Ketamine’s Therapeutic Role in Substance Use Disorders: A Narrative Review
Abstract
1. Introduction
1.1. Alcohol Use Disorder
1.2. Alcohol Withdrawal
1.3. Opioid Use Disorder
1.4. Opioid Withdrawal
1.5. Cocaine Use Disorder
1.6. Cannabis Use Disorder
1.7. Tobacco Use Disorder
1.8. Methamphetamine Use Disorder
2. Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Domino, E.F.; Warner, D.S. Taming the Ketamine Tiger. Anesthesiology 2010, 113, 678–684. [Google Scholar] [CrossRef]
- WHO. Essential Medicines and Patent on the World Health Organization Essential Medicines List 22nd Edition. 2022. Available online: https://geneva-network.com/wp-content/uploads/2022/01/2022-WHO-essential-medicines-and-patents-analysis.pdf (accessed on 28 January 2024).
- Kolp, E.; Friedman, H.L.; Krupitsky, E.; Jansen, K.; Sylvester, M.; Young, M.S.; Kolp, A. Ketamine Psychedelic Psychotherapy: Focus on Its Pharmacology, Phenomenology, and Clinical Applications. Int. J. Transpers. Stud. 2014, 33, 84–140. [Google Scholar] [CrossRef]
- Driesen, N.R.; McCarthy, G.; Bhagwagar, Z.; Bloch, M.; Calhoun, V.; D’SOuza, D.C.; Gueorguieva, R.; He, G.; Ramachandran, R.; Suckow, R.F.; et al. Relationship of resting brain hyperconnectivity and schizophrenia-like symptoms produced by the NMDA receptor antagonist ketamine in humans. Mol. Psychiatry 2013, 18, 1199–1204. [Google Scholar] [CrossRef]
- Keilhoff, G.; Bernstein, H.-G.; Becker, A.; Grecksch, G.; Wolf, G. Increased neurogenesis in a rat ketamine model of schizophrenia. Biol. Psychiatry 2004, 56, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Krystal, J.H.; Bennett, A.; Abi-Saab, D.; Belger, A.; Karper, L.P.; D’sOuza, D.; Lipschitz, D.; Abi-Dargham, A.; Charney, D.S. Dissociation of ketamine effects on rule acquisition and rule implementation: Possible relevance to NMDA receptor contributions to executive cognitive functions. Biol. Psychiatry 2000, 47, 137–143. [Google Scholar] [CrossRef]
- Krystal, J.H.; D’SOuza, D.C.; Karper, L.P.; Bennett, A.; Abi-Dargham, A.; Abi-Saab, D.; Cassello, K.; Bowers, M.B., Jr.; Vegso, S.; Heninger, G.R.; et al. Interactive effects of subanesthetic ketamine and haloperidol in healthy humans. Psychopharmacology 1999, 145, 193–204. [Google Scholar] [CrossRef]
- Berman, R.M.; Cappiello, A.; Anand, A.; Oren, D.A.; Heninger, G.R.; Charney, D.S.; Krystal, J.H. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 2000, 47, 351–354. [Google Scholar] [CrossRef]
- Mexican Therapy: “Like the End of The World”. Available online: https://www.newspapers.com/image/460791190 (accessed on 20 October 2023).
