Unlocking the Beat: Dopamine and Eye Blink Response to Classical Music
Abstract
:1. Introduction
The Current Study
2. Method
2.1. Participants
2.2. Design
2.3. Materials
2.4. Procedure
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chan, M.F. Effects of music on patiens undergoing a C-clap procedure after percutaneous coronary interventions: A radnomized controlled trial. Heart Lung 2007, 36, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Updike, P.A.; Charles, D.M. Music Rx: Physiological and emotional responses to taped music programs of preoperative patients awaiting plastic surgery. Ann. Plast. Surg. 1987, 19, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Leardi, S.; Pietroletti, R.; Angeloni, G.; Necozione, S.; Ranalletta, G.; Del Gusto, B. Randomized clinical trial examining the effect of music therapy in stress response to day surgery. Br. J. Surg. 2007, 94, 943–947. [Google Scholar] [CrossRef] [PubMed]
- Whipple, B.; Glynn, N.J. Quantification of the effects of listening to music as a noninvasive method of pain control. Sch. Inq. Nurs. Pract. 1992, 6, 43–58. [Google Scholar]
- Martin-Saavedra, J.S.; Vergara-Mendez, L.D.; Pradilla, I.; Vélez-van-Meerbeke, A.; Talero-Gutiérrez, C. Standardizing music characteristics for the management of pain: A systematic review and meta-analysis of clinical trials. Complement. Ther. Med. 2018, 41, 81–89. [Google Scholar] [CrossRef]
- Garza-Villarreal, E.A.; Pando, V.; Vuust, P.; Parsons, C. Music-Induced Analgesia in Chronic Pain Conditions: A Systematic Review and Meta-Analysis. Neuroscience 2017, 20, 597–610. [Google Scholar]
- Olofsson, A.; Fossum, B. Perspectives on Music Therapy in Adult Cancer Care: A Hermeneutic Study. Oncol. Nurs. Forum 2009, 36, E223–E231. [Google Scholar] [CrossRef] [Green Version]
- Bilgiç, A. Effects of music therapy in pain relief on children with leukemia undergoing lumbar puncture: A randomised controlled trial. J. Pediatr. Oncol. Nurs. 2017, 34, 326–334. [Google Scholar]
- Eckhardt, K.J.; Dinsmore, J.A. Mindful music listening as a potential treatment for depression. J. Create. Ment. Health 2012, 7, 175–186. [Google Scholar] [CrossRef]
- Khemila, S.; Abedelmalek, S.; Romdhani, M.; Souissi, A.; Chtourou, H.; Souissi, N. Listening to motivational music during warming-up attenuates the negative effects of partial sleep deprivation on cognitive and short-term maximal performance: Effect of time of day. Chronobiol. Int. 2021, 38, 1052–1063. [Google Scholar] [CrossRef]
- Rauscher, F.H.; Shaw, G.L.; Ky, C.N. Music and spatial task performance. Nature 1993, 365, 611. [Google Scholar] [CrossRef]
- Ferreri, L.; Mas-Herrero, E.; Zatorre, R.J.; Ripollés, P.; Gomez-Andres, A.; Alicart, H.; Olivé, G.; Marco-Pallarés, J.; Antonijoan, R.M.; Valle, M.; et al. Dopamine modulates the reward experiences elicited by music. Proc. Natl. Acad. Sci. USA 2019, 116, 3793–3798. [Google Scholar] [CrossRef] [Green Version]
- Ferreri, L.; Riba, J.; Zatorre, R.; Rodriguez-Fornells, A. Chills, Bets, and Dopamine: A Journey into Music Reward. In Brain, Beauty, and Art, 1st ed.; Chatterjee, A., Cardilo, E., Eds.; Oxford University Press: New York, NY, USA, 2022; pp. 155–160. [Google Scholar]
