Enhancing Neural Efficiency in Competitive Golfers: Effects of Slow Cortical Potential Neurofeedback on Modulation of Beta Activity—An Exploratory Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Slow Cortical Potential Determination
2.3. Beta Band Recording and Analysis
2.4. Intervention
2.5. Electrode Montage
2.6. Signal Processing
2.7. Procedure
2.8. Sessions
2.9. Statistical Analysis
3. Results
3.1. Demographic Characteristics
3.2. Slow Cortical Potentials
3.3. Beta Waves
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
SCP | Slow cortical potential |
References
- Pan, X.; Soh, K.G.; Jaafar, W.M.W.; Soh, K.L.; Deng, N.; Cao, S.; Li, M.; Liu, H. Mental Fatigue in Golf: A Systematic Review. PLoS ONE 2025, 20, e0310403. [Google Scholar] [CrossRef]
- Short, T. The Pursuit of Peak Athletic Performance. Top. Exerc. Sci. Kinesiol. 2023, 4, 3. [Google Scholar]
- Carey, L.M.; Alexandrou, G.; Ladouce, S.; Kourtis, D.; Berchicci, M.; Hunter, A.M.; Donaldson, D.I. Commit to Your Putting Stroke: Exploring the Impact of Quiet Eye Duration and Neural Activity on Golf Putting Performance. Front. Psychol. 2024, 15, 1424242. [Google Scholar] [CrossRef] [PubMed]
- Gnagy, E.; Dixon, M.; Clingerman, E.; Bartholomew, J. An Exploration of Strategic Decision Making in Golf: Take a Chance, It’s Worth the Risk. Int. J. Golf. Sci. 2015, 4, 89–109. [Google Scholar] [CrossRef]
- Chen, T.T.; Wang, K.P.; Cheng, M.Y.; Chang, Y.T.; Huang, C.J.; Hung, T.M. Impact of Emotional and Motivational Regulation on Putting Performance: A Frontal Alpha Asymmetry Study. PeerJ 2019, 2019, e6777. [Google Scholar] [CrossRef]
- Christensen, D.S.; Smith, R.E. Psychological Coping Skills as Predictors of Collegiate Golf Performance: Social Desirability as a Suppressor Variable. Sport Exerc. Perform. Psychol. 2016, 5, 67–80. [Google Scholar] [CrossRef]
- Li, L.; Smith, D.M. Neural Efficiency in Athletes: A Systematic Review. Front. Behav. Neurosci. 2021, 15, 698555. [Google Scholar] [CrossRef]
- Yarrow, K.; Brown, P.; Krakauer, J.W. Inside the Brain of an Elite Athlete: The Neural Processes That Support High Achievement in Sports. Nat. Rev. Neurosci. 2009, 10, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.T.; Wang, K.P.; Huang, C.J.; Hung, T.M. Nonlinear Refinement of Functional Brain Connectivity in Golf Players of Different Skill Levels. Sci. Rep. 2022, 12, 2365. [Google Scholar] [CrossRef] [PubMed]
- Bertollo, M.; Di Fronso, S.; Filho, E.; Conforto, S.; Schmid, M.; Bortoli, L.; Comani, S.; Robazza, C. Proficient Brain for Optimal Performance: The MAP Model Perspective. PeerJ 2016, 2016, e2082. [Google Scholar] [CrossRef]
- Wang, K.P.; Cheng, M.Y.; Chen, T.T.; Huang, C.J.; Schack, T.; Hung, T.M. Elite Golfers Are Characterized by Psychomotor Refinement in Cognitive-Motor Processes. Psychol. Sport. Exerc. 2020, 50, 101739. [Google Scholar] [CrossRef]
- Wang, K.P.; Cheng, M.Y.; Chen, T.T.; Lin, K.H.; Huang, C.J.; Schack, T.; Hung, T.M. Successful Motor Performance of a Difficult Task: Reduced Cognitive-Motor Coupling. Sport. Exerc. Perform. Psychol. 2021, 11, 174–184. [Google Scholar] [CrossRef]