- Krupitsky, E.M.; Grinenko, A.Y. Ketamine Psychedelic Therapy (KPT): A Review of the Results of Ten Years of Research. J. Psychoact. Drugs 1997, 29, 165–183. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.L.; Mateus, C.F.; Malcolm, R.J.; Brady, K.T.; Back, S.E. Efficacy of Ketamine in the Treatment of Substance Use Disorders: A Systematic Review. Front. Psychiatry 2018, 9, 277. [Google Scholar] [CrossRef] [PubMed]
- Ezquerra-Romano, I.I.; Lawn, W.; Krupitsky, E.; Morgan, C. Ketamine for the treatment of addiction: Evidence and potential mechanisms. Neuropharmacology 2018, 142, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Sleigh, J.; Martyn, H.; Logan, V.; Bill, D. Ketamine–More Mechanisms of Action Than Just Nmda Blockade. Trends Anaesth. Crit. Care 2014, 4, 76–81. [Google Scholar] [CrossRef]
- Walsh, Z.; Mollaahmetoglu, O.M.; Rootman, J.; Golsof, S.; Keeler, J.; Marsh, B.; Nutt, D.J.; Morgan, C.J.A. Ketamine for the treatment of mental health and substance use disorders: Comprehensive systematic review. BJPsych Open 2021, 8, e19. [Google Scholar] [CrossRef]
- Sheline, Y.I.; Price, J.L.; Yan, Z.; Mintun, M.A. Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc. Natl. Acad. Sci. USA 2010, 107, 11020–11025. [Google Scholar] [CrossRef]
- Chambers, R.A.; Sentir, A.M.; Conroy, S.K.; Truitt, W.A.; Shekhar, A. Cortical-Striatal Integration of Cocaine History and Prefrontal Dysfunction in Animal Modeling of Dual Diagnosis. Biol. Psychiatry 2010, 67, 788–792. [Google Scholar] [CrossRef]
- Chambers, R.A. The 2 x 4 Model: A Neuroscience-Based Blueprint for the Modern Integrated Addiction and Mental Health Treatment System, 1st ed.; Taylor & Francis: Boca Raton, FL, USA, 2017; p. 304. [Google Scholar]
- Kalivas, P.W.; Volkow, N.D. The Neural Basis of Addiction: A Pathology of Motivation and Choice. Am. J. Psychiatry 2005, 162, 1403–1413. [Google Scholar] [CrossRef]
- Kalivas, P.W. The glutamate homeostasis hypothesis of addiction. Nat. Rev. Neurosci. 2009, 10, 561–572. [Google Scholar] [CrossRef]
- Chambers, R.A. Adult hippocampal neurogenesis in the pathogenesis of addiction and dual diagnosis disorders. Drug Alcohol Depend. 2013, 130, 1–12. [Google Scholar] [CrossRef]
- Li, N.; Lee, B.; Liu, R.-J.; Banasr, M.; Dwyer, J.M.; Iwata, M.; Li, X.-Y.; Aghajanian, G.; Duman, R.S. mTOR-Dependent Synapse Formation Underlies the Rapid Antidepressant Effects of NMDA Antagonists. Science 2010, 329, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, G.C.; Gould, T.D.; Prueitt, W.L.; Nanavati, J.; Grunebaum, M.F.; Farber, N.B.; Singh, B.; Selvaraj, S.; Machado-Vieira, R.; Achtyes, E.D.; et al. Blood-Based Biomarkers of Antidepressant Response to Ketamine and Esketamine: A Systematic Review and Meta-Analysis. Mol. Psychiatry 2022, 27, 3658–3669. [Google Scholar] [CrossRef] [PubMed]
- Angelucci, F.; Ricci, V.; Pomponi, M.; Conte, G.; Mathé, A.A.; Tonali, P.A.; Bria, P. Chronic heroin and cocaine abuse is associated with decreased serum concentrations of the nerve growth factor and brain-derived neurotrophic factor. J. Psychopharmacol. 2007, 21, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Vollenweider, F.X.; Kometer, M. The neurobiology of psychedelic drugs: Implications for the treatment of mood disorders. Nat. Rev. Neurosci. 2010, 11, 642–651. [Google Scholar] [CrossRef]
- Chambers, R.A.; Toombs, C. Deep Network Pharmacology: Targeting Glutamate Systems as Integrative Treatments for Jump-Starting Neural Networks and Recovery Trajectories. J. Psychiatry Brain Sci. 2021, 6, e210008. [Google Scholar] [CrossRef] [PubMed]
- Hyman, S.E. Addiction: A Disease of Learning and Memory. Am. J. Psychiatry 2005, 162, 1414–1422. [Google Scholar] [CrossRef]
- Haubrich, J.; Nader, K. Memory Reconsolidation. Curr. Top. Behav. Neurosci. 2018, 37, 151–176. [Google Scholar] [CrossRef]
- Das, R.K.; Gale, G.; Walsh, K.; Hennessy, V.E.; Iskandar, G.; Mordecai, L.A.; Brandner, B.; Kindt, M.; Curran, H.V.; Kamboj, S.K. Ketamine can reduce harmful drinking by pharmacologically rewriting drinking memories. Nat. Commun. 2019, 10, 5187. [Google Scholar] [CrossRef]
- Aday, J.S.; Mitzkovitz, C.M.; Bloesch, E.K.; Davoli, C.C.; Davis, A.K. Long-term effects of psychedelic drugs: A systematic review. Neurosci. Biobehav. Rev. 2020, 113, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Janssen-Aguilar, R.; Meshkat, S.; Demchenko, I.; Zhang, Y.; Greenshaw, A.; Dunn, W.; Tanguay, R.; Mayo, L.M.; Swainson, J.; Jetly, R.; et al. Role of ketamine in the treatment of substance use disorders: A systematic review. J. Subst. Use Addict. Treat. 2025, 175, 209705. [Google Scholar] [CrossRef]
- Ketamine for Adults with Substance Use Disorders. Available online: https://www.ncbi.nlm.nih.gov/books/NBK602506/ (accessed on 25 March 2025).
