Trends and Disparities in Parkinson’s Disease Mortality in the United States with Predictions Using Machine Learning
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Database
2.2. Demographic and Geographical Study Groups
2.3. Statistical Analysis
3. Results
3.1. Overall (Figure 1a Shows Trend of Overall Changes in AAMR)
3.2. Biological Sex (Figure 1a Shows Trend of Sex Stratified Changes)
3.3. Race (Figure 1b Shows Trend of Race Stratified Changes)
3.4. Region (Figure 2a Shows Trend of Region-Stratified Changes)
3.5. Age Groups (Figure 2b Shows Trend of Age-Group-Stratified Changes)
3.6. State-Level (Figure 3 Shows Maps of State Level Changes)
3.7. Place of Death
3.8. Forecasts of PD-Related Mortality (Figure 4 Shows Overall Trend of AAMR and Forecasted AAMR till 2030)
4. Discussion
4.1. Overall
4.2. Sex-Related Disparities
4.3. Rece/Ethnicity-Related Disparities
4.4. Region-Based Disparities
4.5. State-Level Differences
4.6. Location of PD-Related Death
4.7. Forecasts of PD-Related Mortality
4.8. Future Directions and Public Health Implications
4.9. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Glossary
References
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef]
- Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef]
- Klein, A.D.; Mazzulli, J.R. Is Parkinson’s disease a lysosomal disorder? Brain A J. Neurol. 2018, 141, 2255–2262. [Google Scholar] [CrossRef]
- De Maagd, G.; Philip, A. Parkinson’s Disease and Its Management: Part 1: Disease Entity, Risk Factors, Pathophysiology, Clinical Presentation, and Diagnosis. Pharm. Ther. 2015, 40, 504–532. [Google Scholar]
- Dommershuijsen, L.J.; Darweesh, S.K.L.; Ben-Shlomo, Y.; Kluger, B.M.; Bloem, B.R. The elephant in the room: Critical reflections on mortality rates among individuals with Parkinson’s disease. NPJ Park. Dis. 2023, 9, 145. [Google Scholar] [CrossRef]
- Rizek, P.; Kumar, N.; Jog, M.S. An update on the diagnosis and treatment of Parkinson disease. CMAJ Can. Med. Assoc. J. J. De L’association Medicale Can. 2016, 188, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Cui, Y.; Zhang, J.; Yan, R.; Su, D.; Zhao, D.; Wang, A.; Feng, T. Temporal trends in the prevalence of Parkinson’s disease from 1980 to 2023: A systematic review and meta-analysis. Lancet Healthy Longev. 2024, 5, e464–e479. [Google Scholar] [CrossRef]
- Pardo-Moreno, T.; García-Morales, V.; Suleiman-Martos, S.; Rivas-Domínguez, A.; Mohamed-Mohamed, H.; Ramos-Rodríguez, J.J.; Melguizo-Rodríguez, L.; González-Acedo, A. Current Treatments and New, Tentative Therapies for Parkinson’s Disease. Pharmaceutics 2023, 15, 770. [Google Scholar] [CrossRef] [PubMed]
- Fezeu, F.; Jbara, O.F.; Jbarah, A.; Choucha, A.; De Maria, L.; Ciaglia, E.; De Simone, M.; Samnick, S. PET imaging for a very early detection of rapid eye movement sleep behaviour disorder and Parkinson’s disease—A model-based cost-effectiveness analysis. Clin. Neurol. Neurosurg. 2024, 243, 108404. [Google Scholar] [CrossRef]
- Lee, D.J.; Dallapiazza, R.F.; De Vloo, P.; Lozano, A.M. Current surgical treatments for Parkinson’s disease and potential therapeutic targets. Neural Regen. Res. 2018, 13, 1342–1345. [Google Scholar] [CrossRef]
- Brooks, D.J. Optimizing levodopa therapy for Parkinson’s disease with levodopa/carbidopa/entacapone: Implications from a clinical and patient perspective. Neuropsychiatr. Dis. Treat. 2008, 4, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Groiss, S.J.; Wojtecki, L.; Südmeyer, M.; Schnitzler, A. Deep brain stimulation in Parkinson’s disease. Ther. Adv. Neurol. Disord. 2009, 2, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Ryu, D.W.; Han, K.; Cho, A.H. Mortality and causes of death in patients with Parkinson’s disease: A nationwide population-based cohort study. Front. Neurol. 2023, 14, 1236296. [Google Scholar] [CrossRef] [PubMed]
- National Center for Health Statistics (NCHS). Underlying Cause of Death 1999–2020; CDC WONDER Online Database; National Center for Health Statistics (NCHS): Hyattsville, MD, USA, 2021.
