Investigation of Biodegradable and Non-Biodegradable Solvents for the Fabrication of Polylactic Acid Membranes via Nonsolvent Induced Phase Separation (NIPS) for Air Filtration Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thermodynamic Study
2.3. PLA Membrane Fabrication Process
2.4. Characterization
2.5. Aerosol Filtration Efficiency and Airflow Test
3. Results and Discussion
3.1. Polymer–Solvent Affinity
3.2. Membrane Surface Chemical Composition
3.3. Thermal Behavior of Fabricated Membranes
3.4. Contact Angle/Wettability Studies
3.5. Surface and Cross-Section Analysis
3.6. Aerosol Filtration Efficiency and Air Permeation Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carleton, T.A.; Hsiang, S.M. Social and economic impacts of climate. Science 2016, 353, aad9837. [Google Scholar] [CrossRef]
- Ke, L.; Yang, T.; Liang, C.; Guan, X.; Li, T.; Jiao, Y.; Tang, D.; Huang, D.; Li, S.; Zhang, S. Electroactive, antibacterial, and biodegradable poly(lactic acid) nanofibrous air filters for healthcare. ACS Appl. Mater. Interfaces 2023, 15, 32463–32474. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, G.; Tang, M.; Li, T.; Wang, C.; Song, X.; Zhang, S.; Zhu, J.; He, X.; Hakkarainen, M. Biodegradable MOFilters for Effective Air Filtration and Sterilization by Coupling MOF Functionalization and Mechanical Polarization of Fibrous Poly(lactic acid). ACS Appl. Mater. Interfaces 2023, 15, 26812–26823. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Zhang, B.; Lu, Z.; Xin, Z.; Liu, T.; Wei, W.; Zia, Q.; Pan, K.; Gong, R.H.; Bian, L. Hierarchical porous poly(l-lactic acid) nanofibrous membrane for ultrafine particulate aerosol filtration. ACS Appl. Mater. Interfaces 2019, 11, 46261–46268. [Google Scholar] [CrossRef]
- Curtis, L.; Rea, W.; Smith-Willis, P.; Fenyves, E.; Pan, Y. Adverse health effects of outdoor air pollutants. Environ. Int. 2006, 32, 815–830. [Google Scholar] [CrossRef]
- Akimoto, H. Global air quality and pollution. Science 2003, 302, 1716–1719. [Google Scholar] [CrossRef]
- Michikawa, T.; Nishiwaki, Y.; Nitta, H.; IPHS Ibaraki Prefectural Environmental Health Study Group. Long-term exposure to PM2.5 and mortality among Japanese community-dwelling adults. Eur. J. Public Health 2024, 34 (Suppl. 3), ckae144.1392. [Google Scholar]
- Yu, W.; Xu, R.; Ye, T.; Abramson, M.J.; Morawska, L.; Jalaludin, B.; Johnston, F.H.; Henderson, S.B.; Knibbs, L.D.; Morgan, G.G. Estimates of global mortality burden associated with short-term exposure to fine particulate matter (PM2·5). Lancet Planet. Health 2024, 8, e146–e155. [Google Scholar] [PubMed]
- Zhang, J.; Gong, S.; Wang, C.; Jeong, D.Y.; Wang, Z.L.; Ren, K. Biodegradable electrospun poly(lactic acid) nanofibers for effective PM2.5 removal. Macromol. Mater. Eng. 2019, 304, 1900259. [Google Scholar]
- Zhang, A.; Liu, Y.; Ji, J.S.; Zhao, B. Air Purifier Intervention to Remove Indoor PM2.5 in Urban China: A Cost-Effectiveness and Health Inequality Impact Study. Environ. Sci. Technol. 2023, 57, 4492–4503. [Google Scholar] [CrossRef]
- Zhang, S.; Liang, Z.; Wang, X.; Ye, Z.; Li, G.; An, T. Bioaerosols in an industrial park and the adjacent houses: Dispersal between indoor/outdoor, the impact of air purifier, and health risk reduction. Environ. Int. 2023, 172, 107778. [Google Scholar] [CrossRef]