- Gong, A.; Gu, F.; Nan, W.; Qu, Y.; Jiang, C.; Fu, Y. A Review of Neurofeedback Training for Improving Sport Performance From the Perspective of User Experience. Front. Neurosci. 2021, 15, 638369. [Google Scholar] [CrossRef]
- Hammond, D.C. What Is Neurofeedback: An Update. J. Neurother. 2011, 15, 305–336. [Google Scholar] [CrossRef]
- Rydzik, Ł.; Wąsacz, W.; Ambroży, T.; Javdaneh, N.; Brydak, K.; Kopańska, M. The Use of Neurofeedback in Sports Training: Systematic Review. Brain Sci. 2023, 13, 660. [Google Scholar] [CrossRef]
- Tosti, B.; Corrado, S.; Mancone, S.; Di Libero, T.; Carissimo, C.; Cerro, G.; Rodio, A.; da Silva, V.F.; Coimbra, D.R.; Andrade, A.; et al. Neurofeedback Training Protocols in Sports: A Systematic Review of Recent Advances in Performance, Anxiety, and Emotional Regulation. Brain Sci. 2024, 14, 1036. [Google Scholar] [CrossRef] [PubMed]
- Brito, M.A.d.; Fernandes, J.R.; Esteves, N.S.A.; Müller, V.T.; Alexandria, D.B.; Pérez, D.I.V.; Slimani, M.; Brito, C.J.; Bragazzi, N.L.; Miarka, B. The Effect of Neurofeedback on the Reaction Time and Cognitive Performance of Athletes: A Systematic Review and Meta-Analysis. Front. Hum. Neurosci. 2022, 16, 868450. [Google Scholar] [CrossRef] [PubMed]
- Ros, T.; Enriquez-Geppert, S.; Zotev, V.; Young, K.D.; Wood, G.; Whitfield-Gabrieli, S.; Wan, F.; Vuilleumier, P.; Vialatte, F.; Van De Ville, D.; et al. Consensus on the Reporting and Experimental Design of Clinical and Cognitive-Behavioural Neurofeedback Studies (CRED-Nf Checklist). Brain 2020, 143, 1674–1685. [Google Scholar] [CrossRef]
- Gruzelier, J.H. EEG-Neurofeedback for Optimising Performance. I: A Review of Cognitive and Affective Outcome in Healthy Participants. Neurosci. Biobehav. Rev. 2014, 44, 124–141. [Google Scholar] [CrossRef]
- Vernon, D.J. Can Neurofeedback Training Enhance Performance? An Evaluation of the Evidence with Implications for Future Research. Appl. Psychophysiol. Biofeedback 2005, 30, 347–364. [Google Scholar] [CrossRef]
- Gevensleben, H.; Albrecht, B.; Lütcke, H.; Auer, T.; Dewiputri, W.I.; Schweizer, R.; Moll, G.; Heinrich, H.; Rothenberger, A. Neurofeedback of Slow Cortical Potentials: Neural Mechanisms and Feasibility of a Placebo-Controlled Design in Healthy Adults. Front. Hum. Neurosci. 2014, 8, 990. [Google Scholar] [CrossRef] [PubMed]
- Mayer, K.; Blume, F.; Wyckoff, S.N.; Brokmeier, L.L.; Strehl, U. Neurofeedback of Slow Cortical Potentials as a Treatment for Adults with Attention Deficit-/Hyperactivity Disorder. Clin. Neurophysiol. 2016, 127, 1374–1386. [Google Scholar] [CrossRef]
- Birbaumer, N.; Elbert, T.; Canavan, A.G.M.; Rockstroh, B. Slow Potentials of the Cerebral Cortex and Behavior. Physiol. Rev. 1990, 70, 1–41. [Google Scholar] [CrossRef]
- Strehl, U. Slow Cortical Potentials Neurofeedback. J. Neurother. 2009, 13, 117–126. [Google Scholar] [CrossRef]