- Siddiqi, T.J.; Khan Minhas, A.M.; Greene, S.J.; Van Spall HG, C.; Khan, S.S.; Pandey, A.; Mentz, R.J.; Fonarow, G.C.; Butler, J.; Khan, M.S. Trends in Heart Failure-Related Mortality Among Older Adults in the United States From 1999–2019. JACC Heart Fail. 2022, 10, 851–859. [Google Scholar] [CrossRef]
- Anderson, R.N.; Rosenberg, H.M. Age standardization of death rates: Implementation of the year 2000 standard. Natl. Vital Stat. Rep. 1998, 47, 1–20. [Google Scholar]
- Joinpoint Regression Program. Version 5.0.2—May 2023. Statistical Methodology and Applications Branch, Surveillance Research Program; National Cancer Institute: Bethesda, MD, USA, 2024.
- Zhu, B.; Wu, X.; An, W.; Yao, B.; Liu, Y. The systematic analysis and 10-year prediction on disease burden of childhood cancer in China. Front. Public Health 2022, 10, 908955. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Shi, L.; Zhang, J.; Zhang, J.; Zhang, C. Epidemiological characteristics and forecasting incidence for patients with breast cancer in Shantou, Southern China: 2006–2017. Cancer Med. 2021, 10, 2904–2913. [Google Scholar] [CrossRef]
- Watson, L.; Qi, S.; DeIure, A.; Link, C.; Chmielewski, L.; Hildebrand, A.; Rawson, K.; Ruether, D. Using Autoregressive Integrated Moving Average (ARIMA) Modelling to Forecast Symptom Complexity in an Ambulatory Oncology Clinic: Harnessing Predictive Analytics and Patient-Reported Outcomes. Int. J. Environ. Res. Public Health 2021, 18, 8365. [Google Scholar] [CrossRef] [PubMed]
- Simon, D.K.; Tanner, C.M.; Brundin, P. Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clin. Geriatr. Med. 2020, 36, 1–12. [Google Scholar] [CrossRef]
- Fedeli, U.; Casotto, V.; Barbiellini Amidei, C.; Saia, M.; Tiozzo, S.N.; Basso, C.; Schievano, E. Parkinson’s disease related mortality: Long-term trends and impact of COVID-19 pandemic waves. Park. Relat. Disord. 2022, 98, 75–77. [Google Scholar] [CrossRef]
- Jurado-Coronel, J.C.; Cabezas, R.; Ávila Rodríguez, M.F.; Echeverria, V.; García-Segura, L.M.; Barreto, G.E. Sex differences in Parkinson’s disease: Features on clinical symptoms, treatment outcome, sexual hormones and genetics. Front. Neuroendocrinol. 2018, 50, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Boccalini, C.; Carli, G.; Pilotto, A.; Padovani, A.; Perani, D. Gender differences in dopaminergic system dysfunction in de novo Parkinson’s disease clinical subtypes. Neurobiol. Dis. 2022, 167, 105668. [Google Scholar] [CrossRef] [PubMed]
- Bourque, M.; Morissette, M.; Soulet, D.; Di Paolo, T. Impact of sex on neuroimmune contributions to Parkinson’s disease. Brain Res. Bull. 2023, 199, 110668. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Liao, C.; Lee, D.; Yu, H.; Padmanaban, M.; Kang, W.; Johnson, J.; Alshaikh, J.; Yuen, C.; Burns, M.; et al. Disparities in diagnosis, treatment and survival between Black and White Parkinson patients. Park. Relat. Disord. 2021, 87, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.K.; McGovern, R.A.; Brown, L.T.; Sheehy, J.P.; Zacharia, B.E.; Mikell, C.B.; Bruce, S.S.; Ford, B.; McKhann, G.M., 2nd. Disparities in access to deep brain stimulation surgery for Parkinson disease: Interaction between African American race and Medicaid use. JAMA Neurol. 2014, 71, 291–299. [Google Scholar] [CrossRef]
- Lapadat, A.; Nielsen, S.S.; Racette, B.; Krzyzanowski, B. Application of simazine, atrazine, and lindane pesticides are associated with incident Parkinson’s disease risk in the Rocky Mountain region. In Proceedings of the Annual Meeting of the American Academy of Neurology, Denver, CO, USA, 27 February 2024. Session 2. [Google Scholar]
- Wix, D.-F. A Regional Overview of U.S. Agriculture. AgAmerica. 4 August 2023. Available online: https://agamerica.com/blog/agriculture-regional-data/ (accessed on 31 July 2024).
- Kayitsinga, J. Latin Population Growth: Community Racial-Ethnic Makeup and Socioeconomic Well-Being in the Midwest. Julian Samora Research Institute. 2022. Available online: https://jsri.msu.edu/publications/nexo/vol-xxv/no-2-spring-2022/latino-population-growth-community-racial-ethnic-makeup-and-socioeconomic-well-b (accessed on 31 July 2024).
