Derivation of Novel Imaging Biomarkers of Neonatal Brain Injury Using Bedside Diffuse Optical Tomography: Protocol for a Prospective Feasibility Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Setting
2.3. Therapeutic Hypothermia Protocol
2.4. Research Ethics Approval
2.5. Consent to Participate
2.6. Eligibility Criteria
2.7. Interventions
2.7.1. Study Equipment
2.7.2. Experimental Setup
2.7.3. Data Acquisition
2.7.4. Neuroanatomy
2.7.5. Principle
2.8. Objectives and Outcomes
Objectives and Corresponding Outcomes of the Feasibility Trial
- Secondary objectives include the following:
2.9. Participant Timeline
2.10. Sample Size and Recruitment
2.11. Clinical Data Collection
3. Data Processing
- (1)
- Converting raw light intensity data to optical density change data;
- (2)
- Excluding channels with out-of-range signals or large standard deviations;
- (3)
- Correcting motion artifacts using Temporal Derivative Distribution Repair (TDDR), a regression-based approach that addresses motion-induced spikes and baseline drift [49];
- (4)
- Band-pass filtering (0.01–0.05 Hz) to eliminate low-frequency noise (e.g., data drift) and high-frequency physiological noise (e.g., cardiac signals);
- (5)
- Converting the preprocessed optical density data to hemoglobin concentration change data using a Differential Path Length Factor (DPF) of 6 for both oxy- and deoxyhemoglobin.
4. Potential Challenges and Limitations
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Volpe, J.J. Neonatal encephalopathy: An inadequate term for hypoxic-ischemic encephalopathy. Ann. Neurol. 2012, 72, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Lemyre, B.; Chau, V. Hypothermia for newborns with hypoxic-ischemic encephalopathy. Paediatr. Child. Health 2018, 23, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Pin, T.W.; Eldridge, B.; Galea, M.P. A review of developmental outcomes of term infants with post-asphyxia neonatal encephalopathy. Eur. J. Paediatr. Neurol. 2009, 13, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Pisani, F.; Orsini, M.; Braibanti, S.; Copioli, C.; Sisti, L.; Turco, E.C. Development of epilepsy in newborns with moderate hypoxic-ischemic encephalopathy and neonatal seizures. Brain Dev. 2009, 31, 64–68. [Google Scholar] [CrossRef]
- Jacobs, S.E.; Berg, M.; Hunt, R.; Tarnow-Mordi, W.O.; Inder, T.E.; Davis, P.G. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst. Rev. 2013, 2013, Cd003311. [Google Scholar] [CrossRef]
- Pappas, A.; Shankaran, S.; McDonald, S.A.; Vohr, B.R.; Hintz, S.R.; Ehrenkranz, R.A.; Tyson, J.E.; Yolton, K.; Das, A.; Bara, R.; et al. Cognitive outcomes after neonatal encephalopathy. Pediatrics 2015, 135, e624–e634. [Google Scholar] [CrossRef]
- Shankaran, S.; Pappas, A.; McDonald, S.A.; Vohr, B.R.; Hintz, S.R.; Yolton, K.; Gustafson, K.E.; Leach, T.M.; Green, C.; Bara, R.; et al. Childhood outcomes after hypothermia for neonatal encephalopathy. N. Engl. J. Med. 2012, 366, 2085–2092. [Google Scholar] [CrossRef]
- Spittle, A.; Treyvaud, K. The role of early developmental intervention to influence neurobehavioral outcomes of children born preterm. Semin. Perinatol. 2016, 40, 542–548. [Google Scholar] [CrossRef]
- DeMaster, D.; Bick, J.; Johnson, U.; Montroy, J.J.; Landry, S.; Duncan, A.F. Nurturing the preterm infant brain: Leveraging neuroplasticity to improve neurobehavioral outcomes. Pediatr. Res. 2019, 85, 166–175. [Google Scholar] [CrossRef]
- Orton, J.; Spittle, A.; Doyle, L.; Anderson, P.; Boyd, R. Do early intervention programmes improve cognitive and motor outcomes for preterm infants after discharge? A systematic review. Dev. Med. Child. Neurol. 2009, 51, 851–859. [Google Scholar] [CrossRef]