- Dakwar, E.; Levin, F.; Hart, C.L.; Basaraba, C.; Choi, J.; Pavlicova, M.; Nunes, E.V. A Single Ketamine Infusion Combined With Motivational Enhancement Therapy for Alcohol Use Disorder: A Randomized Midazolam-Controlled Pilot Trial. Am. J. Psychiatry 2020, 177, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Grabski, M.; McAndrew, A.; Lawn, W.; Marsh, B.; Raymen, L.; Stevens, T.; Hardy, L.; Warren, F.; Bloomfield, M.; Borissova, A.; et al. Adjunctive Ketamine With Relapse Prevention–Based Psychological Therapy in the Treatment of Alcohol Use Disorder. Am. J. Psychiatry 2022, 179, 152–162. [Google Scholar] [CrossRef]
- Krupitsky, E.; Burakov, A.; Romanova, T.; Dunaevsky, I.; Strassman, R.; Grinenko, A. Ketamine psychotherapy for heroin addiction: Immediate effects and two-year follow-up. J. Subst. Abus. Treat. 2002, 23, 273–283. [Google Scholar] [CrossRef]
- Mansoori, A.; Bazrafshan, A.; Ahmadi, J.; Mosavat, S.H. Adjunctive ketamine vs. buprenorphine in co-occurring major depressive disorder and opioid use disorder: A randomized, double-blind clinical trial assessing anxiety symptom severity and craving intensity. Trials 2025, 26, 133. [Google Scholar] [CrossRef]
- Dakwar, E.; Levin, F.; Foltin, R.W.; Nunes, E.V.; Hart, C.L. The Effects of Subanesthetic Ketamine Infusions on Motivation to Quit and Cue-Induced Craving in Cocaine-Dependent Research Volunteers. Biol. Psychiatry 2014, 76, 40–46. [Google Scholar] [CrossRef]
- Dakwar, E.; Hart, C.L.; Levin, F.R.; Nunes, E.V.; Foltin, R.W. Cocaine self-administration disrupted by the N-methyl-D-aspartate receptor antagonist ketamine: A randomized, crossover trial. Mol. Psychiatry 2016, 22, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Dakwar, E.; Nunes, E.V.; Hart, C.L.; Foltin, R.W.; Mathew, S.J.; Carpenter, K.M.; Choi, C.; Basaraba, C.N.; Pavlicova, M.; Levin, F.R. A Single Ketamine Infusion Combined With Mindfulness-Based Behavioral Modification to Treat Cocaine Dependence: A Randomized Clinical Trial. Am. J. Psychiatry 2019, 176, 923–930. [Google Scholar] [CrossRef]
- Terasaki, D.; Loh, R.; Cornell, A.; Taub, J.; Thurstone, C. Single-dose intravenous ketamine or intramuscular naltrexone for high-utilization inpatients with alcohol use disorder: Pilot trial feasibility and readmission rates. Addict. Sci. Clin. Pract. 2022, 17, 64. [Google Scholar] [CrossRef] [PubMed]
- Krupitsky, E.M.; Burakov, A.M.; Dunaevsky, I.V.; Romanova, T.N.; Slavina, T.Y.; Grinenko, A.Y. Single Versus Repeated Sessions of Ketamine-Assisted Psychotherapy for People with Heroin Dependence. J. Psychoact. Drugs 2007, 39, 13–19. [Google Scholar] [CrossRef]
- Azhari, N.; Hu, H.; O’mAlley, K.Y.; Blocker, M.E.; Levin, F.R.; Dakwar, E. Ketamine-facilitated behavioral treatment for cannabis use disorder: A proof of concept study. Am. J. Drug Alcohol Abus. 2020, 47, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Chuang, J.; Lide, R.C.; Kamath, N.; Oliveto, A.; Addicott, M. A pilot study of ketamine among individuals with tobacco use disorder: Tolerability and initial impact on tobacco use outcomes. J. Addict. Dis. 2025, 1–5. [Google Scholar] [CrossRef]