- Wu, J.H.; Chueh, T.Y.; Yu, C.L.; Wang, K.P.; Kao, S.C.; Gentili, R.J.; Hatfield, B.D.; Hung, T.M. Effect of a single session of sensorimotor rhythm neurofeedback training on the putting performance of professional golfers. Scand. J. Med. Sci. Sports 2024, 34, e14540. [Google Scholar] [CrossRef] [PubMed]
- Haegens, S.; Cousijn, H.; Wallis, G.; Harrison, P.J.; Nobre, A.C. Inter- and Intra-Individual Variability in Alpha Peak Frequency. Neuroimage 2014, 92, 46–55. [Google Scholar] [CrossRef]
- Chandrasekaran, C.; Bray, X.E.; Shenoy, K.V. Frequency Shifts and Depth Dependence of Premotor Beta Band Activity during Perceptual Decision-Making. J. Neurosci. 2019, 39, 1420–1435. [Google Scholar] [CrossRef]
- Machado, M.; Fonseca, R.; Zanchetta, G.; Amoroso, C.; Vasconcelos, A.; Costa, É.; Nicoliche, E.; Gongora, M.; Orsini, M.; Vicente, R.; et al. Absolute Beta Power in Exercisers and Nonexercisers in Preparation for the Oddball Task. Arq. Neuropsiquiatr. 2024, 82, s00441791518. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Huang, C.J.; Chang, Y.K.; Koester, D.; Schack, T.; Hung, T.M. Sensorimotor Rhythm Neurofeedback Enhances Golf Putting Performance. J. Sport. Exerc. Psychol. 2015, 37, 626–636. [Google Scholar] [CrossRef]
- Meier, N.M.; Perrig, W.; Koenig, T. Is Excessive Electroencephalography Beta Activity Associated with Delinquent Behavior in Men with Attention-Deficit Hyperactivity Disorder Symptomatology? Neuropsychobiology 2015, 70, 210–219. [Google Scholar] [CrossRef]
- Engel, A.K.; Fries, P. Beta-Band Oscillations-Signalling the Status Quo? Curr. Opin. Neurobiol. 2010, 20, 156–165. [Google Scholar] [CrossRef]
- Egner, T.; Gruzelier, J.H. EEG Biofeedback of Low Beta Band Components: Frequency-Specific Effects on Variables of Attention and Event-Related Brain Potentials. Clin. Neurophysiol. 2004, 115, 131–139. [Google Scholar] [CrossRef]
- Gola, M.; Magnuski, M.; Szumska, I.; Wróbel, A. EEG Beta Band Activity Is Related to Attention and Attentional Deficits in the Visual Performance of Elderly Subjects. Int. J. Psychophysiol. 2013, 89, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Gola, M.; Kamiński, J.; Brzezicka, A.; Wróbel, A. Beta Band Oscillations as a Correlate of Alertness—Changes in Aging. Int. J. Psychophysiol. 2012, 85, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, A.C.; Fink, A. Intelligence and Neural Efficiency. Neurosci. Biobehav. Rev. 2009, 33, 1004–1023. [Google Scholar] [CrossRef] [PubMed]
- Gamaiunova, L.; Kreibig, S.D.; Dan-Glauser, E.; Pellerin, N.; Brandt, P.Y.; Kliegel, M. Effects of Two Mindfulness Based Interventions on the Distinct Phases of the Stress Response across Different Physiological Systems. Biol. Psychol. 2022, 172, 108384. [Google Scholar] [CrossRef]
- Panjeh, S.; Nordahl-Hansen, A.; Cogo-Moreira, H. Establishing New Cutoffs for Cohen’s d: An Application Using Known Effect Sizes from Trials for Improving Sleep Quality on Composite Mental Health. Int. J. Methods Psychiatr. Res. 2023, 32, e1969. [Google Scholar] [CrossRef]