- Carlo, W.A.; Goudar, S.S.; Pasha, O.; Chomba, E.; Wallander, J.L.; Biasini, F.J.; McClure, E.M.; Thorsten, V.; Chakraborty, H.; Wallace, D.; et al. Randomized trial of early developmental intervention on outcomes in children after birth asphyxia in developing countries. J. Pediatr. 2013, 162, 705–712.e703. [Google Scholar] [CrossRef] [PubMed]
- Cainelli, E.; Trevisanuto, D.; Cavallin, F.; Manara, R.; Suppiej, A. Evoked potentials predict psychomotor development in neonates with normal MRI after hypothermia for hypoxic-ischemic encephalopathy. Clin. Neurophysiol. 2018, 129, 1300–1306. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.F.; Pessoa, L.; Desimone, R.; Ungerleider, L.G. The prefrontal cortex and the executive control of attention. Exp. Brain Res. 2009, 192, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Smyser, C.D.; Wheelock, M.D.; Limbrick, D.D., Jr.; Neil, J.J. Neonatal brain injury and aberrant connectivity. Neuroimage 2019, 185, 609–623. [Google Scholar] [CrossRef]
- van Laerhoven, H.; de Haan, T.R.; Offringa, M.; Post, B.; van der Lee, J.H. Prognostic tests in term neonates with hypoxic-ischemic encephalopathy: A systematic review. Pediatrics 2013, 131, 88–98. [Google Scholar] [CrossRef]
- Rollins, N.; Booth, T.; Morriss, M.C.; Sanchez, P.; Heyne, R.; Chalak, L. Predictive value of neonatal MRI showing no or minor degrees of brain injury after hypothermia. Pediatr. Neurol. 2014, 50, 447–451. [Google Scholar] [CrossRef]
- Hoshi, Y.; Yamada, Y. Overview of diffuse optical tomography and its clinical applications. J. Biomed. Opt. 2016, 21, 091312. [Google Scholar] [CrossRef]
- Bunce, S.C.; Izzetoglu, M.; Izzetoglu, K.; Onaral, B.; Pourrezaei, K. Functional near-infrared spectroscopy. IEEE Eng. Med. Biol. Mag. 2006, 25, 54–62. [Google Scholar] [CrossRef]
- Lee, C.W.; Cooper, R.J.; Austin, T. Diffuse optical tomography to investigate the newborn brain. Pediatr. Res. 2017, 82, 376–386. [Google Scholar] [CrossRef]
- Hassanpour, M.S.; White, B.R.; Eggebrecht, A.T.; Ferradal, S.L.; Snyder, A.Z.; Culver, J.P. Statistical analysis of high density diffuse optical tomography. Neuroimage 2014, 85 Pt 1, 104–116. [Google Scholar] [CrossRef]
- Zhang, X.; Toronov, V.; Webb, A. Simultaneous integrated diffuse optical tomography and functional magnetic resonance imaging of the human brain. Opt. Express 2005, 13, 5513–5521. [Google Scholar] [CrossRef] [PubMed]
- Bhambhani, Y.; Maikala, R.; Farag, M.; Rowland, G. Reliability of near-infrared spectroscopy measures of cerebral oxygenation and blood volume during handgrip exercise in nondisabled and traumatic brain-injured subjects. J. Rehabil. Res. Dev. 2006, 43, 845–856. [Google Scholar] [CrossRef] [PubMed]
- Broscheid, K.C.; Hamacher, D.; Lamprecht, J.; Sailer, M.; Schega, L. Inter-Session Reliability of Functional Near-Infrared Spectroscopy at the Prefrontal Cortex While Walking in Multiple Sclerosis. Brain Sci. 2020, 10, 643. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Li, Z.; Liao, X.; Wang, J.; Zhao, T.; Shu, N.; Zhao, X.; He, Y. Test-retest reliability of graph metrics in functional brain networks: A resting-state fNIRS study. PLoS ONE 2013, 8, e72425. [Google Scholar] [CrossRef]
- Zhang, H.; Duan, L.; Zhang, Y.J.; Lu, C.M.; Liu, H.; Zhu, C.Z. Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy. Neuroimage 2011, 55, 607–615. [Google Scholar] [CrossRef]
- Blasi, A.; Lloyd-Fox, S.; Johnson, M.H.; Elwell, C. Test-retest reliability of functional near infrared spectroscopy in infants. Neurophotonics 2014, 1, 025005. [Google Scholar] [CrossRef]