- Krupitsky, E.M.; Grineko, A.Y.; Berkaliev, T.N.; Paley, A.I.; Tetrov, U.N.; Mushkov, K.A.; Borodikin, Y.S. The Combination of Psychedelic and Aversive Approaches in Alcoholism Treatment. Alcohol. Treat. Q. 1992, 9, 99–105. [Google Scholar] [CrossRef]
- Kolp, E.; Friedman, H.L.; Young, M.S.; Krupitsky, E. Ketamine Enhanced Psychotherapy: Preliminary Clinical Observations on Its Effectiveness in Treating Alcoholism. Humanist. Psychol. 2006, 34, 399–422. [Google Scholar] [CrossRef]
- Yoon, G.; Petrakis, I.L.; Krystal, J.H. Association of Combined Naltrexone and Ketamine With Depressive Symptoms in a Case series of Patients With Depression and Alcohol Use Disorder. JAMA Psychiatry 2019, 76, 337–338. [Google Scholar] [CrossRef]
- Rothberg, R.L.; Azhari, N.; A Haug, N.; Dakwar, E. Mystical-type experiences occasioned by ketamine mediate its impact on at-risk drinking: Results from a randomized, controlled trial. J. Psychopharmacol. 2020, 35, 150–158. [Google Scholar] [CrossRef]
- Wong, A.; Benedict, N.J.; Armahizer, M.J.; Kane-Gill, S.L. Evaluation of Adjunctive Ketamine to Benzodiazepines for Management of Alcohol Withdrawal Syndrome. Ann. Pharmacother. 2014, 49, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Pizon, A.F.; Lynch, M.J.; Benedict, N.J.; Yanta, J.H.; Frisch, A.; Menke, N.B.; Swartzentruber, G.S.; King, A.M.; Abesamis, M.G.; Kane-Gill, S.L. Adjunct Ketamine Use in the Management of Severe Ethanol Withdrawal. Crit. Care Med. 2018, 46, e768–e771. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; McDowell, M.; Ebisu, R.; Hanif, T.; Toerne, T. Adjunctive Use of Ketamine for Benzodiazepine-Resistant Severe Alcohol Withdrawal: A Retrospective Evaluation. J. Med. Toxicol. 2018, 14, 229–236. [Google Scholar] [CrossRef]
- Cohen, S.P.; Bhatia, A.; Buvanendran, A.; Schwenk, E.S.; Wasan, A.D.; Hurley, R.W.; Viscusi, E.R.; Narouze, S.; Davis, F.N.; Ritchie, E.C.; et al. Consensus Guidelines on the Use of Intravenous Ketamine Infusions for Chronic Pain From the American Society of Regional Anesthesia and Pain Medicine, the American Academy of Pain Medicine, and the American Society of Anesthesiologists. Reg. Anesth. Pain Med. 2018, 43, 521–546. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Yan, J.; Jiang, H.; Vittori, A. Application of Ketamine in Pain Management and the Underlying Mechanism. Pain Res. Manag. 2023, 2023, 1–11. [Google Scholar] [CrossRef]
- Meyer-Frießem, C.H.; Lipke, E.; Weibel, S.; Kranke, P.; Reichl, S.; Pogatzki-Zahn, E.M.; Zahn, P.K.; Schnabel, A. Perioperative ketamine for postoperative pain management in patients with preoperative opioid intake: A systematic review and meta-analysis. J. Clin. Anesthesia 2022, 78, 110652. [Google Scholar] [CrossRef]
- Pradhan, B.; Rossi, G. Combining Ketamine, Brain Stimulation (rTMS) and Mindfulness Therapy (TIMBER) for Opioid Addiction. Cureus 2020, 12, e11798. [Google Scholar] [CrossRef]
- Jovaisa, T.; Laurinenas, G.; Vosylius, S.; Sipylaite, J.; Badaras, R.; Ivaskevicius, J. Effects of ketamine on precipitated opiate withdrawal. Medicina 2006, 42, 625–634. [Google Scholar]
- Heeney, M.; Herring, A.; Anderson, E. 159 Ketamine Use for Buprenorphine-Precipitated Opioid Withdrawal: A Case Series of 10 Patients. Ann. Emerg. Med. 2022, 80, S72. [Google Scholar] [CrossRef]
