in meningeal layer; excessive RA leads to thin meninges [28,35]. |
| Gene Disruptions | ECM or cell adhesion genes (e.g., Apbb1, Col4a1) disrupt pial basement membrane; essential for structural integrity rather than developmental regulation [36,37]. |
| Issues | Features |
|---|---|
| Calvaria Composition | Five bones: a pair of frontal bones, a pair of parietal bones, and an interparietal bone, joined by soft connective tissue (sutural tissue) [38,39]. |
| Development Origin | It develops from the mesenchyme that envelops the brain, with progenitor cells present in the primary meninx. The calvaria has a dual origin: the frontal bone primarily arises from neural crest cells, while the parietal bone is entirely derived from mesodermal cells [13,40]. |
| Dura Mater Role | The outer layer of the dura mater acts as the periosteum on the inner surface of the calvarial bone. Surgical interventions have demonstrated that the dura mater is essential for re-ossification and for maintaining the patency of cranial sutures [40,41,42,43]. |
| Molecular Interactions | Various secreted molecules, such as TGFβ, FGF, and BMP, are expressed in the dura mater and play a role in mediating interactions with the calvaria [44,45,46,47,48]. |
| Early Development Interactions | Early interactions between the meninges and the calvaria are not as extensively studied; however, evidence suggests a correlation between normal development and mutant phenotypes. The dural limiting layer is observed to appear at stage 17 in humans [14,19]. |
| Calvarial Growth Correlation | Frontal and parietal bones arise from mesenchyme on the basolateral side of the brain and expand apically around ~E12.5 in mice, correlating with the dural limiting layer [38,39,49,50]. |
| Foxc1 Mutants Findings | Foxc1 mutants (Foxc1ch/ch and Foxc1lacZ/lacZ) exhibit severe meningeal defects and absent calvarial bone on the apical side at birth. Calvarial development is arrested at E13.5, indicating Foxc1’s role in calvarial growth [29,51]. |
| Tgfbr2 Knockout Findings | Neural crest-specific Tgfbr2 knockout mutants exhibit significant meningeal and calvarial defects, highlighting that Tgfbr2 regulates the development of the parietal bone in a cell non-autonomous manner [34]. |
| Retinoic Acid (RA) Treatment | Treatment with RA in mouse embryos resulted in meningeal defects and a partial to complete loss of parietal and interparietal bones at E17.5 [28]. RA is known to upregulate anti-osteogenic genes, which inhibit osteogenic specification in calvarial mesenchyme [38]. |
| Cyp26b1 Enzyme Role | Calvarial mesenchyme expresses RA-degrading enzyme Cyp26b1 at E14.5, and inactivation leads to severe hypoplasia of calvarial bone [52,53]. |
| Type of Artery | Quantity per Spinal Nerve | Description |
|---|---|---|
| Short Arteries | 5 to 10 | Supply the dural sheath of the corresponding nerve root. |
| Medium Arteries | 2 or 3 | Follow either the cranial or caudal aspect of the nerve root sheath, branching into a vertical branch (upward or downward) or two transverse branches (ventral and dorsal), providing blood to the dural sheath of the nerve roots and the adjacent spinal dura mater. |
| Long Arteries | 1 or 2 | Travel medially along the spinal nerve sheath and bifurcate into terminal branches that irrigate the spinal dura mater, including vertical (cranial and caudal), transverse (dorsal), ventrocranial, and ventrocaudal branches. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zedde, M.; Pascarella, R. Duropathies: A Narrative Overview of a Neglected Concept—Part One: Anatomical, Embryological, and Pathophysiological Elements. NeuroSci 2025, 6, 115. https://doi.org/10.3390/neurosci6040115
Zedde M, Pascarella R. Duropathies: A Narrative Overview of a Neglected Concept—Part One: Anatomical, Embryological, and Pathophysiological Elements. NeuroSci. 2025; 6(4):115. https://doi.org/10.3390/neurosci6040115
Chicago/Turabian StyleZedde, Marialuisa, and Rosario Pascarella. 2025. "Duropathies: A Narrative Overview of a Neglected Concept—Part One: Anatomical, Embryological, and Pathophysiological Elements" NeuroSci 6, no. 4: 115. https://doi.org/10.3390/neurosci6040115
APA StyleZedde, M., & Pascarella, R. (2025). Duropathies: A Narrative Overview of a Neglected Concept—Part One: Anatomical, Embryological, and Pathophysiological Elements. NeuroSci, 6(4), 115. https://doi.org/10.3390/neurosci6040115

