The Intersection of Ultra-Processed Foods, Neuropsychiatric Disorders, and Neurolaw: Implications for Criminal Justice
Abstract
:1. Introduction
“The notoriety of the Twinkie defense may not soon be rivalled…but in a system of justice based on responsibility and intentionality, the [neuropsychiatric] discoveries raise troubling questions about the morality of punishing those who may lack awareness that they are sick.”Kirk Makin, Legal Affairs Journalist, 1988 [1]
2. The Twinkie Defense
3. Neuroscientist and Jury Reactions
4. From Pseudoscience to Contemporary Science
5. Mechanistic Pathways
6. Microbiome and the Legalome
7. Intervention Studies
8. Where to Next?
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Makin, K. Is crime the product of an abnormal mind? Medical evidence now suggests that many offenders don’t really control the things they do. The Globe and Mail, 21 January 1988; A-7. [Google Scholar]
- Jones, O.D.; Wagner, A.D.; Faigman, D.L.; Raichle, M.E. Neuroscientists in court. Nat. Rev. Neurosci. 2013, 14, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Canela, C.; Buadze, A.; Dube, A.; Jackowski, C.; Pude, I.; Nellen, R.; Signorini, P.; Liebrenz, M. How do legal experts cope with medical reports and forensic evidence? The experiences, perceptions, and narratives of swiss judges and other legal experts. Front. Psychiatry 2019, 10, 18. [Google Scholar] [CrossRef] [PubMed]
- Giannouli, V.; Tsolaki, M. Legal capacity of the elderly in Greece. Hell. J. Nucl. Med. 2014, 17, 2–6. [Google Scholar] [PubMed]
- Barsky, B.A.; Stein, M.A. The United Nations convention on the rights of persons with disabilities, neuroscience, and criminal legal capacity. J. Law Biosci. 2023, 10, lsad010. [Google Scholar] [CrossRef]
- Schneider, B.S.; Arciniegas, D.B.; Harenski, C.; Clarke, G.J.B.; Kiehl, K.A.; Koenigs, M. The prevalence, characteristics, and psychiatric correlates of traumatic brain injury in incarcerated individuals: An examination in two independent samples. Brain Inj. 2021, 35, 1690–1701. [Google Scholar] [CrossRef] [PubMed]
- Witzel, J.G.; Bogerts, B.; Schiltz, K. Increased frequency of brain pathology in inmates of a high-security forensic institution: A qualitative CT and MRI scan study. Eur. Arch. Psychiatry Clin. Neurosci. 2016, 266, 533–541. [Google Scholar] [CrossRef]
- Taylor, E.N.; Timko, C.; Nash, A.; Owens, M.D.; Harris, A.H.; Finlay, A.K. Posttraumatic stress disorder and justice involvement among military veterans: A systematic review and meta-analysis. J. Trauma. Stress 2020, 33, 804–812. [Google Scholar] [CrossRef]
- Hall, D.; Lee, L.-W.; Manseau, M.W.; Pope, L.; Watson, A.C.; Compton, M.T. Major mental illness as a risk factor for incarceration. Psychiatr. Serv. 2019, 70, 1088–1093. [Google Scholar] [CrossRef]
- Hayes, H. Neurolaw: The Intersection of Science and the Law. Perspectives 2017, 25, 12. [Google Scholar]
- Logan, A.C.; Nicholson, J.J.; Schoenthaler, S.J.; Prescott, S.L. Neurolaw: Revisiting Huberty v. McDonald’s through the Lens of Nutritional Criminology and Food Crime. Laws 2024, 13, 17. [Google Scholar] [CrossRef]
- Fozdar, M.A. The history of forensic neuropsychiatry. Behav. Sci. Law 2024, 42, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Sapolsky, R.M. Determined: A Science of Life without Free Will; Penguin Press: London, UK, 2023. [Google Scholar]
- Sapolsky, R.M. Behave: The Biology of Humans at our Best and Worst; Penguin Press: London, UK, 2017. [Google Scholar]
- Steele, K.A. The law, the science, and the logic of ending the teenage death penalty. J. Pediatr. Neuropsychol. 2021, 7, 9–26. [Google Scholar] [CrossRef]
- Catley, P. The Need for a Partial Defence of Diminished Capacity and the Potential Role of the Cognitive Sciences in Helping Frame That Defence. In Neurolaw: Advances in Neuroscience, Justice & Security; Springer: Berlin/Heidelberg, Germany, 2021; pp. 51–75. [Google Scholar]
- Beech, A.R.; Carter, A.J.; Mann, R.E.; Rotshtein, P. The Wiley Blackwell Handbook of Forensic Neuroscience, 2 Volume Set; John Wiley & Sons: Hoboken, NJ, USA, 2018; Volume 1. [Google Scholar]
- Logan, A.C.; Prescott, S.L.; LaFata, E.M.; Nicholson, J.J.; Lowry, C.A. Beyond Auto-Brewery: Why Dysbiosis and the Legalome Matter to Forensic and Legal Psychology. Laws 2024, 13, 46. [Google Scholar] [CrossRef]
- Pollack, H.A.; Dosani, E. The Public Health Community Must Stand up for Greater Re-Sources Devoted to Criminal Justice Research. Milbank Q July 30. 2024. Available online: https://www.milbank.org/quarterly/opinions/the-public-health-community-must-stand-up-for-greater-resources-devoted-to-criminal-justice-research/ (accessed on 1 August 2024).
- Taylor, J.; Harp, J.; Elliott, T. Meeting the legal challenge. Neurolaw Lett. 1991, 1, 1. [Google Scholar]
- Taylor, J.S.; Harp, J.A.; Elliott, T. Neuropsychologists and neurolawyers. Neuropsychology 1991, 5, 293. [Google Scholar] [CrossRef]
- Shen, F.X. The overlooked history of neurolaw. Fordham L. Rev. 2016, 85, 667. [Google Scholar]
- Brown, E. Is “Neurolaw” Coming Soon to a Courtroom Near You? Scientific American. 7 September. Available online: https://www.scientificamerican.com/article/is-neurolaw-coming-soon-to-a-courtroom-near-you/ (accessed on 9 September 2024).
- Zaalberg, A. The effects of nutrients and neurotoxicants on aggressive behavior. J. Crim. Just. 2019, 65, 101592. [Google Scholar] [CrossRef]
- Poulter, M.; Coe, S.; Graham, C.A.-M.; Leach, B.; Tammam, J. A Systematic Review of the effect of Dietary and Nutritional Interventions on the Behaviours and Mental Health of Prisoners. Br. J. Nutr. 2024, 1–32. [Google Scholar] [CrossRef]
- Prescott, S.L.; Logan, A.C.; D’Adamo, C.R.; Holton, K.F.; Lowry, C.A.; Marks, J.; Moodie, R.; Polland, B. Nutritional Criminology: Why the Emerging Research on Ultra- Processed Food Matters to Health and Justice. Int. J. Environ. Res. Public Health 2024, 21, 120. [Google Scholar] [CrossRef]
- Heidari, M.; Khodadadi Jokar, Y.; Madani, S.; Shahi, S.; Shahi, M.S.; Goli, M. Influence of food type on human psychological—Behavioral responses and crime reduction. Nutrients 2023, 15, 3715. [Google Scholar] [CrossRef]
- Tcherni-Buzzeo, M. Dietary interventions, the gut microbiome, and aggressive behavior: Review of research evidence and potential next steps. Aggress. Behav. 2023, 49, 15–32. [Google Scholar] [CrossRef] [PubMed]
- Gulledge, L.; Oyebode, D.; Donaldson, J.R. The influence of the microbiome on aggressive behavior: An insight into age-related aggression. FEMS Microbiol. Lett. 2023, 370, fnac114. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M. The Food IS the Crime: A Focus on Food as “Food Crime”. Int. J. Crim. Justice Sci. 2022, 17, 167–187. [Google Scholar]
- Robinson, M. Eating ourselves to death: How food is a drug and what food abuse costs. Drug Sci. Policy Law. 2022, 8, 20503245221112577. [Google Scholar] [CrossRef]
- Torrey, E.F. Freudian Fraud: The Malignant Effect of Freud’s Theory on American Thought and Culture; Harper Collins Publishers: New York, NY, USA, 1992. [Google Scholar]
- Lattey, R.M.D. Sigmund Freud, pseudoscientist. Can. Fam. Physician 1969, 15, 59–63. [Google Scholar]
- Denno, D.W. Criminal law in a post-Freudian world. Univ. Ill. Law Rev. 2005, 2005, 601. [Google Scholar]
- Hasse, A.F. Keeping Wolff from the Door: California’s Diminished Capacity Concept. Calif. L. Rev. 1972, 60, 1641. [Google Scholar] [CrossRef]
- Pogash, C. Myth of the ‘Twinkie Defense’/The Verdict in the Dan White Case Wasn’t Based on His Ingestion of Junk Food. San Francisco Chronicle. 23 November. Available online: https://www.sfgate.com/health/article/Myth-of-the-Twinkie-defense-The-verdict-in-2511152.php (accessed on 20 August 2023).