- Centers for Disease Control and Prevention. Parkinson’s Disease Mortality by State. National Center for Health Statistics. 3 March 2022. Available online: https://www.cdc.gov/nchs/pressroom/sosmap/parkinsons_disease_mortality/parkinsons_disease.htm (accessed on 31 July 2024).
- Priyadarshi, A.; Khuder, S.A.; Schaub, E.A.; Priyadarshi, S.S. Environmental risk factors and Parkinson’s disease: A metaanalysis. Environ. Res. 2001, 86, 122–127. [Google Scholar] [CrossRef]
- Lopes, S.; Bruno de Sousa, A.; Delalibera, M.; Namukwaya, E.; Cohen, J.; Gomes, B. The rise of home death in the COVID-19 pandemic: A population-based study of death certificate data for adults from 32 countries, 2012–2021. eClinicalMedicine 2024, 68, 102399. [Google Scholar] [CrossRef]
- Moens, K.; Houttekier, D.; Van den Block, L.; Harding, R.; Morin, L.; Marchetti, S.; Csikos, A.; Loucka, M.; Naylor, W.A.; Wilson, D.M.; et al. Place of death of people living with Parkinson’s disease: A population-level study in 11 countries. BMC Palliat. Care 2015, 14, 28. [Google Scholar] [CrossRef] [PubMed]
- Sokol, L.L.; Kluger, B.M. Palliative Care for Persons Living with Parkinson Disease. JAMA 2020, 324, 1579. [Google Scholar] [CrossRef]
- Léger, A.E.; Rizzi, S. Month-to-month all-cause mortality forecasting: A method allowing for changes in seasonal patterns. Am. J. Epidemiol. 2024, 193, 898–907. [Google Scholar] [CrossRef] [PubMed]
- Ou, Z.; Pan, J.; Tang, S.; Duan, D.; Yu, D.; Nong, H.; Wang, Z. Global Trends in the Incidence, Prevalence, and Years Lived with Disability of Parkinson’s Disease in 204 Countries/Territories from 1990 to 2019. Front. Public Health 2021, 9, 776847. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Chang, X.; Li, S.; Li, X.; Kang, C.; Yuan, W.; Lv, G. Disease Burden of Parkinson’s Disease in Asia and Its 34 Countries and Territories from 1990 to 2021: Findings from the Global Burden of Disease Study 2021. Neuroepidemiology 2024, 1–33, advance online publication. [Google Scholar] [CrossRef]
- Wanneveich, M.; Moisan, F.; Jacqmin-Gadda, H.; Elbaz, A.; Joly, P. Projections of prevalence, lifetime risk, and life expectancy of Parkinson’s disease (2010–2030) in France. Mov. Disord. Off. J. Mov. Disord. Soc. 2018, 33, 1449–1455. [Google Scholar] [CrossRef]
- GBD 2016 Parkinson’s Disease Collaborators Global, regional, and national burden of Parkinson’s disease, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018, 17, 939–953. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weresh, H.; Hermann, K.; Al-Salahat, A.; Noor, A.; Billion, T.; Chen, Y.-T.; Tauseef, A.; Abdul Jabbar, A.B. Trends and Disparities in Parkinson’s Disease Mortality in the United States with Predictions Using Machine Learning. NeuroSci 2025, 6, 6. https://doi.org/10.3390/neurosci6010006
Weresh H, Hermann K, Al-Salahat A, Noor A, Billion T, Chen Y-T, Tauseef A, Abdul Jabbar AB. Trends and Disparities in Parkinson’s Disease Mortality in the United States with Predictions Using Machine Learning. NeuroSci. 2025; 6(1):6. https://doi.org/10.3390/neurosci6010006
Chicago/Turabian StyleWeresh, Henry, Kallin Hermann, Ali Al-Salahat, Amna Noor, Taylor Billion, Yu-Ting Chen, Abubakar Tauseef, and Ali Bin Abdul Jabbar. 2025. "Trends and Disparities in Parkinson’s Disease Mortality in the United States with Predictions Using Machine Learning" NeuroSci 6, no. 1: 6. https://doi.org/10.3390/neurosci6010006
APA StyleWeresh, H., Hermann, K., Al-Salahat, A., Noor, A., Billion, T., Chen, Y.-T., Tauseef, A., & Abdul Jabbar, A. B. (2025). Trends and Disparities in Parkinson’s Disease Mortality in the United States with Predictions Using Machine Learning. NeuroSci, 6(1), 6. https://doi.org/10.3390/neurosci6010006