- Fingelkurts, A.A. Quantitative Electroencephalogram (QEEG) as a Natural and Non-Invasive Window into Living Brain and Mind in the Functional Continuum of Healthy and Pathological Conditions. Appl. Sci. 2022, 12, 9560. [Google Scholar] [CrossRef]
- Kulkarni, N.N.; Bairagi, V.K. Electroencephalogram Based Diagnosis of Alzheimer Disease. In Proceedings of the 2015 IEEE 9th International Conference on Intelligent Systems and Control, ISCO 2015, Coimbatore, India, 9–10 January 2015. [Google Scholar] [CrossRef]
- Pérez-Elvira, R.; Oltra-Cucarella, J.; Carrobles, J.A.; Moltó, J.; Flórez, M.; Parra, S.; Agudo, M.; Saez, C.; Guarino, S.; Costea, R.M.; et al. Enhancing the Effects of Neurofeedback Training: The Motivational Value of the Reinforcers. Brain Sci. 2021, 11, 457. [Google Scholar] [CrossRef]
- Neuper, C.; Pfurtscheller, G. Event-Related Dynamics of Cortical Rhythms: Frequency-Specific Features and Functional Correlates. Int. J. Psychophysiol. 2001, 43, 41–58. [Google Scholar] [CrossRef]
- Vickers, J.N. Advances in Coupling Perception and Action: The Quiet Eye as a Bidirectional Link between Gaze, Attention, and Action. Prog. Brain Res. 2009, 174, 279–288. [Google Scholar] [CrossRef]
- Baumeister, R.F. Choking under Pressure: Self-Consciousness and Paradoxical Effects of Incentives on Skillful Performance. J. Pers. Soc. Psychol. 1984, 46, 610–620. [Google Scholar] [CrossRef]
- Beaty, R.E.; Benedek, M.; Barry Kaufman, S.; Silvia, P.J. Default and Executive Network Coupling Supports Creative Idea Production. Sci. Rep. 2015, 5, 10964. [Google Scholar] [CrossRef]
- Thatcher, R.W.; Walker, R.A.; Giudice, S. Human Cerebral Hemispheres Develop at Different Rates and Ages. Science (1979) 1987, 236, 1110–1113. [Google Scholar] [CrossRef]
- Nyberg, L.; Cabeza, R.; Tulving, E. PET Studies of Encoding and Retrieval: The HERA Model. Psychon. Bull. Rev. 1996, 3, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Thatcher, R.W.; Walker, R.A.; Biver, C.J.; North, D.N.; Curtin, R. Quantitative EEG Normative Databases: Validation and Clinical Correlation. J. Neurother. 2003, 7, 87–121. [Google Scholar] [CrossRef]
- Studer, P.; Kratz, O.; Gevensleben, H.; Rothenberger, A.; Moll, G.H.; Hautzinger, M.; Heinrich, H. Slow Cortical Potential and Theta/Beta Neurofeedback Training in Adults: Effects on Attentional Processes and Motor System Excitability. Front. Hum. Neurosci. 2014, 8, 555. [Google Scholar] [CrossRef]
- Strehl, U.; Leins, U.; Goth, G.; Klinger, C.; Hinterberger, T.; Birbaumer, N. Self-Regulation of Slow Cortical Potentials: A New Treatment for Children With Attention-Deficit/Hyperactivity Disorder. Pediatrics 2006, 118, e1530–e1540. [Google Scholar] [CrossRef]
- Croft, R.J.; Barry, R.J. Removal of Ocular Artifact from the EEG: A Review. Neurophysiol. Clin./Clin. Neurophysiol. 2000, 30, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Tallgren, P.; Vanhatalo, S.; Kaila, K.; Voipio, J. Evaluation of Commercially Available Electrodes and Gels for Recording of Slow EEG Potentials. Clin. Neurophysiol. 2005, 116, 799–806. [Google Scholar] [CrossRef]