- Niu, H.; Wang, J.; Zhao, T.; Shu, N.; He, Y. Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy. PLoS ONE 2012, 7, e45771. [Google Scholar] [CrossRef]
- White, B.R.; Liao, S.M.; Ferradal, S.L.; Inder, T.E.; Culver, J.P. Bedside optical imaging of occipital resting-state functional connectivity in neonates. Neuroimage 2012, 59, 2529–2538. [Google Scholar] [CrossRef]
- Liao, S.M.; Gregg, N.M.; White, B.R.; Zeff, B.W.; Bjerkaas, K.A.; Inder, T.E.; Culver, J.P. Neonatal hemodynamic response to visual cortex activity: High-density near-infrared spectroscopy study. J. Biomed. Opt. 2010, 15, 026010. [Google Scholar] [CrossRef]
- Ferradal, S.L.; Liao, S.M.; Eggebrecht, A.T.; Shimony, J.S.; Inder, T.E.; Culver, J.P.; Smyser, C.D. Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography. Cereb. Cortex 2016, 26, 1558–1568. [Google Scholar] [CrossRef]
- Harvey-Jones, K.; Lange, F.; Tachtsidis, I.; Robertson, N.J.; Mitra, S. Role of Optical Neuromonitoring in Neonatal Encephalopathy-Current State and Recent Advances. Front. Pediatr. 2021, 9, 653676. [Google Scholar] [CrossRef] [PubMed]
- Vesoulis, Z.A.; Mintzer, J.P.; Chock, V.Y. Neonatal NIRS monitoring: Recommendations for data capture and review of analytics. J. Perinatol. 2021, 41, 675–688. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.W.; Tetzlaff, J.M.; Altman, D.G.; Laupacis, A.; Gøtzsche, P.C.; Krleža-Jerić, K.; Hróbjartsson, A.; Mann, H.; Dickersin, K.; Berlin, J.A.; et al. SPIRIT 2013 Statement: Defining Standard Protocol Items for Clinical Trials. Ann. Intern. Med. 2013, 158, 200–207. [Google Scholar] [CrossRef]
- Mrelashvili, A.; Russ, J.B.; Ferriero, D.M.; Wusthoff, C.J. The Sarnat score for neonatal encephalopathy: Looking back and moving forward. Pediatr. Res. 2020, 88, 824–825. [Google Scholar] [CrossRef]
- Society, A.E. Guideline thirteen: Guidelines for standard electrode position nomenclature. J. Clin. Neurophysiol. 1994, 11, 111–113. [Google Scholar]
- Fransson, P.; Skiöld, B.; Horsch, S.; Nordell, A.; Blennow, M.; Lagercrantz, H.; Aden, U. Resting-state networks in the infant brain. Proc. Natl. Acad. Sci. USA 2007, 104, 15531–15536. [Google Scholar] [CrossRef]
- Gao, W.; Alcauter, S.; Elton, A.; Hernandez-Castillo, C.R.; Smith, J.K.; Ramirez, J.; Lin, W. Functional Network Development During the First Year: Relative Sequence and Socioeconomic Correlations. Cereb. Cortex 2015, 25, 2919–2928. [Google Scholar] [CrossRef]
- Doria, V.; Beckmann, C.F.; Arichi, T.; Merchant, N.; Groppo, M.; Turkheimer, F.E.; Counsell, S.J.; Murgasova, M.; Aljabar, P.; Nunes, R.G.; et al. Emergence of resting state networks in the preterm human brain. Proc. Natl. Acad. Sci. USA 2010, 107, 20015–20020. [Google Scholar] [CrossRef]
- Owens, C.D.; Pinto, C.B.; Mukli, P.; Gulej, R.; Velez, F.S.; Detwiler, S.; Olay, L.; Hoffmeister, J.R.; Szarvas, Z.; Muranyi, M.; et al. Neurovascular coupling, functional connectivity, and cerebrovascular endothelial extracellular vesicles as biomarkers of mild cognitive impairment. Alzheimer’s Dement. 2024, 20, 5590–5606. [Google Scholar] [CrossRef]
- Weeke, L.C.; Groenendaal, F.; Mudigonda, K.; Blennow, M.; Lequin, M.H.; Meiners, L.C.; van Haastert, I.C.; Benders, M.J.; Hallberg, B.; de Vries, L.S. A Novel Magnetic Resonance Imaging Score Predicts Neurodevelopmental Outcome After Perinatal Asphyxia and Therapeutic Hypothermia. J. Pediatr. 2018, 192, 33–40.e32. [Google Scholar] [CrossRef]