- Snider, K. The infamous Twinkie defense--fact or fiction? Ann. Am. Psychother. Assoc. 2006, 9, 42–44. [Google Scholar]
- Walker, L.E.; Shapiro, D.; Akl, S.; Walker, L.E.; Shapiro, D.; Akl, S. Criminal Responsibility. In Introduction to Forensic Psychology: Clinical and Social Psychological Perspectives; Walker, L.E., Shapiro, D.A., Eds.; Springer: New York, NY, USA, 2020; pp. 37–51. [Google Scholar]
- Ewing, C.P.; McCann, J.T. Minds on Trial: Great Cases in Law and Psychology; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Halpern, D.F.; Brooks, A.; Stephenson, C. How science by media creates false certainties and resistance to conceptual change. In Malingering, Lies, and Junk Science in the Courtroom; Kitaeff, J., Ed.; Cambria Press: Amherst, NY, USA, 2007; pp. 15–33. [Google Scholar]
- Raine, A. The Anatomy of Violence; Pantheon Books: New York, NY, USA, 2013. [Google Scholar]
- Linder, D.O. The Trial of Dan White: Trial Testimony of Dr. Martin Blinder (Defense Psychiatrist). Famous Trials. University of Missouri-Kansas City School of Law. Available online: https://www.famous-trials.com/danwhite/601-blindertestimony (accessed on 19 August 2023).
- Fishbein, D.; Pease, S.; Pung, O.B. The Effects of Diet on Behavior: Implications for Criminology and Corrections; Robert J. Kutak Foundation: Omaha, NE, USA, 1988. [Google Scholar]
- Coakley, M. What turned politician into a killer? Macon Telegraph and News, 13 May 1979; 8-A. [Google Scholar]
- Krassner, P. Sex, Drugs, and the Twinkie Murders; Loompanics Unlimited: Port Townsend, WA, USA, 2000. [Google Scholar]
- Jennings, D. Dan White jury hears the final arguments. San Franscisco Chronicle, 16 May 1979; 1+14. [Google Scholar]
- Salter, K. The Trial of Dan White; Market Systems, Inc.: El Cerrito, CA, USA, 1991; p. 386. [Google Scholar]
- Ludlow, L. How White used the ‘Twinkie Defense’ and why it will be hard to use it again. The San Francisco Examiner (San Francisco, California), 9 September 1983; 6. [Google Scholar]
- Klawans, H.L. The Twinkie Defense. Litig 1991, 18, 59–64. [Google Scholar]
- Beck, M.; Reese, M. Night of gay rage. Newsweek 1979, 93, 30–31. [Google Scholar]
- Pogash, C. Inside the White jury room. The San Francisco Examiner (San Francisco, California), 24 May 1979; 1+26. [Google Scholar]
- Tillisch, K.; Labus, J.; Kilpatrick, L.; Jiang, Z.; Stains, J.; Ebrat, B.; Guyonnet, D.; Legrain–Raspaud, S.; Trotin, B.; Naliboff, B. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 2013, 144, 1394–1401.e4. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Cannon, G. The trouble with ultra-processed foods. BMJ 2022, 378, o1972. [Google Scholar] [CrossRef]
- Prescott, S.L.; D’Adamo, C.R.; Holton, K.F.; Ortiz, S.; Overby, N.; Logan, A.C. Beyond Plants: The Ultra-Processing of Global Diets Is Harming the Health of People, Places, and Planet. Int. J. Environ. Res. Public Health 2023, 20, 6461. [Google Scholar] [CrossRef] [PubMed]
- Touvier, M.; da Costa Louzada, M.L.; Mozaffarian, D.; Baker, P.; Juul, F.; Srour, B. Ultra-processed foods and cardiometabolic health: Public health policies to reduce consumption cannot wait. BMJ 2023, 383, e075294. [Google Scholar] [CrossRef] [PubMed]
- Dicken, S.J.; Batterham, R.L. Ultra-processed food: A global problem requiring a global solution. Lancet Diabetes Endocrinol. 2022, 10, 691–694. [Google Scholar] [CrossRef]
- Coletro, H.N.; Bressan, J.; Diniz, A.P.; Hermsdorff, H.H.M.; Pimenta, A.M.; Meireles, A.L.; Mendonca, R.D.; Carraro, J.C.C. Habitual polyphenol intake of foods according to NOVA classification: Implications of ultra-processed foods intake (CUME study). Int. J. Food Sci. Nutr. 2023, 74, 338–349. [Google Scholar] [CrossRef]
- Shi, Y.; Yu, C. Effect of dietary living microbe intake on depression symptom in American adult: An opinion from NHANES study. J. Affect. Disord. 2024, 347, 108–114. [Google Scholar] [CrossRef]
- Lane, M.M.; Lotfaliany, M.; Hodge, A.M.; O’Neil, A.; Travica, N.; Jacka, F.N.; Rocks, T.; Machado, P.; Forbes, M.; Ashtree, D.N.; et al. High ultra-processed food consumption is associated with elevated psychological distress as an indicator of depression in adults from the Melbourne Collaborative Cohort Study. J. Affect. Disord. 2023, 335, 57–66. [Google Scholar] [CrossRef]
- Gomez-Donoso, C.; Sanchez-Villegas, A.; Martinez-Gonzalez, M.A.; Gea, A.; Mendonca, R.D.; Lahortiga-Ramos, F.; Bes-Rastrollo, M. Ultra-processed food consumption and the incidence of depression in a Mediterranean cohort: The SUN Project. Eur. J. Nutr. 2020, 59, 1093–1103. [Google Scholar] [CrossRef]
- Adjibade, M.; Julia, C.; Alles, B.; Touvier, M.; Lemogne, C.; Srour, B.; Hercberg, S.; Galan, P.; Assmann, K.E.; Kesse-Guyot, E. Prospective association between ultra-processed food consumption and incident depressive symptoms in the French NutriNet-Sante cohort. BMC Med. 2019, 17, 78. [Google Scholar] [CrossRef]
- Lee, S.; Choi, M. Ultra-Processed Food Intakes Are Associated with Depression in the General Population: The Korea National Health and Nutrition Examination Survey. Nutrients 2023, 15, 2169. [Google Scholar] [CrossRef] [PubMed]
- Werneck, A.O.; Vancampfort, D.; Oyeyemi, A.L.; Stubbs, B.; Silva, D.R. Joint association of ultra-processed food and sedentary behavior with anxiety-induced sleep disturbance among Brazilian adolescents. J. Affect. Disord. 2020, 266, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Coletro, H.N.; Mendonca, R.D.; Meireles, A.L.; Machado-Coelho, G.L.L.; Menezes, M.C. Ultra-processed and fresh food consumption and symptoms of anxiety and depression during the COVID-19 pandemic: COVID Inconfidentes. Clin. Nutr. ESPEN 2022, 47, 206–214. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Wang, Y.; Shen, Y. Association of Ultra-processed Food Consumption with Incident Depression and Anxiety: A Population-based Cohort Study. Food Funct. 2023; in press. [Google Scholar]
- Zheng, L.; Sun, J.; Yu, X.; Zhang, D. Ultra-Processed Food Is Positively Associated with Depressive Symptoms Among United States Adults. Front. Nutr. 2020, 7, 600449. [Google Scholar] [CrossRef]
- Samuthpongtorn, C.; Nguyen, L.H.; Okereke, O.I.; Wang, D.D.; Song, M.; Chan, A.T.; Mehta, R.S. Consumption of Ultraprocessed Food and Risk of Depression. JAMA Netw. Open 2023, 6, e2334770. [Google Scholar] [CrossRef]
- Yeomans, M.R.; Armitage, R.; Atkinson, R.; Francis, H.; Stevenson, R.J. Habitual intake of fat and sugar is associated with poorer memory and greater impulsivity in humans. PLoS ONE 2023, 18, e0290308. [Google Scholar] [CrossRef]
- Steele, C.C.; Steele, T.J.; Gwinner, M.; Rosenkranz, S.K.; Kirkpatrick, K. The relationship between dietary fat intake, impulsive choice, and metabolic health. Appetite 2021, 165, 105292. [Google Scholar] [CrossRef]
- Epstein, L.H.; Paluch, R.A.; Stein, J.S.; Quattrin, T.; Mastrandrea, L.D.; Bree, K.A.; Sze, Y.Y.; Greenawald, M.H.; Biondolillo, M.J.; Bickel, W.K. Delay discounting, glycemic regulation and health behaviors in adults with prediabetes. Behav. Med. 2021, 47, 194–204. [Google Scholar] [CrossRef]
- Zahedi, H.; Kelishadi, R.; Heshmat, R.; Motlagh, M.E.; Ranjbar, S.H.; Ardalan, G.; Payab, M.; Chinian, M.; Asayesh, H.; Larijani, B.; et al. Association between junk food consumption and mental health in a national sample of Iranian children and adolescents: The CASPIAN-IV study. Nutrition 2014, 30, 1391–1397. [Google Scholar] [CrossRef]
- Mohseni, H.; Malek Mohammadi, F.; Karampour, Z.; Amini, S.; Abiri, B.; Sayyah, M. The relationship between history of dietary nutrients intakes and incidence of aggressive behavior in adolescent girls: A case-control study. Clin. Nutr. ESPEN 2021, 43, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Abiri, B.; Amini, S.; Ehsani, H.; Ehsani, M.; Adineh, P.; Mohammadzadeh, H.; Hashemi, S. Evaluation of dietary food intakes and anthropometric measures in middle-aged men with aggressive symptoms. BMC Nutr. 2023, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.C.; Lin, C.I.; Li, Y.F.; Chang, L.Y.; Chiang, T.L. The mediating effect of dietary patterns on the association between mother’s education level and the physical aggression of five-year-old children: A population-based cohort study. BMC Pediatr. 2020, 20, 221. [Google Scholar] [CrossRef] [PubMed]