- Kappenman, E.S.; Luck, S.J. The Effects of Electrode Impedance on Data Quality and Statistical Significance in ERP Recordings. Psychophysiology 2010, 47, 888–904. [Google Scholar] [CrossRef]
- Neubauer, A.C.; Fink, A. Intelligence and Neural Efficiency: Measures of Brain Activation versus Measures of Functional Connectivity in the Brain. Intelligence 2009, 37, 223–229. [Google Scholar] [CrossRef]
- Ring, C.; Cooke, A.; Kavussanu, M.; McIntyre, D.; Masters, R. Investigating the Efficacy of Neurofeedback Training for Expediting Expertise and Excellence in Sport. Psychol. Sport. Exerc. 2015, 16, 118–127. [Google Scholar] [CrossRef]
- Doppelmayr, M.; Weber, E. Effects of SMR and Theta/Beta Neurofeedback on Reaction Times, Spatial Abilities, and Creativity. J. Neurother. 2011, 15, 115–129. [Google Scholar] [CrossRef]
- Loze, G.M.; Collins, D.; Holmes, P.S. Pre-Shot EEG Alpha-Power Reactivity during Expert Air-Pistol Shooting: A Comparison of Best and Worst Shots. J. Sports Sci. 2001, 19, 727–733. [Google Scholar] [CrossRef]
- Hinterberger, T.; Kübler, A.; Kaiser, J.; Neumann, N.; Birbaumer, N. A Brain-Computer Interface (BCI) for the Locked-in: Comparison of Different EEG Classifications for the Thought Translation Device. Clin. Neurophysiol. 2003, 114, 416–425. [Google Scholar] [CrossRef]
- Klimesch, W. Alpha-Band Oscillations, Attention, and Controlled Access to Stored Information. Trends Cogn. Sci. 2012, 16, 606–617. [Google Scholar] [CrossRef]
- Barry, R.J.; Clarke, A.R.; Johnstone, S.J.; Magee, C.A.; Rushby, J.A. EEG Differences between Eyes-Closed and Eyes-Open Resting Conditions. Clin. Neurophysiol. 2007, 118, 2765–2773. [Google Scholar] [CrossRef]
- Enriquez-Geppert, S.; Huster, R.J.; Herrmann, C.S. EEG-Neurofeedback as a Tool to Modulate Cognition and Behavior: A Review Tutorial. Front. Hum. Neurosci. 2017, 11, 226096. [Google Scholar] [CrossRef]
- Ros, T.; Théberge, J.; Frewen, P.A.; Kluetsch, R.; Densmore, M.; Calhoun, V.D.; Lanius, R.A. Mind over Chatter: Plastic up-Regulation of the FMRI Salience Network Directly after EEG Neurofeedback. Neuroimage 2013, 65, 324–335. [Google Scholar] [CrossRef]
- Fuentes-García, J.P.; Leon-Llamas, J.L.; Villafaina, S. Psychophysiological and Dual-Task Effects of Biofeedback and Neurofeedback Interventions in Airforce Pilots: A Pilot Study. Sensors 2025, 25, 2580. [Google Scholar] [CrossRef] [PubMed]
Group | Variable | Mean | SD | Median | IQR |
---|---|---|---|---|---|
Pre-Training | Negative Trial | 0.85 | 1.55 | 0 | 1 |
Pre-Control | Negative Trial | 1.47 | 1.69 | 1 | 3 |
Post-Training | Negative Trial | 1.57 | 1.46 | 1 | 1 |
Post-Control | Negative Trial | 1.00 | 1.54 | 0 | 2 |
Pre-Training | Positive Trial | 1.28 | 1.61 | 1 | 2 |
Pre-Control | Positive Trial | 1.52 | 1.47 | 1 | 3 |
Post-Training | Positive Trial | 2.90 | 1.33 | 3 | 2 |
Post-Control | Positive Trial | 1.85 | 1.68 | 2 | 3 |
Group | Variable | Mean | SD | Median | IQR |
---|---|---|---|---|---|
Pre-Training | C3-LE, Beta 1-Peak Frequency | 13.08 | 0.06 | 13.08 | 0.06 |