- Bradshaw, M.; Ellison, C.G.; Fang, Q.; Mueller, C. Listening to Religious Music and Mental Health in Later Life. Gerontologist 2015, 55, 961–971. [Google Scholar] [CrossRef] [Green Version]
- Kawahata, I.; Kawahata, I.; Hasegawa, K.; Kase, R. Music and Dopamine–Potential in Movement Disorders. J. Brain Nerves 2020, 1–4. [Google Scholar] [CrossRef]
- Kreitzer, A.C.; Malenka, R.C. Striatal Plasticity and Basal Ganglia Circuit Function. Neuron 2008, 60, 543–554. [Google Scholar] [CrossRef] [Green Version]
- Stevens, J.R.; Livermore, A. Eye blinking and rapid eye movement: Pulsed photic stimulation of the brain. Exp. Neurol. 1978, 60, 541–556. [Google Scholar] [CrossRef]
- Chan, K.K.; Hui, C.L.; Lam, M.M.; Tang, J.Y.; Wong, G.H.; Chan, S.K.; Chen, E.Y. A three-year prospective study of spontaneous eye-blink rate in first-episode schizophrenia: Relationship with relapse and neurocognitive function. East Asian Arch. Psychiatry 2010, 20, 174–179. [Google Scholar]
- Chen, E.Y.H.; Lam, L.C.W.; Chen, R.Y.L.; Nguyen, D.G.H. Blink rate, neurocognitive impairments, and symptoms in schizophrenia. Biol. Psychiatry 1996, 40, 597–603. [Google Scholar] [CrossRef]
- Karson, C.N.; Dykman, R.A.; Paige, S.R. Blink Rates in Schizophrenia. Schizophr. Bull. 1990, 16, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Reddy, V.C.; Patel, S.V.; Hodge, D.O.; Leavitt, J.A. Corneal Sensitivity, Blink Rate, and Corneal Nerve Density in Progressive Supranuclear Palsy and Parkinson Disease. Cornea 2013, 32, 631–635. [Google Scholar] [CrossRef]
- Byrne, S.; Pradhan, F.; Dhubhghaill, S.N.; Treacy, M.; Cassidy, L.; Hardiman, O. Blink rate in ALS. Amyotroph. Lateral Scler. Front. Degener. 2013, 14, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Bologna, M.; Piattella, M.C.; Upadhyay, N.; Formica, A.; Conte, A.; Colosimo, C.; Pantano, P.; Berardelli, A. Neuroimaging correlates of blinking abnormalities in patients with progressive supranuclear palsy. Mov. Disord. 2016, 31, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Colzato, L.S.; van den Wildenberg, W.P.; Hommel, B. Reduced spontaneous eye blink rates in recreational cocaine users: Evidence for dopaminergic hypoactivity. PLoS ONE 2008, 3, e3461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upadhyaya, H.P.; Brady, K.T.; Liao, J.; Sethuraman, G.; Middaugh, L.; Wharton, M.; Sallee, F.R. Neuroendocrine and behavioral responses to dopaminergic agonists in adolescents with alcohol abuse. Psychopharmacology 2003, 166, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Kotani, M.; Kiyoshi, A.; Murai, T.; Nakako, T.; Matsumoto, K.; Matsumoto, A.; Ikejiri, M.; Ogi, Y.; Ikeda, K. The dopamine D1 receptor agonist SKF-82958 effectively increases eye blinking count in common marmosets. Behav. Brain Res. 2016, 300, 25–30. [Google Scholar] [CrossRef]
- Jongkees, B.J.; Colzato, L.S. Spontaneous eye blink rate as predictor of dopamine-related cognitive function—A review. Neurosci. Biobehav. Rev. 2016, 71, 58–82. [Google Scholar] [CrossRef]
- Eckstein, M.K.; Guerra-Carrillo, B.; Miller Singley, A.T.; Bunge, S.A. Beyond eye gaze: What else can eyetracking reveal about cognition and cognitive development? Dev. Cogn. Neurosci. 2017, 25, 69–91. [Google Scholar] [CrossRef] [Green Version]