- Khayyatzadeh, S.S.; Firouzi, S.; Askari, M.; Mohammadi, F.; Nikbakht-Jam, I.; Ghazimoradi, M.; Mohammadzadeh, M.; Ferns, G.A.; Ghayour-Mobarhan, M. Dietary intake of carotenoids and fiber is inversely associated with aggression score in adolescent girls. Nutr. Health 2019, 25, 203–208. [Google Scholar] [CrossRef]
- Mrug, S.; Jones, L.C.; Elliott, M.N.; Tortolero, S.R.; Peskin, M.F.; Schuster, M.A. Soft Drink Consumption and Mental Health in Adolescents: A Longitudinal Examination. J. Adolesc. Health 2021, 68, 155–160. [Google Scholar] [CrossRef]
- Gketsios, I.; Tsiampalis, T.; Kanellopoulou, A.; Vassilakou, T.; Notara, V.; Antonogeorgos, G.; Rojas-Gil, A.P.; Kornilaki, E.N.; Lagiou, A.; Panagiotakos, D.B.; et al. The Synergetic Effect of Soft Drinks and Sweet/Salty Snacks Consumption and the Moderating Role of Obesity on Preadolescents’ Emotions and Behavior: A School-Based Epidemiological Study. Life 2023, 13, 633. [Google Scholar] [CrossRef]
- Drouka, A.; Mamalaki, E.; Karavasilis, E.; Scarmeas, N.; Yannakoulia, M. Dietary and nutrient patterns and brain MRI biomarkers in dementia-free adults. Nutrients 2022, 14, 2345. [Google Scholar] [CrossRef]
- Akbaraly, T.; Sexton, C.; Zsoldos, E.; Mahmood, A.; Filippini, N.; Kerleau, C.; Verdier, J.-M.; Virtanen, M.; Gabelle, A.; Ebmeier, K.P. Association of long-term diet quality with hippocampal volume: Longitudinal cohort study. Am. J. Med. 2018, 131, 1372–1381.e4. [Google Scholar] [CrossRef] [PubMed]
- Attuquayefio, T.; Stevenson, R.J.; Oaten, M.J.; Francis, H.M. A four-day Western-style dietary intervention causes reductions in hippocampal-dependent learning and memory and interoceptive sensitivity. PLoS ONE 2017, 12, e0172645. [Google Scholar] [CrossRef]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell. Metab. 2019, 30, 226. [Google Scholar] [CrossRef]
- O’Connor, L.E.; Hall, K.D.; Herrick, K.A.; Reedy, J.; Chung, S.T.; Stagliano, M.; Courville, A.B.; Sinha, R.; Freedman, N.D.; Hong, H.G.; et al. Metabolomic Profiling of an Ultraprocessed Dietary Pattern in a Domiciled Randomized Controlled Crossover Feeding Trial. J. Nutr. 2023, 153, 2181–2192. [Google Scholar] [CrossRef] [PubMed]
- Gearhardt, A.N.; Bueno, N.B.; DiFeliceantonio, A.G.; Roberto, C.A.; Jimenez-Murcia, S.; Fernandez-Aranda, F. Social, clinical, and policy implications of ultra-processed food addiction. BMJ 2023, 383, e075354. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Rodríguez, R.; Moreno-Padilla, M.; Moreno-Domínguez, S.; Cepeda-Benito, A. Food Addiction Correlates with Emotional and Craving Reactivity to Industrially Prepared (Ultra-Processed) and Home-Cooked (Processed) Foods but not Unprocessed or Minimally Processed Foods. Food Qual. Prefer. 2023, 110, 104961. [Google Scholar] [CrossRef]
- Tristan Asensi, M.; Napoletano, A.; Sofi, F.; Dinu, M. Low-Grade Inflammation and Ultra-Processed Foods Consumption: A Review. Nutrients 2023, 15, 1546. [Google Scholar] [CrossRef]
- Lane, M.M.; Lotfaliany, M.; Forbes, M.; Loughman, A.; Rocks, T.; O’Neil, A.; Machado, P.; Jacka, F.N.; Hodge, A.; Marx, W. Higher Ultra-Processed Food Consumption Is Associated with Greater High-Sensitivity C-Reactive Protein Concentration in Adults: Cross-Sectional Results from the Melbourne Collaborative Cohort Study. Nutrients 2022, 14, 3309. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Sonestedt, E.; Borne, Y. Associations of ultra-processed food consumption, circulating protein biomarkers, and risk of cardiovascular disease. BMC Med. 2023, 21, 415. [Google Scholar] [CrossRef]
- Corbin, K.D.; Carnero, E.A.; Dirks, B.; Igudesman, D.; Yi, F.; Marcus, A.; Davis, T.L.; Pratley, R.E.; Rittmann, B.E.; Krajmalnik-Brown, R.; et al. Host-diet-gut microbiome interactions influence human energy balance: A randomized clinical trial. Nat. Commun. 2023, 14, 3161. [Google Scholar] [CrossRef]
- Zhang, P. Influence of Foods and Nutrition on the Gut Microbiome and Implications for Intestinal Health. Int. J. Mol. Sci. 2022, 23, 9588. [Google Scholar] [CrossRef]
- Yu, G.; Xu, C.; Zhang, D.; Ju, F.; Ni, Y. MetOrigin: Discriminating the origins of microbial metabolites for integrative analysis of the gut microbiome and metabolome. IMeta 2022, 1, e10. [Google Scholar] [CrossRef]
- Atzeni, A.; Martinez, M.A.; Babio, N.; Konstanti, P.; Tinahones, F.J.; Vioque, J.; Corella, D.; Fito, M.; Vidal, J.; Moreno-Indias, I.; et al. Association between ultra-processed food consumption and gut microbiota in senior subjects with overweight/obesity and metabolic syndrome. Front. Nutr. 2022, 9, 976547. [Google Scholar] [CrossRef]
- Khiroya, K.; Sekyere, E.; McEwen, B.; Bayes, J. Nutritional considerations in major depressive disorder: Current evidence and functional testing for clinical practice. Nutr. Res. Rev. 2023, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Winiarska-Mieczan, A.; Kwiecien, M.; Jachimowicz-Rogowska, K.; Donaldson, J.; Tomaszewska, E.; Baranowska-Wojcik, E. Anti-Inflammatory, Antioxidant, and Neuroprotective Effects of Polyphenols-Polyphenols as an Element of Diet Therapy in Depressive Disorders. Int. J. Mol. Sci. 2023, 24, 2258. [Google Scholar] [CrossRef] [PubMed]
- Marx, W.; Lane, M.; Hockey, M.; Aslam, H.; Berk, M.; Walder, K.; Borsini, A.; Firth, J.; Pariante, C.M.; Berding, K.; et al. Diet and depression: Exploring the biological mechanisms of action. Mol. Psychiatry 2021, 26, 134–150. [Google Scholar] [CrossRef]
- Ortega, M.; Fraile-Martínez, Ó.; García-Montero, C.; Alvarez-Mon, M.; Lahera, G.; Monserrat, J.; Llavero-Valero, M.; Gutiérrez-Rojas, L.; Molina, R.; Rodríguez-Jimenez, R. Biological role of nutrients, food and dietary patterns in the prevention and clinical management of major depressive disorder. Nutrients 2022, 14, 3099. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Rodriguez, O.; Solanas, M.; Escorihuela, R.M. Dissecting ultra-processed foods and drinks: Do they have a potential to impact the brain? Rev. Endocr. Metab. Disord. 2022, 23, 697–717. [Google Scholar] [CrossRef]
- Bhave, V.M.; Oladele, C.R.; Ament, Z.; Kijpaisalratana, N.; Jones, A.C.; Couch, C.A.; Patki, A.; Garcia Guarniz, A.-L.; Bennett, A.; Crowe, M. Associations Between Ultra-Processed Food Consumption and Adverse Brain Health Outcomes. Neurology 2024, 102, e209432. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Rodriguez, O.; Reales-Moreno, M.; Fernandez-Barres, S.; Cimpean, A.; Arnoriaga-Rodriguez, M.; Puig, J.; Biarnes, C.; Motger-Alberti, A.; Cano, M.; Fernandez-Real, J.M. Consumption of ultra-processed foods is associated with depression, mesocorticolimbic volume, and inflammation. J. Affect. Disord. 2023, 335, 340–348. [Google Scholar] [CrossRef]
- Ued, F.V.; Mathias, M.G.; Toffano, R.B.D.; Barros, T.T.; Almada, M.; Salomao, R.G.; Coelho-Landell, C.A.; Hillesheim, E.; Camarneiro, J.M.; Camelo-Junior, J.S.; et al. Vitamin B2 and Folate Concentrations are Associated with ARA, EPA and DHA Fatty Acids in Red Blood Cells of Brazilian Children and Adolescents. Nutrients 2019, 11, 2918. [Google Scholar] [CrossRef]
- Portnoy, J.; McGouldrick, S.H.; Raine, A.; Zemel, B.S.; Tucker, K.L.; Liu, J. Lower dietary intake of magnesium is associated with more callous-unemotional traits in children. Nutr. Neurosci. 2022, 25, 2314–2323. [Google Scholar] [CrossRef]
- Fiorentini, D.; Cappadone, C.; Farruggia, G.; Prata, C. Magnesium: Biochemistry, nutrition, detection, and social impact of diseases linked to its deficiency. Nutrients 2021, 13, 1136. [Google Scholar] [CrossRef]