Post-Training | C3-LE, Beta 1-Peak Frequency | 13.12 | 0.11 | 13.08 | 0.11 |
Pre-Control | C3-LE, Beta 1-Peak Frequency | 13.10 | 0.14 | 13.15 | 0.19 |
Post-Control | C3-LE, Beta 1-Peak Frequency | 13.09 | 0.18 | 13.09 | 0.11 |
Pre-Training | O2-LE, Beta 2-Peak Frequency | 16.16 | 0.07 | 16.17 | 0.11 |
Post-Training | O2-LE, Beta 2-Peak Frequency | 16.21 | 0.08 | 16.20 | 0.10 |
Pre-Control | O2-LE, Beta 2-Peak Frequency | 16.20 | 0.07 | 16.19 | 0.04 |
Post-Control | O2-LE, Beta 2-Peak Frequency | 16.21 | 0.07 | 16.21 | 0.12 |
Pre-Training | F8-LE, Beta 2-Absolute Power | 1.90 | 1.19 | 1.65 | 1.31 |
Post-Training | F8-LE, Beta 2-Absolute Power | 1.22 | 0.42 | 1.14 | 0.53 |
Pre-Control | F8-LE, Beta 2-Absolute Power | 1.82 | 0.79 | 1.67 | 1.19 |
Post-Control | F8-LE, Beta 2-Absolute Power | 2.03 | 1.22 | 1.63 | 1.38 |
Pre-Training | F8-LE, Beta 3-Absolute Power | 4.04 | 2.21 | 3.50 | 4.29 |
Post-Training | F8-LE, Beta 3-Absolute Power | 2.77 | 1.64 | 2.36 | 1.40 |
Pre-Control | F8-LE, Beta 3-Absolute Power | 3.88 | 1.83 | 3.76 | 3.14 |
Post-Control | F8-LE, Beta 3-Absolute Power | 3.77 | 2.01 | 2.85 | 1.91 |
Pre-Training | T5-LE, Beta 2-Absolute Power | 2.38 | 1.52 | 1.66 | 1.84 |
Post-Training | T5-LE, Beta 2-Absolute Power | 1.65 | 0.78 | 1.51 | 1.07 |
Pre-Control | T5-LE, Beta 2-Absolute Power | 1.87 | 0.86 | 1.79 | 1.26 |
Post-Control | T5-LE, Beta 2-Absolute Power | 2.40 | 1.01 | 2.20 | 0.97 |
Pre-Training | T5-LE, High Beta-Absolute Power | 1.97 | 1.34 | 1.38 | 2.46 |
Post-Training | T5-LE, High Beta-Absolute Power | 1.25 | 0.57 | 1.25 | 0.86 |
Pre-Control | T5-LE, High Beta-Absolute Power | 1.37 | 0.40 | 1.44 | 0.49 |
Post-Control | T5-LE, High Beta-Absolute Power | 1.96 | 1.02 | 1.39 | 1.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lizama, E.; Lorenzon, L.; Pereira, C.; Serrano, M.A. Enhancing Neural Efficiency in Competitive Golfers: Effects of Slow Cortical Potential Neurofeedback on Modulation of Beta Activity—An Exploratory Randomized Controlled Trial. NeuroSci 2025, 6, 104. https://doi.org/10.3390/neurosci6040104
Lizama E, Lorenzon L, Pereira C, Serrano MA. Enhancing Neural Efficiency in Competitive Golfers: Effects of Slow Cortical Potential Neurofeedback on Modulation of Beta Activity—An Exploratory Randomized Controlled Trial. NeuroSci. 2025; 6(4):104. https://doi.org/10.3390/neurosci6040104
Chicago/Turabian StyleLizama, Eugenio, Luciana Lorenzon, Carolina Pereira, and Miguel A. Serrano. 2025. "Enhancing Neural Efficiency in Competitive Golfers: Effects of Slow Cortical Potential Neurofeedback on Modulation of Beta Activity—An Exploratory Randomized Controlled Trial" NeuroSci 6, no. 4: 104. https://doi.org/10.3390/neurosci6040104
APA StyleLizama, E., Lorenzon, L., Pereira, C., & Serrano, M. A. (2025). Enhancing Neural Efficiency in Competitive Golfers: Effects of Slow Cortical Potential Neurofeedback on Modulation of Beta Activity—An Exploratory Randomized Controlled Trial. NeuroSci, 6(4), 104. https://doi.org/10.3390/neurosci6040104