- Kaminer, J.; Thakur, P.; Evinger, C. Effects of subthalamic deep brain stimulation on blink abnormalities of 6-OHDA lesioned rats. J. Neurophysiol. 2015, 113, 3038–3046. [Google Scholar] [CrossRef] [Green Version]
- Slagter, H.A.; Georgopoulou, K.; Frank, M.J. Spontaneous eye blink rate predicts learning from negative, but not positive, outcomes. Neuropsychologia 2015, 71, 126–132. [Google Scholar] [CrossRef]
- Akbari, C.; Hommel. The blinking car stopped: Blink rate as an index of cognitive flexibility. Psychol. Res. 2012, 74, 499–506. [Google Scholar]
- McDonald, H.; Martinon, L.M.; Riby, L.M. In the Blink of an Eye: Ocular Proxies of Neurotransmitters Predict Creative Ability. Sci. Educ. 2018, 6, 1–8. [Google Scholar]
- Maffei, A.; Angrilli, A. Spontaneous blink rate as an index of attention and emotion during film clips viewing. Physiol. Behav. 2019, 204, 256–263. [Google Scholar] [CrossRef]
- Blood, A.J.; Zatorre, R.J. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl. Acad. Sci. USA 2001, 98, 11818–11823. [Google Scholar] [CrossRef] [Green Version]
- Salimpoor, V.N.; Benovoy, M.; Larcher, K.; Dagher, A.; Zatorre, R.J. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat. Neurosci. 2011, 14, 257–262. [Google Scholar] [CrossRef]
- Hove, M.J.; Martinez, S.A.; Shorrock, S.R. Physical exercise increases perceived musical pleasure: Modulatory roles of arousal, affect, or dopamine? Psychol. Music. 2022, 50, 849–861. [Google Scholar] [CrossRef]
- Smilek, D.; Carriere, J.S.A.; Cheyne, J.A. Out of Mind, Out of Sight: Eye Blinking as Indicator and Embodiment of Mind Wandering. Psychol. Sci. 2010, 21, 786–789. [Google Scholar] [CrossRef] [Green Version]
- Cardona, G.; García, C.; Serés, C.; Vilaseca, M.; Gispets, J. Blink rate, blink amplitude, and tear film integrity during dynamic visual display terminal tasks. Curr. Eye Res. 2010, 36, 190–197. [Google Scholar] [CrossRef]
- McIntire, L.K.; McKinley, R.A.; Goodyear, C.; McIntire, J.P. Detection of vigilance performance using eye blinks. Appl. Ergon. 2014, 45, 354–362. [Google Scholar] [CrossRef]
- Taruffi, L.; Pehrs, C.; Skouras, S.; Koelsch, S. Effects of Sad and Happy Music on Mind-Wandering and the Default Mode Network. Sci. Rep. 2017, 7, 14396. [Google Scholar] [CrossRef] [Green Version]
- Koelsch, S. Music-evoked emotions: Principles, brain correlates, and implications for therapy: Functional neuroanatomy of music-evoked emotions. Ann. N. Y. Acad. Sci. 2015, 1337, 193–201. [Google Scholar] [CrossRef]
- Deil, J.; Markert, N.; Normand, P.; Kammen, P.; Küssner, M.B.; Taruffi, L. Mind-wandering during contemporary live music: An exploratory study. Musicae Sci. 2022, 102986492211032. [Google Scholar] [CrossRef]
- Riby, L.M. The Joys of Spring: Changes in Mental Alertness and Brain Function. Exp. Psychol. 2013, 60, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Warrenburg, L.A. Choosing the right tune: A review of music stimuli used in emotion research. Music. Percept. 2020, 37, 240–258. [Google Scholar] [CrossRef] [Green Version]
- Huron, D. A comparison of average pitch height and interval size in major-and minor-key themes: Evidence consistent with affect-related pitch prosody. Empir. Musicol. Rev. 2008, 3, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Warrenburg, L.A. Redefining sad music: Music’s structure suggests at least two sad states. J. New Music. Res. 2020, 49, 373–386. [Google Scholar] [CrossRef]