- Salam, Z.-H.A.; Karlin, R.B.; Ling, M.L.; Yang, K.S. The impact of portable high-efficiency particulate air filters on the incidence of invasive aspergillosis in a large acute tertiary-care hospital. Am. J. Infect. Control 2010, 38, e1–e7. [Google Scholar] [CrossRef] [PubMed]
- Shim, E.; Noh, J.; Kim, Y. Development and Performance Evaluation of Polytetrafluoroethylene-Membrane-Based Automotive Cabin Air Filter. ACS Omega 2022, 7, 43738–43746. [Google Scholar] [CrossRef]
- Chuaybamroong, P.; Chotigawin, R.; Supothina, S.; Sribenjalux, P.; Larpkiattaworn, S.; Wu, C.Y. Efficacy of photocatalytic HEPA filter on microorganism removal. Indoor Air 2010, 20, 246–254. [Google Scholar] [CrossRef]
- Ogbuoji, E.A.; Stephens, L.; Haycraft, A.; Wooldridge, E.; Escobar, I.C. Non-solvent induced phase separation (NIPS) for fabricating high filtration efficiency (FE) polymeric membranes for face mask and air filtration applications. Membranes 2022, 12, 637. [Google Scholar] [CrossRef]
- Ogbuoji, E.A.; Zaky, A.M.; Escobar, I.C. Advanced research and development of face masks and respirators pre and post the coronavirus disease 2019 (COVID-19) pandemic: A critical review. Polymers 2021, 13, 1998. [Google Scholar] [CrossRef]
- Vishwakarma, P.K.; Pandey, S.K.; Yadav, S.K.; Shukla, P.; Srivastava, A.; Giri, R. Multiwalled carbon nanotube-based freestanding filters for efficient removal of fine particulate matters (PM0.3), microplastics (MP0.3), and bioaerosols. ACS Appl. Nano Mater. 2022, 5, 9306–9318. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, H.; Tang, N.; Zhou, S.; Yu, J.; Ding, B. Spider-web-inspired PM0.3 filters based on self-sustained electrostatic nanostructured networks. Adv. Mater. 2020, 32, 2002361. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, S.; Liu, L.; Yu, J.; Ding, B. High-performance PM0.3 air filters using self-polarized electret nanofiber/nets. Adv. Funct. Mater. 2020, 30, 1909554. [Google Scholar] [CrossRef]
- Ogbuoji, E.A.; Myers, A.; Haycraft, A.; Escobar, I.C. Impact of common face mask regeneration processes on the structure, morphology and aerosol filtration efficiency of porous flat sheet polysulfone membranes fabricated via nonsolvent-induced phase separation (NIPS). Sep. Purif. Technol. 2023, 324, 124594. [Google Scholar] [CrossRef]
- He, W.; Guo, Y.; Gao, H.; Liu, J.; Yue, Y.; Wang, J. Evaluation of regeneration processes for filtering facepiece respirators in terms of the bacteria inactivation efficiency and influences on filtration performance. ACS Nano 2020, 14, 13161–13171. [Google Scholar] [CrossRef]
- Fadare, O.O.; Okoffo, E.D. COVID-19 face masks: A potential source of microplastic fibers in the environment. Sci. Total Environ. 2020, 737, 140279. [Google Scholar] [CrossRef] [PubMed]
- Selvaranjan, K.; Navaratnam, S.; Rajeev, P.; Ravintherakumaran, N. Environmental challenges induced by extensive use of face masks during COVID-19: A review and potential solutions. Environ. Chall. 2021, 3, 100039. [Google Scholar] [CrossRef] [PubMed]