- Gurgen, S.G.; Sayın, O.; Çetin, F.; Sarsmaz, H.Y.; Yazıcı, G.l.N.; Umur, N.; Yucel, A.T. The effect of monosodium glutamate on neuronal signaling molecules in the hippocampus and the neuroprotective effects of omega-3 fatty acids. ACS Chemical. Neurosci. 2021, 12, 3028–3037. [Google Scholar] [CrossRef] [PubMed]
- Lopresti, A.L. The effects of psychological and environmental stress on micronutrient concentrations in the body: A review of the evidence. Adv. Nutr. 2020, 11, 103–112. [Google Scholar] [CrossRef]
- Coccaro, E.F.; Lee, R.; Breen, E.C.; Irwin, M.R. Plasma and cerebrospinal fluid inflammatory markers and human aggression. Neuropsychopharmacol 2023, 48, 1060–1066. [Google Scholar] [CrossRef]
- Blomström, Å.; Kosidou, K.; Kristiansson, M.; Masterman, T. Infection during childhood and the risk of violent criminal behavior in adulthood. Brain Behav. Immun. 2020, 86, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, A.; Flanigan, M.E.; McEwen, B.S.; Russo, S.J. Aggression, social stress, and the immune system in humans and animal models. Front. Behav. Neurosci. 2018, 12, 338283. [Google Scholar] [CrossRef]
- Flux, M.; Lowry, C.A. Inflammation as a mediator of stress-related psychiatric disorders. In Neurobiology of Brain Disorders: Biological Basis of Neurological and Psychiatric Disorders; Zigmond, M.J., Wiley, C.A., Chesselet, M.-F., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 885–911. [Google Scholar]
- Takahashi, A. Associations of the immune system in aggression traits and the role of microglia as mediators. Neuropharmacology 2024, 256, 110021. [Google Scholar] [CrossRef]
- Luo, Y. The crosstalk between the “inflamed” mind and the “impulsive” mind: Activation of microglia and impulse control disorders. In Proceedings of the Second International Conference on Biological Engineering and Medical Science (ICBioMed 2022), Oxford, UK, 7–13 November 2022; pp. 650–665. [Google Scholar]
- Li, H.; Watkins, L.R.; Wang, X. Microglia in neuroimmunopharmacology and drug addiction. Mol. Psychiatry 2024, 29, 1912–1924. [Google Scholar] [CrossRef] [PubMed]
- Holton, K.F. Micronutrients may be a unique weapon against the neurotoxic triad of excitotoxicity, oxidative stress and neuroinflammation: A perspective. Front. Neurosci. 2021, 15, 726457. [Google Scholar] [CrossRef]
- Erickson, M.A.; Dohi, K.; Banks, W.A. Neuroinflammation: A common pathway in CNS diseases as mediated at the blood-brain barrier. Neuroimmunomodulation 2012, 19, 121–130. [Google Scholar] [CrossRef]
- Holton, K. The potential role of dietary intervention for the treatment of neuroinflammation. In Translational Neuroimmunology, Volume 7; Academic Press: Cambridge, MA, USA, 2023; pp. 239–266. [Google Scholar]
- Nukina, H.; Sudo, N.; Aiba, Y.; Oyama, N.; Koga, Y.; Kubo, C. Restraint stress elevates the plasma interleukin-6 levels in germ-free mice. J. Neuroimmunol. 2001, 115, 46–52. [Google Scholar] [CrossRef]
- Bostick, J.W.; Schonhoff, A.M.; Mazmanian, S.K. Gut microbiome-mediated regulation of neuroinflammation. Curr. Opin. Immunol. 2022, 76, 102177. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Baranova, A.; Cao, H.; Zhang, F. Gut microbiome and major depressive disorder: Insights from two-sample Mendelian randomization. BMC Psychiatry 2024, 24, 493. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, P.; Costabile, A.; Imakulata, F.; Pandey, N.; Hepsomali, P. A preliminary examination of gut microbiota and emotion regulation in 2-to 6-year-old children. Front. Dev. Psychol. 2024, 2, 1445642. [Google Scholar] [CrossRef]
- Devason, A.S.; Thaiss, C.A.; de la Fuente-Nunez, C. Neuromicrobiology Comes of Age: The Multifaceted Interactions between the Microbiome and the Nervous System. ACS Chem. Neurosci. 2024, 15, 2957–2965. [Google Scholar] [CrossRef]
- Fernandes, A.E.; Rosa, P.W.; Melo, M.E.; Martins, R.C.; Santin, F.G.; Moura, A.M.; Coelho, G.S.; Sabino, E.C.; Cercato, C.; Mancini, M.C. Differences in the gut microbiota of women according to ultra-processed food consumption. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 84–89. [Google Scholar] [CrossRef]
- Song, Z.; Song, R.; Liu, Y.; Wu, Z.; Zhang, X. Effects of ultra-processed foods on the microbiota-gut-brain axis: The bread-and-butter issue. Food Res. Int. 2023, 167, 112730. [Google Scholar] [CrossRef]
- Martinez Leo, E.E.; Segura Campos, M.R. Effect of ultra-processed diet on gut microbiota and thus its role in neurodegenerative diseases. Nutrition 2020, 71, 110609. [Google Scholar] [CrossRef] [PubMed]
- Naimi, S.; Viennois, E.; Gewirtz, A.T.; Chassaing, B. Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome 2021, 9, 66. [Google Scholar] [CrossRef]
- Kyaw, T.S.; Sukmak, M.; Nahok, K.; Sharma, A.; Silsirivanit, A.; Lert-Itthiporn, W.; Sansurin, N.; Senthong, V.; Anutrakulchai, S.; Sangkhamanon, S.; et al. Monosodium glutamate consumption reduces the renal excretion of trimethylamine N-oxide and the abundance of Akkermansia muciniphila in the gut. Biochem. Biophys. Res. Commun. 2022, 630, 158–166. [Google Scholar] [CrossRef]
- Berding, K.; Bastiaanssen, T.F.S.; Moloney, G.M.; Boscaini, S.; Strain, C.R.; Anesi, A.; Long-Smith, C.; Mattivi, F.; Stanton, C.; Clarke, G.; et al. Feed your microbes to deal with stress: A psychobiotic diet impacts microbial stability and perceived stress in a healthy adult population. Mol. Psychiatry 2023, 28, 601–610. [Google Scholar] [CrossRef]
- Magzal, F.; Turroni, S.; Fabbrini, M.; Barone, M.; Vitman Schorr, A.; Ofran, A.; Tamir, S. A personalized diet intervention improves depression symptoms and changes microbiota and metabolite profiles among community-dwelling older adults. Front. Nutr. 2023, 10, 1234549. [Google Scholar] [CrossRef] [PubMed]
- Bruce-Keller, A.J.; Salbaum, J.M.; Luo, M.; Blanchard, E.T.; Taylor, C.M.; Welsh, D.A.; Berthoud, H.R. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol. Psychiatry 2015, 77, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhong, Z.; Wang, B.; Xia, X.; Yao, W.; Huang, L.; Wang, Y.; Ding, W. Early-life high-fat diet-induced obesity programs hippocampal development and cognitive functions via regulation of gut commensal Akkermansia muciniphila. Neuropsychopharmacol 2019, 44, 2054–2064. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Huang, L.; Zhang, C.; Zhang, L.; Xia, X.; Zhong, Z.; Wang, B.; Wang, Y.; Man Hoi, M.P.; Ding, W.; et al. Gut commensal-derived butyrate reverses obesity-induced social deficits and anxiety-like behaviors via regulation of microglial homeostasis. Eur. J. Pharmacol. 2021, 908, 174338. [Google Scholar] [CrossRef]
- Wei, N.; Ju, M.; Su, X.; Zhang, Y.; Huang, Y.; Rao, X.; Cui, L.; Lin, Z.; Dong, Y. Transplantation of gut microbiota derived from patients with schizophrenia induces schizophrenia-like behaviors and dysregulated brain transcript response in mice. Schizophrenia 2024, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Yan, J.; Yang, T.; Zhu, J.; Li, T.; Wei, H.; Chen, J. Fecal Microbiome Transplantation from Children with Autism Spectrum Disorder Modulates Tryptophan and Serotonergic Synapse Metabolism and Induces Altered Behaviors in Germ-Free Mice. mSystems 2021, 6, e01343-20. [Google Scholar] [CrossRef]
- Kelly, J.R.; Borre, Y.; O’Brien, C.; Patterson, E.; El Aidy, S.; Deane, J.; Kennedy, P.J.; Beers, S.; Scott, K.; Moloney, G.; et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 2016, 82, 109–118. [Google Scholar] [CrossRef]
- Wolstenholme, J.T.; Saunders, J.M.; Smith, M.; Kang, J.D.; Hylemon, P.B.; Gonzalez-Maeso, J.; Fagan, A.; Zhao, D.; Sikaroodi, M.; Herzog, J.; et al. Reduced alcohol preference and intake after fecal transplant in patients with alcohol use disorder is transmissible to germ-free mice. Nat. Commun. 2022, 13, 6198. [Google Scholar] [CrossRef]