- Heo, K.H.; Squires, J.; Yovanoff, P. Cross-cultural adaptation of a pre-school screening instrument: Comparison of Korean and US populations. J. Intellect. Disabil. Res. 2008, 52, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Alvik, A.; Grøholt, B. Examination of the cut-off scores determined by the Ages and Stages Questionnaire in a population-based sample of 6 month-old Norwegian infants. BMC Pediatr. 2011, 11, 117. [Google Scholar] [CrossRef] [PubMed]
- Squires, J.; Bricker, D.; Potter, L. Revision of a parent-completed development screening tool: Ages and Stages Questionnaires. J. Pediatr. Psychol. 1997, 22, 313–328. [Google Scholar] [CrossRef] [PubMed]
- Gollenberg, A.L.; Lynch, C.D.; Jackson, L.W.; McGuinness, B.M.; Msall, M.E. Concurrent validity of the parent-completed Ages and Stages Questionnaires, 2nd ed. with the Bayley Scales of Infant Development II in a low-risk sample. Child. Care Health Dev. 2010, 36, 485–490. [Google Scholar] [CrossRef]
- Limbos, M.M.; Joyce, D.P. Comparison of the ASQ and PEDS in screening for developmental delay in children presenting for primary care. J. Dev. Behav. Pediatr. 2011, 32, 499–511. [Google Scholar] [CrossRef]
- Dolata, J.K.; Sanford-Keller, H.; Squires, J. Modifying a general social-emotional measure for early autism screening. Int. J. Dev. Disabil. 2019, 66, 296–303. [Google Scholar] [CrossRef]
- Teresi, J.A.; Yu, X.; Stewart, A.L.; Hays, R.D. Guidelines for Designing and Evaluating Feasibility Pilot Studies. Med. Care 2022, 60, 95–103. [Google Scholar] [CrossRef]
- Huppert, T.J.; Diamond, S.G.; Franceschini, M.A.; Boas, D.A. HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl. Opt. 2009, 48, D280–D298. [Google Scholar] [CrossRef]
- Fishburn, F.A.; Ludlum, R.S.; Vaidya, C.J.; Medvedev, A.V. Temporal Derivative Distribution Repair (TDDR): A motion correction method for fNIRS. NeuroImage 2019, 184, 171–179. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, Z.; Zhao, C.; Duan, L.; Gong, Y.; Li, Z.; Zhu, C. NIRS-KIT: A MATLAB toolbox for both resting-state and task fNIRS data analysis. Neurophotonics 2021, 8, 010802. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Xia, M.; Liao, X.; Evans, A.; He, Y. GRETNA: A graph theoretical network analysis toolbox for imaging connectomics. Front. Hum. Neurosci. 2015, 9, 386. [Google Scholar] [CrossRef]
- Erel, Y.; Jaffe-Dax, S.; Yeshurun, Y.; Bermano, A.H. STORM-Net: Simple and Timely Optode Registration Method for Functional Near-Infrared Spectroscopy (fNIRS). bioRxiv 2021. bioRxiv:2020.12.29.424683. [Google Scholar] [CrossRef]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 2010, 52, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, F.; Bondi, C.; Lugli, L.; Bedetti, L.; Guidotti, I.; Banchelli, F.; Lucaccioni, L.; Berardi, A. The Dammiss EEG Score: A New System to Quantify EEG Abnormalities and Predict the Outcome in Asphyxiated Newborns. J. Clin. Med. 2025, 14, 1920. [Google Scholar] [CrossRef] [PubMed]
- Gossé, L.K.; Pinti, P.; Wiesemann, F.; Elwell, C.E.; Jones, E.J.H. Developing customized NIRS-EEG for infant sleep research: Methodological considerations. Neurophotonics 2023, 10, 035010. [Google Scholar] [CrossRef]
Objectives | Outcomes | Criteria for Success | Method of Analysis |
---|---|---|---|
Primary Aims | |||
Assess the feasibility of recruitment and retention strategies and data collection methods in the NICU. | Recruitment and retention rates, missing data. |
(i) 80% of the eligible patients consent to the testing; (ii) 90% of the consented participants get DOT measurements taken before 7 days of life; (iii) for 80% of the consented participants, parent-reported developmental assessment is available at 6 and 12 months; (iv) Time required for resting-state data acquisition per infant < 45 min. | Descriptive statistics (mean and SD) for continuous variables. Proportions for dichotomous variables. |