- Hailozian, C.B.; Luftig, J.P.; Liang, A.; Outhay, M.; Ullal, M.; Anderson, E.S.; Kalmin, M.; Shoptaw, S.; Greenwald, M.K.; Herring, A.A. Synergistic Effect of Ketamine and Buprenorphine Observed in the Treatment of Buprenorphine Precipitated Opioid Withdrawal in a Patient With Fentanyl Use. J. Addict. Med. 2021, 16, 483–487. [Google Scholar] [CrossRef]
- Christian, N.J.M.; Butner, J.L.; Evarts, M.S.; Weimer, M.B.D. Precipitated Opioid Withdrawal Treated With Ketamine in a Hospitalized Patient: A Case Report. J. Addict. Med. 2023, 17, 488–490. [Google Scholar] [CrossRef]
- Bormann, N.L.; Chambers, R.A. Esketamine Effects on Buprenorphine Treatment in a Comorbid Case of Opioid Addiction with Depression, Obsessive-Compulsive Disorder and Chronic Pain. J. Pharmacol. Clin. Toxicol. 2023, 11, 1172. [Google Scholar]
- Grande, L.A.; Hutch, T.; Jack, K.; Mironov, W.; Iwuoha, J.; Muy-Rivera, M.; Grillo, J.; Martin, S.A.; Herring, A. Ketamine-assisted buprenorphine initiation: A pilot case series. Addict. Sci. Clin. Pract. 2024, 19, 60. [Google Scholar] [CrossRef] [PubMed]
- Dakwar, E.; Anerella, C.; Hart, C.L.; Levin, F.R.; Mathew, S.J.; Nunes, E.V. Therapeutic Infusions of Ketamine: Do the Psychoactive Effects Matter? Drug Alcohol Depend. 2014, 136, 153–157. [Google Scholar] [CrossRef]
- Dakwar, E.; Nunes, E.; Hart, C.; Hu, M.; Foltin, R.; Levin, F. A sub-set of psychoactive effects may be critical to the behavioral impact of ketamine on cocaine use disorder: Results from a randomized, controlled laboratory study. Neuropharmacology 2018, 142, 270–276. [Google Scholar] [CrossRef]
- Gao, Z.; Winhusen, T.J.; Gorenflo, M.; Ghitza, U.E.; Davis, P.B.; Kaelber, D.C.; Xu, R. Repurposing Ketamine to Treat Cocaine Use Disorder: Integration of Artificial Intelligence-Based Prediction, Expert Evaluation, Clinical Corroboration and Mechanism of Action Analyses. Addiction 2023, 118, 1307–1319. [Google Scholar] [CrossRef] [PubMed]
- Ruda-Kucerova, J.; Babinska, Z.; Stark, T.; Micale, V. Suppression of Methamphetamine Self-Administration by Ketamine Pre-treatment Is Absent in the Methylazoxymethanol (MAM) Rat Model of Schizophrenia. Neurotox. Res. 2017, 32, 121–133. [Google Scholar] [CrossRef]
- Chiappini, S.; D’ANdrea, G.; De Filippis, S.; Di Nicola, M.; Andriola, I.; Bassetti, R.; Barlati, S.; Pettorruso, M.; Sensi, S.; Clerici, M.; et al. Esketamine in treatment-resistant depression patients comorbid with substance-use disorder: A viewpoint on its safety and effectiveness in a subsample of patients from the REAL-ESK study. Eur. Neuropsychopharmacol. 2023, 74, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Faruqui, Z.; Kim, C.; Saiz-Ruiz, J. The Incidental Resolution of Severe Alcohol Use Disorder during Esketamine Treatment of Major Depressive Disorder: A Case Report. Case Rep. Psychiatry 2022, 2022, 1–4. [Google Scholar] [CrossRef]
- Hong, X.; Xu, S.; Sun, G.; Liu, Y.; Yi, W.; Hu, Q.; Li, W.; Liu, J.; Wu, F.; Yu, M.; et al. Efficacy and safety of esketamine for smoking cessation among patients diagnosed with lung cancer and major depression disorder: A randomized, placebo-controlled clinical trial. J. Affect. Disord. 2025, 383, 1–10. [Google Scholar] [CrossRef]