- Jones, M.H.; West, S.D.; Estell, D.B. The Mozart effect: Arousal, preference, and spatial performance. Psychol. Aesthet. Creat. Arts 2006, S1, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. 2007, 118, 2128–2148. [Google Scholar] [CrossRef] [Green Version]
- Polich, J.; Criado, J.R. Neuropsychology and neuropharmacology of P3a and P3b. Int. J. Psychophysiol. 2006, 60, 172–185. [Google Scholar] [CrossRef]
- Bond, A.; Lader, M. The use of analogue scales in rating subjective feelings. Br. J. Med. Psychol. 1974, 47, 211–218. [Google Scholar] [CrossRef]
- Rentfrow, P.J.; Gosling, S.D. The do re mi’s of everyday life: The structure and personality correlates of music preferences. J. Personal. Soc. Psychol. 2003, 84, 1236–1256. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.; Levitan, R.D.; Kaplan, A.S.; Carter, J.; Reid, C.; Curtis, C.; Patte, K.; Kennedy, J.L. Dopamine Transporter Gene (DAT1) Associated with Appetite Suppression to Methylphenidate in a Case–Control Study of Binge Eating Disorder. Neuropsychopharmacology 2007, 32, 2199–2206. [Google Scholar] [CrossRef]
- Berridge, K.C.; Ho, C.-Y.; Richard, J.M.; DiFeliceantonio, A.G. The tempted brain eats: Pleasure and desire circuits in obesity and eating disorders. Brain Res. 2010, 1350, 43–64. [Google Scholar] [CrossRef] [Green Version]
- Moriya, H.; Tiger, M.; Tateno, A.; Sakayori, T.; Masuoka, T.; Kim, W.; Arakawa, R.; Okubo, Y. Low dopamine transporter binding in the nucleus accumbens in geriatric patients with severe depression. Psychiatry Clin. Neurosci. 2020, 74, 424–430. [Google Scholar] [CrossRef]
- Davis, C.; Carter, J.C. Compulsive overeating as an addiction disorder. A review of theory and evidence. Appetite 2009, 53, 1–8. [Google Scholar] [CrossRef]
- Koelsch, S.; Bashevkin, T.; Kristensen, J.; Tvedt, J.; Jentschke, S. Heroic music stimulates empowering thoughts during mind-wandering. Sci. Rep. 2019, 9, 10317. [Google Scholar] [CrossRef] [Green Version]
- Walton, K.L.; University of Arkansas Press. Projectivism, Empathy, and Musical Tension. Philos. Top. 1999, 26, 407–440. [Google Scholar] [CrossRef]
- Garrido, S.; Schubert, E. Individual Differences in the Enjoyment of Negative Emotion in Music: A Literature Review and Experiment. Music. Percept. 2011, 28, 279–296. [Google Scholar] [CrossRef]
- Vuoskoski, J.K.; Eerola, T. The Pleasure Evoked by Sad Music Is Mediated by Feelings of Being Moved. Front. Psychol. 2017, 8, 439. [Google Scholar] [CrossRef] [Green Version]
- Vuoskoski, J.K.; Thompson, W.F.; McIlwain, D.; Eerola, T. Who Enjoys Listening to Sad Music and Why? Music. Percept. 2012, 29, 311–317. [Google Scholar] [CrossRef]
- Schubert, E. Enjoyment of Negative Emotions in Music: An Associative Network Explanation. Psychol. Music. 1996, 24, 18–28. [Google Scholar] [CrossRef]
- Sachs, M.E.; Damasio, A.; Habibi, A. The pleasures of sad music: A systematic review. Front. Hum. Neurosci. 2015, 9, 404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baltes, F.R.; Miclea, M.; Miu, A.C. Does everybody like Vivaldi’s Four Seasons? Affective space and a comparison of music-induced emotions between musicians and non-musicians. Cogn. Brain Behav. 2012, 16, 107. [Google Scholar]