- Wang, T.; Hao, L.; Yang, K.; Feng, W.; Guo, Z.; Liu, M.; Xiao, R. Fecal microbiota transplantation derived from mild cognitive impairment individuals impairs cerebral glucose uptake and cognitive function in wild-type mice: Bacteroidetes and TXNIP-GLUT signaling pathway. Gut. Microbes. 2024, 16, 2395907. [Google Scholar] [CrossRef]
- Wang, C.; Yan, J.; Du, K.; Liu, S.; Wang, J.; Wang, Q.; Zhao, H.; Li, M.; Yan, D.; Zhang, R.; et al. Intestinal microbiome dysbiosis in alcohol-dependent patients and its effect on rat behaviors. mBio 2023, 14, e0239223. [Google Scholar] [CrossRef]
- Uzan-Yulzari, A.; Turjeman, S.; Moadi, L.; Getselter, D.; Rautava, S.; Isolauri, E.; Khatib, S.; Elliott, E.; Koren, O. A gut reaction? The role of the microbiome in aggression. Brain Behav. Immun. 2024, 122, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wei, H.; Qin, X.; Song, H.; Yang, M.; Zhang, L.; Liu, Y.; Wang, Z.; Zhang, Y.; Lai, Y. Is anxiety and depression transmissible?—Depressed mother rats transmit anxiety-and depression-like phenotypes to cohabited rat pups through gut microbiota assimilation. J. Affect. Disord. 2024, 366, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Vanuytsel, T.; van Wanrooy, S.; Vanheel, H.; Vanormelingen, C.; Verschueren, S.; Houben, E.; Salim Rasoel, S.; Tomicronth, J.; Holvoet, L.; Farre, R.; et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 2014, 63, 1293–1299. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kan, E.M.; Lu, J.; Cao, Y.; Wong, R.K.; Keshavarzian, A.; Wilder-Smith, C.H. Combat-training increases intestinal permeability, immune activation and gastrointestinal symptoms in soldiers. Aliment. Pharm. Ther. 2013, 37, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Flux, M.; Lowry, C.A. Finding intestinal fortitude: Integrating the microbiome into a holistic view of depression mechanisms, treatment, and resilience. Neurobiol. Dis. 2020, 135, 104578. [Google Scholar] [CrossRef] [PubMed]
- Noble, E.E.; Hsu, T.M.; Kanoski, S.E. Gut to Brain Dysbiosis: Mechanisms Linking Western Diet Consumption, the Microbiome, and Cognitive Impairment. Front. Behav. Neurosci. 2017, 11, 9. [Google Scholar] [CrossRef]
- Brouillet, J.Z.; Boltri, M.; Lengvenyte, A.; Lajnef, M.; Richard, J.R.; Barrau, C.; Tamouza, R. Association of markers of inflammation and intestinal permeability in suicidal patients with major mood disorders. J. Affect. Disord. Rep. 2023, 14, 100624. [Google Scholar] [CrossRef]
- Voigt, R.M.; Zalta, A.K.; Raeisi, S.; Zhang, L.; Brown, J.M.; Forsyth, C.B.; Boley, R.A.; Held, P.; Pollack, M.H.; Keshavarzian, A. Abnormal intestinal milieu in posttraumatic stress disorder is not impacted by treatment that improves symptoms. Am. J. Physiol. Gastrointest. Liver Physiol. 2022, 323, G61–G70. [Google Scholar] [CrossRef]
- Asejeje, F.O.; Abiola, M.A.; Adeyemo, O.A.; Ogunro, O.B.; Ajayi, A.M. Exogenous monosodium glutamate exacerbates lipopolysaccharide-induced neurobehavioral deficits, oxidative damage, neuroinflammation, and cholinergic dysfunction in rat brain. Neurosci. Lett. 2024, 825, 137710. [Google Scholar] [CrossRef]
- Abdelhamid, W.G.; Mowaad, N.A.; Asaad, G.F.; Galal, A.F.; Mohammed, S.S.; Mostafa, O.E.; Sadek, D.R.; Elkhateb, L.A. The potential protective effect of Camellia Sinensis in mitigating monosodium glutamate-induced neurotoxicity: Biochemical and histological study in male albino rats. Metab. Brain Dis. 2024, 39, 953–966. [Google Scholar] [CrossRef]
- Abu-Elfotuh, K.; Abdel-Sattar, S.A.; Abbas, A.N.; Mahran, Y.F.; Alshanwani, A.R.; Hamdan, A.M.E.; Atwa, A.M.; Reda, E.; Ahmed, Y.M.; Zaghlool, S.S. The protective effect of thymoquinone or/and thymol against monosodium glutamate-induced attention-deficit/hyperactivity disorder (ADHD)-like behavior in rats: Modulation of Nrf2/HO-1, TLR4/NF-κB/NLRP3/caspase-1 and Wnt/β-Catenin signaling pathways in rat model. Biomed. Pharmacother. 2022, 155, 113799. [Google Scholar]
- Ahangari, H.; Bahramian, B.; Khezerlou, A.; Tavassoli, M.; Kiani-Salmi, N.; Tarhriz, V.; Ehsani, A. Association between monosodium glutamate consumption with changes in gut microbiota and related metabolic dysbiosis—A systematic review. Food Sci. Nutr. 2024, 12, 5285–5295. [Google Scholar] [CrossRef] [PubMed]
- Gasperotti, M.; Passamonti, S.; Tramer, F.; Masuero, D.; Guella, G.; Mattivi, F.; Vrhovsek, U. Fate of microbial metabolites of dietary polyphenols in rats: Is the brain their target destination? ACS Chem. Neurosci. 2015, 6, 1341–1352. [Google Scholar] [CrossRef] [PubMed]
- Xue, F.; He, Z.; Zhuang, D.Z.; Lin, F. The influence of gut microbiota on circulating inflammatory cytokines and host: A Mendelian randomization study with meta-analysis. Life Sci. 2023, 332, 122105. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, T.; He, L.; Fu, J.Y.; Deng, H.X.; Xue, X.L.; Chen, B.T. Bacterial Translocation Associates With Aggression in Schizophrenia Inpatients. Front. Syst. Neurosci. 2021, 15, 704069. [Google Scholar] [CrossRef]
- Deng, H.; He, L.; Wang, C.; Zhang, T.; Guo, H.; Zhang, H.; Song, Y.; Chen, B. Altered gut microbiota and its metabolites correlate with plasma cytokines in schizophrenia inpatients with aggression. BMC Psychiatry 2022, 22, 629. [Google Scholar] [CrossRef]
- Russo, S.; Chan, K.; Li, L.; Parise, L.; Cathomas, F.; LeClair, K.; Shimo, Y.; Lin, H.Y.; Durand-de Cuttoli, R.; Aubry, A.; et al. Stress-activated brain-gut circuits disrupt intestinal barrier integrity and social behaviour. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Zeamer, A.L.; Salive, M.C.; An, X.; Beaudoin, F.L.; House, S.L.; Stevens, J.S.; Zeng, D.; Neylan, T.C.; Clifford, G.D.; Linnstaedt, S.D.; et al. Association between microbiome and the development of adverse posttraumatic neuropsychiatric sequelae after traumatic stress exposure. Transl. Psychiatry 2023, 13, 354. [Google Scholar] [CrossRef]
- Jakobi, B.; Cimetti, C.; Mulder, D.; Vlaming, P.; Franke, B.; Hoogman, M.; Arias-Vasquez, A. The Role of Diet and the Gut Microbiota in Reactive Aggression and Adult ADHD-An Exploratory Analysis. Nutrients 2024, 16, 2174. [Google Scholar] [CrossRef]
- Meijnikman, A.S.; Nieuwdorp, M.; Schnabl, B. Endogenous ethanol production in health and disease. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 556–571. [Google Scholar] [CrossRef]
- Paton, A. Alcohol in the body. BMJ 2005, 330, 85–87. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.M.; Wissel, E.F.; Breed, M.F. Policy implications of the microbiota-gut-brain axis. Trends Microbiol. 2024, 32, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Schoenthaler, S.J. The effect of sugar on the treatment and control of antisocial behavior: A double-blind study of an incarcerated juvenile population. Int. J. Biosoc. Res. 1982, 3, 1–9. [Google Scholar]
- Schoenthaler, S.J. Diet and crime: An empirical examination of the value of nutrition in the control and treatment of incarcerated juvenile offenders. Int. J. Biosoc. Res. 1983, 4, 25–39. [Google Scholar] [CrossRef]
- Schoenthaler, S.J. The Los Angeles Probation Department diet-behavior program: An empirical analysis of six institutional settings. Int. J. Biosoc. Res. 1983, 5, 88–98. [Google Scholar] [CrossRef]
- Schoenthaler, S.J. The Alabama diet-behavior program: An empirical evaluation at the Coosa Valley Regional Detention Center. Int. J. Biosoc. Res. 1983, 5, 79–87. [Google Scholar] [CrossRef]
- Schoenthaler, S.J. Diet Crime and Delinquency-A Review of the 1983 and 1984 Studies. Int. J. Biosoc. Res. 1984, 6, 141–153. [Google Scholar]
- Schoenthaler, S.J.; Bier, I.D. Diet and delinquency: Empirical testing of seven theories. Int. J. Biosoc. Res. 1985, 7, 108–131. [Google Scholar] [CrossRef]
- Giannouli, V.; Stamovlasis, D.; Tsolaki, M. Longitudinal study of depression on amnestic mild cognitive impairment and financial capacity. Clin. Gerontol. 2022, 45, 708–714. [Google Scholar] [CrossRef]