- Mills, R.; Vogler, R.J.; Bernard, M.; Concolino, J.; Hersh, L.B.; Wei, Y.; Hastings, J.T.; Dziubla, T.; Baldridge, K.C.; Bhattacharyya, D. Aerosol capture and coronavirus spike protein deactivation by enzyme functionalized antiviral membranes. Commun. Mater. 2022, 3, 34. [Google Scholar] [CrossRef]
- Talukder, M.E.; Alam, F.; Pervez, M.N.; Jiangming, W.; Hassan, F.; Stylios, G.K.; Naddeo, V.; Song, H. New generation washable PES membrane face mask for virus filtration. Nanocomposites 2022, 8, 13–23. [Google Scholar] [CrossRef]
- Van Goethem, C.; de Beeck, D.O.; Ilyas, A.; Thijs, M.; Koeckelberghs, G.; Aerts, P.E.; Vankelecom, I.F. Ultra-thin and highly porous PVDF-filters prepared via phase inversion for potential medical (COVID-19) and industrial use. J. Membr. Sci. 2021, 639, 119710. [Google Scholar] [CrossRef]
- Dong, X.; Lu, D.; Harris, T.A.; Escobar, I.C. Polymers and solvents used in membrane fabrication: A review focusing on sustainable membrane development. Membranes 2021, 11, 309. [Google Scholar] [CrossRef] [PubMed]
- Hołda, A.K.; Aernouts, B.; Saeys, W.; Vankelecom, I.F. Study of polymer concentration and evaporation time as phase inversion parameters for polysulfone-based SRNF membranes. J. Membr. Sci. 2013, 442, 196–205. [Google Scholar] [CrossRef]
- Aroon, M.; Ismail, A.; Montazer-Rahmati, M.; Matsuura, T. Morphology and permeation properties of polysulfone membranes for gas separation: Effects of non-solvent additives and co-solvent. Sep. Purif. Technol. 2010, 72, 194–202. [Google Scholar] [CrossRef]
- Amirilargani, M.; Saljoughi, E.; Mohammadi, T.; Moghbeli, M. Effects of coagulation bath temperature and polyvinylpyrrolidone content on flat sheet asymmetric polyethersulfone membranes. Polym. Eng. Sci. 2010, 50, 885–893. [Google Scholar] [CrossRef]
- Lv, D.; Wang, R.; Tang, G.; Mou, Z.; Lei, J.; Han, J.; De Smedt, S.; Xiong, R.; Huang, C. Ecofriendly electrospun membranes loaded with visible-light-responding nanoparticles for multifunctional usages: Highly efficient air filtration, dye scavenging, and bactericidal activity. ACS Appl. Mater. Interfaces 2019, 11, 12880–12889. [Google Scholar]
- Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; Robert McElroy, C.; Sherwood, J. Tools and techniques for solvent selection: Green solvent selection guides. Sustain. Chem. Process. 2016, 4, 7. [Google Scholar] [CrossRef]
- Kirman, C.; Sonawane, B.; Seed, J.; Azu, N.; Barranco, W.; Hamilton, W.; Stedeford, T.; Hays, S. An evaluation of reproductive toxicity studies and data interpretation of N-methylpyrrolidone for risk assessment: An expert panel review. Regul. Toxicol. Pharmacol. 2023, 138, 105337. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, A.; Radoor, S.; Siengchin, S.; Shin, G.H.; Kim, J.T. Recent progress of bioplastics in their properties, standards, certifications and regulations: A review. Sci Total Environ. 2023, 878, 163156. [Google Scholar] [PubMed]
- Costa, A.; Encarnação, T.; Tavares, R.; Todo Bom, T.; Mateus, A. Bioplastics: Innovation for green transition. Polymers 2023, 15, 517. [Google Scholar] [CrossRef]
- Jha, S.; Akula, B.; Enyioma, H.; Novak, M.; Amin, V.; Liang, H. Biodegradable biobased polymers: A review of the state of the art, challenges, and future directions. Polymers 2024, 16, 2262. [Google Scholar] [CrossRef]