- Gent, E.M.; Bryan, J.W.; A Cleary, M.; I Clarke, T.; Holmwood, H.D.; O Nassereddine, R.; Salway, C.; Depla, S.; Statton, S.; Krecké, J.; et al. Esketamine combined with a mindfulness-based intervention for individuals with alcohol problems. J. Psychopharmacol. 2024, 38, 541–550. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, D.; Wu, B.; Zhou, W. Ketamine abuse potential and use disorder. Brain Res. Bull. 2016, 126, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Fontoura, M.B.; da Rosa, J.L.O.; Rossato, D.R.; de Souza, L.E.M.; Frozi, E.; Ribeiro, M.E.M.; e Souza, A.P.S.; Burger, M.E. Beneficial effects of Esketamine on Morphine preference reacquisition in male rats. Neuroscience 2025, 573, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Wydra, K.; Witek, K.; Suder, A.; Filip, M. Esketamine Inhibits Cocaine-Seeking Behaviour Subsequent to Various Abstinence Conditions in Rats. Biomolecules 2023, 13, 1411. [Google Scholar] [CrossRef] [PubMed]
- Kwan, A.T.; Rosenblat, J.D.; Mansur, R.B.; Teopiz, K.M.; McIntyre, R.S. The association between ketamine and esketamine with alcohol and substance misuse: Reports to the Food and Drug Administration adverse event reporting system (FAERS). J. Affect. Disord. 2024, 360, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Kwan, A.T.; Rosenblat, J.D.; Mansur, R.B.; Rhee, T.G.; Teopiz, K.; Le, G.H.; Wong, S.; Cao, B.; Ho, R.; McIntyre, R.S. A replication study using the World Health Organization pharmacovigilance database (VigiBase®) to evaluate whether an association between ketamine and esketamine and alcohol and substance misuse exists. J. Affect. Disord. 2024, 363, 589–594. [Google Scholar] [CrossRef]
- Wilkinson, S.T.; Sanacora, G. At-home ketamine; still a lot to learn. J. Affect. Disord. 2022, 318, 150–151. [Google Scholar] [CrossRef]
Author, Year | Substance | Study Design | Participants | Intervention | Psychotherapy | Outcomes | Conclusion |
---|---|---|---|---|---|---|---|
Dakwar et al., 2020 [32] | Alcohol | RDBCT | 40 adults with alcohol dependence | KET (0.71 mg/kg), MDZ (0.025 mg/kg) | MET | Drinking days during 21 days post-infusion | A single KET infusion alongside MET decreased alcohol consumption |
Grabski et al., 2022 [33] | Alcohol | RDB Phase 2 CT | 96 adults with moderate to severe AUD | KET (0.8 mg/kg) + MBRP, KET + AE, PBO + MBRP, PBO + AE | MBRP or AE | Self-reported percentage days abstinent at 6 months post-first-infusion, Confirmed relapse at 6 months post-first-infusion | Three KET infusions and MBRP led to greater percentage of days abstinent than PBO and AE |
Krupitsky et al., 2002 [34] | Opioid | RDBCT | 70 inpatient adults with heroin addiction | Psychedelic dosing KET (2.0 mg/kg), Non-psychedelic dosing KET (0.2 mg/kg) | KPT | Abstinence over 24 months post-infusion, Cravings over 24 months post-infusion | Psychedelic dosing of KET may be superior to non-psychedelic dosing in improving abstinence and decreasing cravings 24 months post-infusion |
Mansoori et al., 2025 [35] | Opioid | RDBCT | 64 inpatient adults with MDD and OUD | KET (0.5 mg/kg), BUP (16 mg) | None | Anxiety over 1 week post-intervention, Craving over 1 week post-intervention | KET was as effective as BUP in reducing anxiety and opioid cravings |