To assess the fidelity and safety of DOT measurements in neonates. | Adverse reactions, adequate measurements, and time for data acquisition. |
(i) Reporting any adverse skin reactions to sensors or excessive agitation in the neonate requiring early termination of the study. (ii) Data quality will be assessed by recording the degree of the signal-to-noise ratio. | Qualitative analysis. |
To identify logistic challenges, unexpected adverse effects, or technical difficulties. | Adverse events or operational difficulties. | An adequate amount of time and number of personnel required for each stage of the study and staff workload. Lack of logistic challenges. | Qualitative reporting. |
To gain stakeholder engagement, including from parents and NICU nurses. | Engagement level. | Positive perceptions about the study procedures from parents and nurses. | Qualitative survey analysis. |
Secondary Aims | |||
Objectives | Outcome | Hypothesis | Analysis |
To explore the differences in brain metrics between male–female, mild–moderate–severe encephalopathy groups. | Brain metrics. | Significant difference in regional brain metrics. | Student t-test. |
To explore the correlation of severity of brain injury score with brain metrics. | MRI injury score. | We can determine the required sample size for a definitive trial. | Regression analysis. |
Correlation of brain metrics with neurological outcome. | ASQ scores at 6 months and 12 months. | We can determine the required sample size for a definitive trial. | Regression analysis. |
Study Period | |||||||||
---|---|---|---|---|---|---|---|---|---|
Enrollment | Allocation | Post-Allocation | Close Out | ||||||
Timepoint | Day 0 | 1–3 days | 4–7 days | 4–15 days | NICU discharge | 6 months | 12 months | ||
Screening for eligibility | X | ||||||||
Approaching parents for informed consent | X | ||||||||
Study ID created | X | ||||||||
Allocation | X | ||||||||
Clinical data collection | X | X | X | X | X | X | |||
Therapeutic hypothermia | X | ||||||||
EEG monitoring | X | ||||||||
MRI brain | X | ||||||||
DOT measurement | X | ||||||||
ASQ-3 | X | X | |||||||
ASQ: SE-2 | X | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastroianni, S.; Vinod, A.; Xiao, N.G.; Johnson, H.; Thabane, L.; Fang, Q.; Goswami, I. Derivation of Novel Imaging Biomarkers of Neonatal Brain Injury Using Bedside Diffuse Optical Tomography: Protocol for a Prospective Feasibility Study. NeuroSci 2025, 6, 60. https://doi.org/10.3390/neurosci6030060
Mastroianni S, Vinod A, Xiao NG, Johnson H, Thabane L, Fang Q, Goswami I. Derivation of Novel Imaging Biomarkers of Neonatal Brain Injury Using Bedside Diffuse Optical Tomography: Protocol for a Prospective Feasibility Study. NeuroSci. 2025; 6(3):60. https://doi.org/10.3390/neurosci6030060
Chicago/Turabian StyleMastroianni, Sabrina, Anagha Vinod, Naiqi G. Xiao, Heather Johnson, Lehana Thabane, Qiyin Fang, and Ipsita Goswami. 2025. "Derivation of Novel Imaging Biomarkers of Neonatal Brain Injury Using Bedside Diffuse Optical Tomography: Protocol for a Prospective Feasibility Study" NeuroSci 6, no. 3: 60. https://doi.org/10.3390/neurosci6030060
APA StyleMastroianni, S., Vinod, A., Xiao, N. G., Johnson, H., Thabane, L., Fang, Q., & Goswami, I. (2025). Derivation of Novel Imaging Biomarkers of Neonatal Brain Injury Using Bedside Diffuse Optical Tomography: Protocol for a Prospective Feasibility Study. NeuroSci, 6(3), 60. https://doi.org/10.3390/neurosci6030060