- Lv, D.; Zhu, M.; Jiang, Z.; Jiang, S.; Zhang, Q.; Xiong, R.; Huang, C. Green electrospun nanofibers and their application in air filtration. Macromol. Mater. Eng. 2018, 303, 1800336. [Google Scholar] [CrossRef]
- Ge, J.; Lv, X.; Zhou, J.; Lv, Y.; Sun, J.; Guo, H.; Wang, C.; Hu, P.; Spitalsky, Z.; Liu, Y. Multi-level structured polylactic acid electrospun fiber membrane based on green solvents for high-performance air filtration. Sep. Purif. Technol. 2023, 331, 125659. [Google Scholar]
- Shao, W.; Niu, J.; Han, R.; Liu, S.; Wang, K.; Cao, Y.; Han, P.; Li, X.; Zhang, H.; Yu, H. Electrospun Multiscale Poly(lactic acid) Nanofiber Membranes with a Synergistic Antibacterial Effect for Air-Filtration Applications. ACS Appl. Polym. Mater. 2023, 5, 9632–9641. [Google Scholar]
- Galiano, F.; Briceño, K.; Marino, T.; Molino, A.; Christensen, K.V.; Figoli, A. Advances in biopolymer-based membrane preparation and applications. J. Membr. Sci. 2018, 564, 562–586. [Google Scholar] [CrossRef]
- Sharma, S.K.; Mudhoo, A. A Handbook of Applied Biopolymer Technology: Synthesis, Degradation and Applications; Royal Society of Chemistry: Cambridge, UK, 2011. [Google Scholar]
- Phaechamud, T.; Chitrattha, S. Pore formation mechanism of porous poly(dl-lactic acid) matrix membrane. Mater. Sci. Eng. C 2016, 61, 744–752. [Google Scholar]
- Dai, X.; Li, X.; Wang, X. Morphology controlled porous poly(lactic acid)/zeolitic imidazolate framework-8 fibrous membranes with superior PM2.5 capture capacity. Chem. Eng. J. 2018, 338, 82–91. [Google Scholar]
- Cai, R.-R.; Zhang, L.-Z.; Bao, A.-B. PM collection performance of electret filters electrospun with different dielectric materials-a numerical modeling and experimental study. Build. Environ. 2018, 131, 210–219. [Google Scholar] [CrossRef]
- Galka, N.; Saxena, A. High efficiency air filtration: The growing impact of membranes. Filtr. Sep. 2009, 46, 22–25. [Google Scholar] [CrossRef]
- Gao, A.; Liu, F.; Shi, H.; Xue, L. Controllable transition from finger-like pores to inter-connected pores of PLLA membranes. J. Membr. Sci. 2015, 478, 96–104. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhong, Y.; Lin, H.; Liu, F.; Li, T.; Li, J. PDLA/PLLA ultrafiltration membrane with excellent permeability, rejection and fouling resistance via stereocomplexation. J. Membr. Sci. 2017, 533, 103–111. [Google Scholar] [CrossRef]
- Ouda, M.; Ibrahim, Y.; Kallem, P.; Govindan, B.; Banat, F.; Hasan, S.W. Highly permeable, environmentally-friendly, antifouling polylactic acid-hydroxyapatite/polydopamine (PLA-HAp/PDA) ultrafiltration membranes. J. Clean. Prod. 2022, 330, 129871. [Google Scholar]
- Wang, X.; Zhang, X.; Han, X.; Liu, K.; Xu, C.; Hu, X.; Jin, Z. Performance adjustable porous polylactic acid-based membranes for controlled release fertilizers. J. Appl. Polym. Sci. 2021, 138, 49649. [Google Scholar]
- Minbu, H.; Ochiai, A.; Kawase, T.; Taniguchi, M.; Lloyd, D.R.; Tanaka, T. Preparation of poly(L-lactic acid) microfiltration membranes by a nonsolvent-induced phase separation method with the aid of surfactants. J. Membr. Sci. 2015, 479, 85–94. [Google Scholar]
- Capello, C.; Fischer, U.; Hungerbühler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem. 2007, 9, 927–934. [Google Scholar] [CrossRef]