- Giannouli, V.; Tsolaki, M. Vascular dementia, depression, and financial capacity assessment. Alzheimer Dis. Assoc. Disord. 2021, 35, 84–87. [Google Scholar] [CrossRef]
- Giannouli, V.; Tsolaki, M. Unraveling Ariadne’s thread into the labyrinth of aMCI: Depression and financial capacity. Alzheimer Dis. Assoc. Disord. 2021, 35, 363–365. [Google Scholar] [CrossRef] [PubMed]
- Giannouli, V.; Tsolaki, M. Mild Alzheimer Disease, financial capacity, and the role of depression: Eyes wide shut? Alzheimer Dis. Assoc. Disord. 2021, 35, 360–362. [Google Scholar] [CrossRef]
- Giannouli, V.; Tsolaki, M. Is depression or apathy playing a key role in predicting financial capacity in Parkinson’s Disease with Dementia and Frontotemporal Dementia? Brain Sci. 2021, 11, 785. [Google Scholar] [CrossRef] [PubMed]
- Giannouli, V.; Tsolaki, M. Beneath the Top of the Iceberg: Financial Capacity Deficits in Mixed Dementia with and without Depression. Healthcare 2023, 11, 505. [Google Scholar] [CrossRef]
- Lu, J.; Zhao, X.; Wei, X.; He, G. Risky decision-making in major depressive disorder: A three-level meta-analysis. Int. J. Clin. Health Psychol. 2024, 24, 100417. [Google Scholar] [CrossRef]
- Noreen, S.; Dritschel, B. In the here and now: Future thinking and social problem-solving in depression. PLoS ONE 2022, 17, e0270661. [Google Scholar] [CrossRef] [PubMed]
- Jacka, F.N.; O’Neil, A.; Opie, R.; Itsiopoulos, C.; Cotton, S.; Mohebbi, M.; Castle, D.; Dash, S.; Mihalopoulos, C.; Chatterton, M.L.; et al. A randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES’ trial). BMC Med. 2017, 15, 23. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.; Lotfaliany, M.; Machado, P.; Jacka, F.; Mohebbi, M.; O’Neil, A.; Werneck, A.O.; Monteiro, C.; Loughman, A.; Rocks, T.; et al. Change in Ultra-Processed Food Consumption Moderates Clinical Trial Outcomes in Depression: A Secondary Analysis of the SMILES Randomised Controlled Trial. Preprints 2023, 2023081110. [Google Scholar] [CrossRef]
- Francis, H.M.; Stevenson, R.J.; Chambers, J.R.; Gupta, D.; Newey, B.; Lim, C.K. A brief diet intervention can reduce symptoms of depression in young adults—A randomised controlled trial. PLoS ONE 2019, 14, e0222768. [Google Scholar] [CrossRef]
- Agarwal, U.; Mishra, S.; Xu, J.; Levin, S.; Gonzales, J.; Barnard, N.D. A multicenter randomized controlled trial of a nutrition intervention program in a multiethnic adult population in the corporate setting reduces depression and anxiety and improves quality of life: The GEICO study. Am. J. Health. Promot. 2015, 29, 245–254. [Google Scholar] [CrossRef]
- Parletta, N.; Zarnowiecki, D.; Cho, J.; Wilson, A.; Bogomolova, S.; Villani, A.; Itsiopoulos, C.; Niyonsenga, T.; Blunden, S.; Meyer, B.; et al. A Mediterranean-style dietary intervention supplemented with fish oil improves diet quality and mental health in people with depression: A randomized controlled trial (HELFIMED). Nutr. Neurosci. 2019, 22, 474–487. [Google Scholar] [CrossRef] [PubMed]
- Bayes, J.; Schloss, J.; Sibbritt, D. The effect of a Mediterranean diet on the symptoms of depression in young males (the “AMMEND: A Mediterranean Diet in MEN with Depression” study): A randomized controlled trial. Am. J. Clin. Nutr. 2022, 116, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Suarez, B.M.; Lahortiga-Ramos, F.; Sayon-Orea, C.; Hernandez-Fleta, J.L.; Gonzalez-Pinto, A.; Molero, P.; Vega-Perez, R.; Sanchez-Villegas, A.; Cabrera, C.; Pla, J.; et al. Effect of a dietary intervention based on the Mediterranean diet on the quality of life of patients recovered from depression: Analysis of the PREDIDEP randomized trial. Exp. Gerontol. 2023, 175, 112149. [Google Scholar] [CrossRef] [PubMed]
- McMillan, L.; Owen, L.; Kras, M.; Scholey, A. Behavioural effects of a 10-day Mediterranean diet. Results from a pilot study evaluating mood and cognitive performance. Appetite 2011, 56, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Firth, J.; Marx, W.; Dash, S.; Carney, R.; Teasdale, S.B.; Solmi, M.; Stubbs, B.; Schuch, F.B.; Carvalho, A.F.; Jacka, F. The effects of dietary improvement on symptoms of depression and anxiety: A meta-analysis of randomized controlled trials. Psychosom. Med. 2019, 81, 265–280. [Google Scholar] [CrossRef]
- Schoenthaler, S.J. The effects of citrus on the treatment and control of antisocial behavior: A double-blind study of an incarcerated juvenile population. Int. J. Biosoc. Res. 1983, 5, 107–117. [Google Scholar] [CrossRef]
- Choi, J.; Kim, J.H.; Park, M.; Lee, H.J. Effects of Flavonoid-Rich Orange Juice Intervention on Major Depressive Disorder in Young Adults: A Randomized Controlled Trial. Nutrients 2022, 15, 145. [Google Scholar] [CrossRef]
- Gillies, N.A.; Wilson, B.C.; Miller, J.R.; Roy, N.C.; Scholey, A.; Braakhuis, A.J. Effects of a Flavonoid-Rich Blackcurrant Beverage on Markers of the Gut-Brain Axis in Healthy Females: Secondary Findings From a 4-Week Randomized Crossover Control Trial. Curr. Dev. Nutr. 2024, 8, 102158. [Google Scholar] [CrossRef]
- Maury, A.A.; Holton, K.F. Biomarkers Associated with Depression Improvement in Veterans with Gulf War Illness Using the Low-Glutamate Diet. Nutrients 2024, 16, 2255. [Google Scholar] [CrossRef]
- Murray, S.L.; Holton, K.F. Effects of a diet low in excitotoxins on PTSD symptoms and related biomarkers. Nutr. Neurosci. 2022, 27, 1–11. [Google Scholar] [CrossRef]
- Shinn, L.M.; Mansharamani, A.; Baer, D.J.; Novotny, J.A.; Charron, C.S.; Khan, N.A.; Zhu, R.; Holscher, H.D. Fecal Metagenomics to Identify Biomarkers of Food Intake in Healthy Adults: Findings from Randomized, Controlled, Nutrition Trials. J. Nutr. 2024, 154, 271–283. [Google Scholar] [CrossRef]
- Raine, A.; Brodrick, L. Omega-3 supplementation reduces aggressive behavior: A meta-analytic review of randomized controlled trials. Aggress. Violent Behav. 2024, 78, 101956. [Google Scholar] [CrossRef] [PubMed]
- Gesch, C.B.; Hammond, S.M.; Hampson, S.E.; Eves, A.; Crowder, M.J. Influence of supplementary vitamins, minerals and essential fatty acids on the antisocial behaviour of young adult prisoners: Randomised, placebo-controlled trial. Br. J. Psychiatry 2002, 181, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Choy, O. Nutritional factors associated with aggression. Front. Psychiatry 2023, 14, 1176061. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.D.; Tung, T.H.; Teng, C.Y.; Chang, C.H.; Chen, Y.C.; Huang, H.Y.; Lee, H.C.; Huang, S.Y. Fish oil ameliorates neuropsychiatric behaviors and gut dysbiosis by elevating selected microbiota-derived metabolites and tissue tight junctions in rats under chronic sleep deprivation. Food Funct. 2022, 13, 2662–2680. [Google Scholar] [CrossRef]
- Falkenstein, M.; Simon, M.-C.; Mantri, A.; Weber, B.; Koban, L.; Plassmann, H. Impact of the gut microbiome composition on social decision-making. PNAS Nexus 2024, 3, pgae166. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, B.; Zhang, J.; Dong, J.; Ma, J.; Zhang, Y.; Jin, K.; Lu, J. Effect of prebiotics, probiotics, synbiotics on depression: Results from a meta-analysis. BMC Psychiatry 2023, 23, 477. [Google Scholar] [CrossRef]
- Zhu, R.; Fang, Y.; Li, H.; Liu, Y.; Wei, J.; Zhang, S.; Wang, L.; Fan, R.; Wang, L.; Li, S.; et al. Psychobiotic Lactobacillus plantarum JYLP-326 relieves anxiety, depression, and insomnia symptoms in test anxious college via modulating the gut microbiota and its metabolism. Front. Immunol. 2023, 14, 1158137. [Google Scholar] [CrossRef]
- Steenbergen, L.; Sellaro, R.; van Hemert, S.; Bosch, J.A.; Colzato, L.S. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav. Immun. 2015, 48, 258–264. [Google Scholar] [CrossRef]
- Matis, L.; Alexandru, B.A.; Fodor, R.; Daina, L.G.; Ghitea, T.C.; Vlad, S. Effect of Probiotic Therapy on Neuropsychiatric Manifestations in Children with Multiple Neurotransmitter Disorders: A Study. Biomedicines 2023, 11, 2643. [Google Scholar] [CrossRef]