Dakwar et al., 2014 [36] | Cocaine | CRDBT | 8 non-treatment-seeking adults with cocaine dependence | Three infusions in random order: KET (0.41 mg/kg), KET (0.71 mg/kg), LZP (2 mg) | None | Motivation to quit cocaine 24 h post-infusion, Cue-induced craving 24 h post-infusion | KET reduced cue-induced craving and increased motivation to quit with higher efficacy at higher dose |
Dakwar et al., 2016 [37] | Cocaine | CRDBT | 20 non-treatment-seeking adults with cocaine dependence | KET (0.71 mg/kg), MDZ (0.025 mg/kg) | None | Cocaine self-administration | KET led to a reduction in cocaine self-administration |
Dakwar et al., 2019 [38] | Cocaine | RDBCT | 55 adults with cocaine dependence | KET (0.5 mg/kg), MDZ (0.025 mg/kg) | MBRP | 2 weeks of end-of-study abstinence | A single KET infusion alongside MBRP increased abstinence, decreased craving, and prolonged time to relapse |
Author, Year | Substance | Study Design | Participants | Intervention | Psychotherapy | Outcomes | Conclusion |
---|---|---|---|---|---|---|---|
Das et al., 2019 [28] | Alcohol | SBRCT | 90 non-treatment-seeking adults with hazardous drinking | RET + KET (serum 350 ng/mL for 30 min), no RET + KET, RET + PBO | None | Reactivity to alcohol and alcohol cues, Changes in alcohol consumption | KET may disrupt the reconsolidation of maladaptive reward memories and thus decrease alcohol consumption |
Terasaki et al., 2022 [39] | Alcohol | 3-Arm, Open-Label, RCT | 44 hospitalized adults with severe AUD | KET (0.5 mg/kg), IM NTX, LA | None | All-cause, 30-day hospital readmission rate | A single KET infusion or IM NTX show promise in reducing the readmission rate |
Krupitsky et al., 2007 [40] | Opioid | RCT | 59 inpatient adults with heroin dependence | 1 KET (2.0 mg/kg) infusion, 3 KET infusions | KPT | Abstinence over 12 months post-infusion(s) | Repeated KET infusions may be superior to a single KET infusion in improving abstinence 12 months post-last-infusion |
Azhari et al., 2021 [41] | Cannabis | Single-Blind, Proof Of Concept Trial | 8 adults with cannabis dependence | KET (0.71 mg/kg), non-responders also received KET (1.41 mg/kg) | MET and MBRP | Number of cannabis-using days per week | KET infusion(s) resulted in less cannabis-using days per week |
Chuang et al., 2025 [42] | Tobacco | SBRCT | 10 non-treatment-seeking adults with tobacco use disorder | KET (0.5 mg/kg) | None | Tobacco use, Tobacco craving, Tobacco withdrawal | A single KET infusion shows promise in reducing tobacco craving and withdrawal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, A.; Chambers, R.A. Ketamine’s Therapeutic Role in Substance Use Disorders: A Narrative Review. NeuroSci 2025, 6, 83. https://doi.org/10.3390/neurosci6030083
Thomas A, Chambers RA. Ketamine’s Therapeutic Role in Substance Use Disorders: A Narrative Review. NeuroSci. 2025; 6(3):83. https://doi.org/10.3390/neurosci6030083
Chicago/Turabian StyleThomas, Alexander, and R. Andrew Chambers. 2025. "Ketamine’s Therapeutic Role in Substance Use Disorders: A Narrative Review" NeuroSci 6, no. 3: 83. https://doi.org/10.3390/neurosci6030083
APA StyleThomas, A., & Chambers, R. A. (2025). Ketamine’s Therapeutic Role in Substance Use Disorders: A Narrative Review. NeuroSci, 6(3), 83. https://doi.org/10.3390/neurosci6030083