- Hansen, A.; Schieberle, P. Generation of aroma compounds during sourdough fermentation: Applied and fundamental aspects. Trends Food Sci. Technol. 2005, 16, 85–94. [Google Scholar] [CrossRef]
- Liu, S.-Q.; Holland, R.; Crow, V. Esters and their biosynthesis in fermented dairy products: A review. Int. Dairy J. 2004, 14, 923–945. [Google Scholar] [CrossRef]
- Löser, C.; Urit, T.; Bley, T. Perspectives for the biotechnological production of ethyl acetate by yeasts. Appl. Microbiol. Biotechnol. 2014, 98, 5397–5415. [Google Scholar] [CrossRef]
- Kruis, A.J.; Bohnenkamp, A.C.; Nap, B.; Nielsen, J.; Mars, A.E.; Wijffels, R.H.; Van Der Oost, J.; Kengen, S.W.; Weusthuis, R.A. From Eat to trEat: Engineering the mitochondrial Eat1 enzyme for enhanced ethyl acetate production in Escherichia coli. Biotechnol. Biofuels 2020, 13, 76. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Huang, H.; Lin, M.; Xu, Y.; Li, X.; Sun, B. Enzyme catalyzes ester bond synthesis and hydrolysis: The key step for sustainable usage of plastics. Front. Microbiol. 2023, 13, 1113705. [Google Scholar] [CrossRef]
- Doronina, N.; Nazarov, N.; Ezhov, V.; Trotsenko, Y.A. Biodegradation of methyl and ethyl acetates by immobilized Pseudomonas esterophilus cells. Appl. Biochem. Microbiol. 2006, 42, 45–47. [Google Scholar] [CrossRef]
- Gironi, F.; Frattari, S.; Piemonte, V. PLA chemical recycling process optimization: PLA solubilization in organic solvents. J. Polym. Environ. 2016, 24, 328–333. [Google Scholar] [CrossRef]
- Theodorakopoulos, G.V.; Karousos, D.S.; Veziri, C.M.; Kouvelos, E.P.; Sapalidis, A.A.; Favvas, E.P. Green chemistry-based fabrication of hollow fiber and flat sheet polyimide membranes for CO2/CH4 separation. J. Membr. Sci. Lett. 2023, 3, 100057. [Google Scholar] [CrossRef]
- Vebber, G.C.; Pranke, P.; Pereira, C.N. Calculating Hansen solubility parameters of polymers with genetic algorithms. J. Appl. Polym. Sci. 2014, 131, 39696. [Google Scholar] [CrossRef]
- Hansen, C.M. Hansen Solubility Parameters: A User’s Handbook; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Xie, W.; Li, T.; Chen, C.; Wu, H.; Liang, S.; Chang, H.; Liu, B.; Drioli, E.; Wang, Q.; Crittenden, J.C. Using the green solvent dimethyl sulfoxide to replace traditional solvents partly and fabricating PVC/PVC-g-PEGMA blended ultrafiltration membranes with high permeability and rejection. Ind. Eng. Chem. Res. 2019, 58, 6413–6423. [Google Scholar] [CrossRef]
- Dong, X.; Jeong, T.J.; Kline, E.; Banks, L.; Grulke, E.; Harris, T.; Escobar, I.C. Eco-friendly solvents and their mixture for the fabrication of polysulfone ultrafiltration membranes: An investigation of doctor blade and slot die casting methods. J. Membr. Sci. 2020, 614, 118510. [Google Scholar] [CrossRef]
- Sipkens, T.A.; Corbin, J.C.; Oldershaw, A.; Smallwood, G.J. Particle filtration efficiency measured using sodium chloride and polystyrene latex sphere test methods. Sci. Data 2022, 9, 756. [Google Scholar] [CrossRef]
- Leron, R.; Tayo, L.; Aquino, R. Functionalization of polylactic acid thin films via polydopamine-assisted chelation of copper (II) ions for antibacterial applications. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1195, 012051. [Google Scholar]