- Arteaga-Henriquez, G.; Rosales-Ortiz, S.K.; Arias-Vasquez, A.; Bitter, I.; Ginsberg, Y.; Ibanez-Jimenez, P.; Kilencz, T.; Lavebratt, C.; Matura, S.; Reif, A.; et al. Treating impulsivity with probiotics in adults (PROBIA): Study protocol of a multicenter, double-blind, randomized, placebo-controlled trial. Trials 2020, 21, 161. [Google Scholar] [CrossRef] [PubMed]
- Ueda, E.; Matsunaga, M.; Fujihara, H.; Kajiwara, T.; Takeda, A.K.; Watanabe, S.; Hagihara, K.; Myowa, M. Temperament in early childhood is associated with gut microbiota composition and diversity. Dev. Psychobiol. 2024, 66, e22542. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Wu, X.; Yang, Y.; Gu, L.; Liu, L.; Yang, Y.; Zhou, J.; Wu, C.; Jin, F. Marked shifts in gut microbial structure and neurotransmitter metabolism in fresh inmates revealed a close link between gut microbiota and mental health: A case-controlled study. Int. J. Clin. Health Psychol. 2022, 22, 100323. [Google Scholar] [CrossRef] [PubMed]
- Prescott, S.L.; Logan, A.C.; LaFata, E.M.; Naik, A.; Nelson, D.H.; Robinson, M.B.; Soble, L. Crime and Nourishment: A Narrative Review Examining Ultra-Processed Foods, Brain, and Behavior. Dietetics 2024, 3, 318–345. [Google Scholar] [CrossRef]
- LaFata, E.M.; Allison, K.C.; Audrain-McGovern, J.; Forman, E.M. Ultra-Processed Food Addiction: A Research Update. Curr. Obes. Rep. 2024, 13, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Murray, L.; Shaw, D.S.; Forbes, E.E.; Hyde, L.W. Reward-related neural correlates of antisocial behavior and callous–unemotional traits in young men. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2017, 2, 346–354. [Google Scholar] [CrossRef]
- Mesas, A.E.; de Andrade, S.M.; Melanda, F.N.; López-Gil, J.F.; Beneit, N.; Martínez-Vizcaíno, V.; Jiménez-López, E. Is Violence Victimization Associated with the Consumption of Ultra-Processed Food? A Population-Based Study with 96 K Adolescent Students Exploring the Mediating Role of Psychoactive Substance Use. Int. J. Ment. Health Addict. 2024, 1–7. [Google Scholar] [CrossRef]
- Dallman, M.F.; Akana, S.F.; Laugero, K.D.; Gomez, F.; Manalo, S.; Bell, M.; Bhatnagar, S. A spoonful of sugar: Feedback signals of energy stores and corticosterone regulate responses to chronic stress. Physiol. Behav. 2003, 79, 3–12. [Google Scholar] [CrossRef]
- Mesas, A.E.; Girotto, E.; Rodrigues, R.; Martínez-Vizcaíno, V.; Jiménez-López, E.; López-Gil, J.F. Ultra-processed food consumption is associated with alcoholic beverage drinking, tobacco smoking, and illicit drug use in adolescents: A nationwide population-based study. Int. J. Ment. Health Addict. 2023, 1–24. [Google Scholar]
- Samulėnaitė, S.; García-Blanco, A.; Mayneris-Perxachs, J.; Domingo-Rodríguez, L.; Cabana-Domínguez, J.; Fernàndez-Castillo, N.; Gago-García, E.; Pineda-Cirera, L.; Burokas, A.; Espinosa-Carrasco, J. Gut microbiota signatures of vulnerability to food addiction in mice and humans. Gut, 2024; ahead of print. [Google Scholar] [CrossRef]
- LaFata, E.M.; Worwag, K.; Derrigo, K.; Hessler, C.; Allison, K.C.; Juarascio, A.S.; Gearhardt, A.N. Development of the Food Addiction Symptom Inventory: The first clinical interview to assess ultra-processed food addiction. Psychol. Assess. 2024; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Basile, A.; Ruiz-Tejada, A.; Mohr, A.; Morales, A.; Hjelm, E.; Brand-Miller, J.; Atkinson, F.; Sweazea, K. Food Processing According to the NOVA Classification is Not Associated with Glycemic Index and Glycemic Load: Results from an Analysis of 1995 Food Items. Am. J. Clin. Nutr. 2024; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Bushman, B.J.; DeWall, C.N.; Pond, R.S., Jr.; Hanus, M.D. Low glucose relates to greater aggression in married couples. Proc. Natl. Acad. Sci. 2014, 111, 6254–6257. [Google Scholar] [CrossRef] [PubMed]
- Strang, S.; Hoeber, C.; Uhl, O.; Koletzko, B.; Münte, T.F.; Lehnert, H.; Dolan, R.J.; Schmid, S.M.; Park, S.Q. Impact of nutrition on social decision making. Proc. Natl. Acad. Sci. USA 2017, 114, 6510–6514. [Google Scholar] [CrossRef]
- Lucius, K. “Brain Fog”: Exploring a Symptom Commonly Encountered in Clinical Practice. Altern. Complement. Ther. 2021, 27, 23–30. [Google Scholar] [CrossRef]
- Becker-Blease, K.; Freyd, J.J. Dissociation and memory for perpetration among convicted sex offenders. J. Trauma Dissociation 2007, 8, 69–80. [Google Scholar] [CrossRef]
- Hopwood, J.; Snell, H. Amnesia in relation to crime. J. Ment. Sci. 1933, 79, 27–41. [Google Scholar] [CrossRef]
- Geng, F.; Lu, H.; Zhang, Y.; Zhan, N.; Zhang, L.; Liu, M. Dissociative depression and its related clinical and psychological characteristics among Chinese prisoners: A latent class analysis. Curr. Psychol. 2023, 42, 15070–15079. [Google Scholar] [CrossRef]
- Debowska, A.; Boduszek, D.; Ochman, M.; Hrapkowicz, T.; Gaweda, M.; Pondel, A.; Horeczy, B. Brain Fog Scale (BFS): Scale development and validation. Pers. Indiv. Differ. 2024, 216, 112427. [Google Scholar] [CrossRef]
- Jehangir, A.; Tetangco, E.P.; Ghafoor, A.; Yan, Y.; Laufer, A.; Karunaratne, T.; Inman, B.; Sharma, A.; Rao, S. S520 Development and Validation of Brain Fog Questionnaire in Patients and Healthy Volunteers. Am. J. Gastroenterol. 2022, 117, e368. [Google Scholar] [CrossRef]
- Rao, S.S.; Rehman, A.; Yu, S.; De Andino, N.M. Brain fogginess, gas and bloating: A link between SIBO, probiotics and metabolic acidosis. Clin. Transl. Gastroenterol. 2018, 9, e162. [Google Scholar] [CrossRef] [PubMed]
- Sheedy, J.R.; Wettenhall, R.E.; Scanlon, D.; Gooley, P.R.; Lewis, D.P.; Mcgregor, N.; Stapleton, D.I.; Butt, H.L.; De Meirleir, K.L. Increased d-lactic acid intestinal bacteria in patients with chronic fatigue syndrome. In Vivo 2009, 23, 621–628. [Google Scholar]
- George, D.T.; Hibbeln, J.R.; Ragan, P.W.; Umhau, J.C.; Phillips, M.J.; Doty, L.; Hommer, D.; Rawlings, R.R. Lactate-induced rage and panic in a select group of subjects who perpetrate acts of domestic violence. Biol. Psychiatry 2000, 47, 804–812. [Google Scholar] [CrossRef]
- Furlan, F.; Hoshino, K. Fighting by sleep-deprived rats as a possible manifestation of panic: Effects of sodium lactate. Braz. J. Med. Biol. Res. 2001, 34, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Petersen, C. D-lactic acidosis. Nutr. Clin. Pract. 2005, 20, 634–645. [Google Scholar] [CrossRef]
- Hanstock, T.L.; Clayton, E.H.; Li, K.M.; Mallet, P.E. Anxiety and aggression associated with the fermentation of carbohydrates in the hindgut of rats. Physiol. Behav. 2004, 82, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Kowlgi, N.G.; Chhabra, L. D-lactic acidosis: An underrecognized complication of short bowel syndrome. Gastroenterol. Res. Pract. 2015, 2015, 476215. [Google Scholar] [CrossRef]
- Lefèvre, C.R.; Turban, A.; Paz, D.L.; Penven, M.; René, C.; Langlois, B.; Pawlowski, M.; Collet, N.; Piau, C.; Cattoir, V. Early detection of plasma D-lactate: Toward a new highly-specific biomarker of bacteraemia? Heliyon 2023, 9, e16466. [Google Scholar] [CrossRef]
- Hecht, A.L.; Harling, L.C.; Friedman, E.S.; Tanes, C.; Lee, J.; Firrman, J.; Hao, F.; Tu, V.; Liu, L.; Patterson, A.D. Dietary carbohydrates regulate intestinal colonization and dissemination of Klebsiella pneumoniae. J. Clin. Investig. 2024, 134, e174726. [Google Scholar] [CrossRef]
- Zhu, Y.; Mierau, J.O.; Riphagen, I.J.; Heiner-Fokkema, M.R.; Dekker, L.H.; Navis, G.J.; Bakker, S.J.L. Types of fish consumption differ across socioeconomic strata and impact differently on plasma fish-based omega-3 fatty acids: A cross-sectional study. Eur. J. Nutr. 2024, 63, 435–443. [Google Scholar] [CrossRef]
- Aljahdali, A.A.; Rossato, S.L.; Baylin, A. Ultra-processed foods consumption among a USA representative sample of middle-older adults: A cross-sectional analysis. Br. J. Nutr. 2024, 131, 1461–1472. [Google Scholar] [CrossRef] [PubMed]