- Pereira, C.S.; Teixeira, J.; Figueiredo, P.; Xavier, J.; Castro, S.L.; Brattico, E. Music and Emotions in the Brain: Familiarity Matters. PLoS ONE 2011, 6, e27241. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Andrade, E.B.; Palmer, S.E. Interpersonal Relationships and Preferences for Mood-Congruency in Aesthetic Experiences. J. Consum. Res. 2013, 40, 382–391. [Google Scholar] [CrossRef]
- Saarikallio, S.; Erkkilä, J. The role of music in adolescents’ mood regulation. Psychol. Music 2007, 35, 88–109. [Google Scholar] [CrossRef]
- Eerola, T.; Peltola, H.-R. Memorable Experiences with Sad Music—Reasons, Reactions and Mechanisms of Three Types of Experiences. PLoS ONE 2016, 11, e0157444. [Google Scholar] [CrossRef] [Green Version]
- Vuoskoski, J.K.; Eerola, T. The role of mood and personality in the perception of emotions represented by music. Cortex 2011, 47, 1099–1106. [Google Scholar] [CrossRef]
- Joucla, C.; Nicolier, M.; Giustiniani, J.; Brunotte, G.; Noiret, N.; Monnin, J.; Magnin, E.; Pazart, L.; Moulin, T.; Haffen, E.; et al. Evidence for a neural signature of musical preference during silence. Int. J. Psychophysiol. 2018, 125, 50–56. [Google Scholar] [CrossRef]
- Schafer, W.D. Interpreting Statistical Significance and Nonsignificance. J. Exp. Educ. 1993, 61, 383–387. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Academic Press: Oxfordshire, UK, 1988. [Google Scholar]
- Rooney, B.; Benson, C.; Hennessy, E. The apparent reality of movies and emotional arousal: A study using physiological and self-report measures. Poetics 2012, 40, 405–422. [Google Scholar] [CrossRef]
- Hansch, E.C.; Syndulko, K.; Cohen, S.N.; Goldberg, Z.I.; Potvin, A.R.; Tourtellotte, W.W. Cognition in Parkinson disease: An event-related potential perspective. Ann. Neurol. 1982, 11, 599–607. [Google Scholar] [CrossRef]
- Demiral, Ş.B.; Liu, C.K.; Benveniste, H.; Tomasi, D.; Volkow, N.D. Activation of brain arousal networks coincident with eye blinks during resting state. Cereb. Cortex 2023, 33, 6792–6802. [Google Scholar] [CrossRef]
“Spring” | “Summer” | “Autumn” | “Winter” | Silent | |
---|---|---|---|---|---|
Block One | 33.6 (27.4) | 35.5 (27.1) | 36.8 (32.4) | 40.8 (37.2) | 33.1 (24.4) |
Block Two | 36.6 (27.6) | 39.5 (32.7) | 39.5 (30.8) | 45.2 (31.5) | 35.5 (29.6) |
Block Three | 33.9 (25.6) | 38.2 (33.0) | 43.5 (30.3) | 49.9 (37.1) | 34.2 (27.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riby, L.M.; Fenwick, S.K.; Kardzhieva, D.; Allan, B.; McGann, D. Unlocking the Beat: Dopamine and Eye Blink Response to Classical Music. NeuroSci 2023, 4, 152-163. https://doi.org/10.3390/neurosci4020014
Riby LM, Fenwick SK, Kardzhieva D, Allan B, McGann D. Unlocking the Beat: Dopamine and Eye Blink Response to Classical Music. NeuroSci. 2023; 4(2):152-163. https://doi.org/10.3390/neurosci4020014
Chicago/Turabian StyleRiby, Leigh M., Sam K. Fenwick, Dimana Kardzhieva, Beth Allan, and Deborah McGann. 2023. "Unlocking the Beat: Dopamine and Eye Blink Response to Classical Music" NeuroSci 4, no. 2: 152-163. https://doi.org/10.3390/neurosci4020014
APA StyleRiby, L. M., Fenwick, S. K., Kardzhieva, D., Allan, B., & McGann, D. (2023). Unlocking the Beat: Dopamine and Eye Blink Response to Classical Music. NeuroSci, 4(2), 152-163. https://doi.org/10.3390/neurosci4020014