- Maury, A.A.; Holton, K. The Low Glutamate Diet Improves Sleep and Cognition in Veterans With Gulf War Illness. Curr. Develop. Nutr. 2024, 8, 103202. [Google Scholar] [CrossRef]
- Gbadamosi, I.; Yawson, E.O.; Akesinro, J.; Adeleke, O.; Tokunbo, O.; Bamisi, O.; Ibrahim-Abdulkareem, R.; Awoniran, P.; Gbadamosi, R.; Lambe, E.; et al. Vitamin D attenuates monosodium glutamate-induced behavioural anomalies, metabolic dysregulation, cholinergic impairment, oxidative stress, and astrogliosis in rats. Neurotoxicology 2024, 103, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Wiss, D.A.; LaFata, E.M. Ultra-Processed Foods and Mental Health: Where Do Eating Disorders Fit into the Puzzle? Nutrients 2024, 16, 1955. [Google Scholar] [CrossRef]
- Fazzino, T.L.; Jun, D.; Chollet-Hinton, L.; Bjorlie, K. US tobacco companies selectively disseminated hyper-palatable foods into the US food system: Empirical evidence and current implications. Addiction 2024, 119, 62–71. [Google Scholar] [CrossRef]
- de Noronha, S.I.R.; de Moraes, L.A.G.; Hassell, J.E., Jr.; Stamper, C.E.; Arnold, M.R.; Heinze, J.D.; Foxx, C.L.; Lieb, M.M.; Cler, K.E.; Karns, B.L. High-fat diet, microbiome-gut-brain axis signaling, and anxiety-like behavior in male rats. Biol. Res. 2024, 57, 23. [Google Scholar] [CrossRef]
- Reuter, M.; Zamoscik, V.; Plieger, T.; Bravo, R.; Ugartemendia, L.; Rodriguez, A.B.; Kirsch, P. Tryptophan-rich diet is negatively associated with depression and positively linked to social cognition. Nutr. Res. 2021, 85, 14–20. [Google Scholar] [CrossRef]
- Chojnacki, C.; Gąsiorowska, A.; Popławski, T.; Konrad, P.; Chojnacki, M.; Fila, M.; Blasiak, J. Beneficial effect of increased tryptophan intake on its metabolism and mental state of the elderly. Nutrients 2023, 15, 847. [Google Scholar] [CrossRef]
- Zamoscik, V.; Schmidt, S.N.L.; Bravo, R.; Ugartemendia, L.; Plieger, T.; Rodríguez, A.B.; Reuter, M.; Kirsch, P. Tryptophan-enriched diet or 5-hydroxytryptophan supplementation given in a randomized controlled trial impacts social cognition on a neural and behavioral level. Sci. Rep. 2021, 11, 21637. [Google Scholar] [CrossRef]
- Young, S.N. The effect of raising and lowering tryptophan levels on human mood and social behaviour. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20110375. [Google Scholar] [CrossRef]
- Duquenne, P.; Capperella, J.; Fezeu, L.K.; Srour, B.; Benasi, G.; Hercberg, S.; Touvier, M.; Andreeva, V.A.; St-Onge, M.-P. The association between ultra-processed food consumption and chronic insomnia in the NutriNet-Santé Study. J. Acad. Nutr. Diet. 2024, 124, 1109–1117.e2. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Sawrey-Kubicek, L.; Beals, E.; Rhodes, C.H.; Houts, H.E.; Sacchi, R.; Zivkovic, A.M. Human gut microbiome composition and tryptophan metabolites were changed differently by fast food and Mediterranean diet in 4 days: A pilot study. Nutr. Res. 2020, 77, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Salzer, H.M. Relative hypoglycemia as a cause of neuropsychiatric illness. J. Natl. Med. Assoc. 1966, 58, 12. [Google Scholar]
- Wilder, J. Sugar metabolism and its relation to criminology. In Handbook of Correctional Psychology; Lindner, R.M., Seliger, R.V., Eds.; Philosophical Library: New York, NY, USA, 1947; pp. 98–129. [Google Scholar]
- Donohoe, R.T.; Benton, D. Blood glucose control and aggressiveness in females. Pers. Indiv. Differ. 1999, 26, 905–911. [Google Scholar] [CrossRef]
- Benton, D.; Kumari, N.; Brain, P.F. Mild hypoglycaemia and questionnaire measures of aggression. Biol. Psychol. 1982, 14, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Virkkunen, M. Reactive Hypoglyceinic Tendency among Habitually Violent Offenders: A Further Study by Means of the Glucose Tolerance Test. Neuropsychobiology 1982, 8, 35–40. [Google Scholar] [CrossRef]
- Virkkunen, M. Insulin-Secretion during the Glucose-Tolerance Test among Habitually Violent and Impulsive Offenders. Aggress. Behav. 1986, 12, 303–310. [Google Scholar] [CrossRef]
- Virkkunen, M. Insulin secretion during the glucose tolerance test in antisocial personality. Br. J. Psychiatry 1983, 142, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Virkkunen, M. Reactive hypoglycemic tendency among arsonists. Acta Psychiatr. Scand. 1984, 69, 445–452. [Google Scholar] [CrossRef]
- Pfundmair, M.; DeWall, C.N.; Fries, V.; Geiger, B.; Kramer, T.; Krug, S.; Frey, D.; Aydin, N. Sugar or spice: Using I3 metatheory to understand how and why glucose reduces rejection-related aggression. Aggress. Behav. 2015, 41, 537–543. [Google Scholar] [CrossRef]
- Xu, H.; Bègue, L.; Sauve, L.; Bushman, B.J. Sweetened blood sweetens behavior. Ego depletion, glucose, guilt, and prosocial behavior. Appetite 2014, 81, 8–11. [Google Scholar] [CrossRef] [PubMed]
- DeWall, C.N.; Deckman, T.; Gailliot, M.T.; Bushman, B.J. Sweetened blood cools hot tempers: Physiological self-control and aggression. Aggress. Behav. 2011, 37, 73–80. [Google Scholar] [CrossRef]
- Virkkunen, M.; Rawlings, R.; Tokola, R.; Poland, R.E.; Guidotti, A.; Nemeroff, C.; Bissette, G.; Kalogeras, K.; Karonen, S.-L.; Linnoila, M. CSF biochemistries, glucose metabolism, and diurnal activity rhythms in alcoholic, violent offenders, fire setters, and healthy volunteers. Arch. Gen. Psychiatry 1994, 51, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P. Neuroscientific Paradigms and their Implications for Jurisprudential Practice: A Comparative Analysis. Athens J. LAW 2024, 10, 317. [Google Scholar] [CrossRef]
- Borbón, D. Free will, quarantines, and moral enhancements: Neuroabolitionism as an alternative to criminal law. Front. Sociol. 2024, 9, 1395986. [Google Scholar] [CrossRef] [PubMed]
- Schneider, E.; O’Riordan, K.J.; Clarke, G.; Cryan, J.F. Feeding gut microbes to nourish the brain: Unravelling the diet–microbiota–gut–brain axis. Nat. Metab. 2024, 6, 1454–1478. [Google Scholar] [CrossRef]
- Logan, A.C.; Schoenthaler, S.J. Nutrition, Behavior, and the Criminal Justice System: What Took so Long? An Interview with Dr. Stephen J. Schoenthaler. Challenges 2023, 14, 37. [Google Scholar] [CrossRef]
- Wang, F.L.; Bountress, K.E.; Lemery-Chalfant, K.; Wilson, M.N.; Shaw, D.S. A polygenic risk score enhances risk prediction for adolescents’ antisocial behavior over the combined effect of 22 extra-familial, familial, and individual risk factors in the context of the family check-up. Prev. Sci. 2023, 24, 739–751. [Google Scholar] [CrossRef]
- Prescott, S.L.; Logan, A.C. Each meal matters in the exposome: Biological and community considerations in fast-food-socioeconomic associations. Econ. Hum. Biol. 2017, 27, 328–335. [Google Scholar] [CrossRef]
- DeAngelis, T. Continuing Education: Nutrition’s role in mental health. Monit. Psychol. 2023, 54, 36–41. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prescott, S.L.; Holton, K.F.; Lowry, C.A.; Nicholson, J.J.; Logan, A.C. The Intersection of Ultra-Processed Foods, Neuropsychiatric Disorders, and Neurolaw: Implications for Criminal Justice. NeuroSci 2024, 5, 354-377. https://doi.org/10.3390/neurosci5030028
Prescott SL, Holton KF, Lowry CA, Nicholson JJ, Logan AC. The Intersection of Ultra-Processed Foods, Neuropsychiatric Disorders, and Neurolaw: Implications for Criminal Justice. NeuroSci. 2024; 5(3):354-377. https://doi.org/10.3390/neurosci5030028
Chicago/Turabian StylePrescott, Susan L., Kathleen F. Holton, Christopher A. Lowry, Jeffrey J. Nicholson, and Alan C. Logan. 2024. "The Intersection of Ultra-Processed Foods, Neuropsychiatric Disorders, and Neurolaw: Implications for Criminal Justice" NeuroSci 5, no. 3: 354-377. https://doi.org/10.3390/neurosci5030028
APA StylePrescott, S. L., Holton, K. F., Lowry, C. A., Nicholson, J. J., & Logan, A. C. (2024). The Intersection of Ultra-Processed Foods, Neuropsychiatric Disorders, and Neurolaw: Implications for Criminal Justice. NeuroSci, 5(3), 354-377. https://doi.org/10.3390/neurosci5030028