- Nassar, L.; Wadi, V.S.; Hegab, H.M.; Khalil, H.; Banat, F.; Naddeo, V.; Hasan, S.W. Sustainable and green polylactic acid-based membrane embedded with self-assembled positively charged f-MWCNTs/GO nanohybrids for the removal of nutrients from wastewater. npj Clean Water 2022, 5, 57. [Google Scholar] [CrossRef]
- Chieng, B.W.; Ibrahim, N.A.; Wan Yunus, W.M.Z.; Hussein, M.Z. Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: Effects of graphene nanoplatelets. Polymers 2013, 6, 93–104. [Google Scholar]
- Thakur, A.; Tripathi, M.; Rajesh, U.C.; Rawat, D.S. Ethylenediammonium diformate (EDDF) in PEG 600: An efficient ambiphilic novel catalytic system for the one-pot synthesis of 4 H-pyrans via Knoevenagel condensation. RSC Adv. 2013, 3, 18142–18148. [Google Scholar]
- Arthanareeswaran, G.; Mohan, D.; Raajenthiren, M. Preparation, characterization and performance studies of ultrafiltration membranes with polymeric additive. J. Membr. Sci. 2010, 350, 130–138. [Google Scholar] [CrossRef]
- Comelli, C.A.; Yi, N.; Davies, R.; van der Pol, H.; Ghita, O. Observation of Peek Melting Peaks within the Additive Manufacturing Material Extrusion Process in Relation to Isothermal and Non-Isothermal Processes. Macromol. Mater. Eng. 2023, 309, 2300386. [Google Scholar]
- Faridi, M.; Naji, L.; Kazemifard, S.; Pourali, N. Electrochemical investigation of gel polymer electrolytes based on poly(methyl methacrylate) and dimethylacetamide for application in Li-ion batteries. Chem. Pap. 2018, 72, 2289–2300. [Google Scholar]
- Karfeld-Sulzer, L.S.; Ghayor, C.; Siegenthaler, B.; Gjoksi, B.; Pohjonen, T.H.; Weber, F.E. Comparative study of NMP-preloaded and dip-loaded membranes for guided bone regeneration of rabbit cranial defects. J. Tissue Eng. Regen. Med. 2017, 11, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Eang, C.; Nim, B.; Opaprakasit, M.; Petchsuk, A.; Opaprakasit, P. Polyester-based polyurethanes derived from alcoholysis of polylactide as toughening agents for blends with shape-memory properties. RSC Adv. 2022, 12, 35328–35340. [Google Scholar] [CrossRef]
- Rodriguez, K.M.; Lin, S.; Wu, A.X.; Storme, K.R.; Joo, T.; Grosz, A.F.; Roy, N.; Syar, D.; Benedetti, F.M.; Smith, Z.P. Penetrant-induced plasticization in microporous polymer membranes. Chem. Soc. Rev. 2024, 53, 2435–2529. [Google Scholar] [CrossRef]
- Good, R.J. Contact angle, wetting, and adhesion: A critical review. J. Adhes. Sci. Technol. 1992, 6, 1269–1302. [Google Scholar] [CrossRef]
- Jaafar, H.T.; Aldabbagh, B.M.D. Investigation of superhydrophobic/hydrophobic materials properties using electrospinning technique. Baghdad Sci. J. 2019, 16, 632–638. [Google Scholar] [CrossRef]
- Hou, J.; Ran, Q.; Wang, Z.; Zhang, D.; Wang, Q.; Xu, Y.; Pan, H.; Sheng, D.; Xia, L.; Xu, W. Advanced superhydrophobic polylactic acid fibers with high porosity and biodegradability for efficient solvent recovery. Int. J. Biol. Macromol. 2024, 279, 135534. [Google Scholar] [CrossRef] [PubMed]
- Luque-Agudo, V.; Gallardo-Moreno, A.M.; González-Martín, M.L. Influence of solvent and substrate on hydrophobicity of PLA films. Polymers 2021, 13, 4289. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Liu, F.; Gao, A.; Lin, H.; Yu, X.; Wang, Y.; Wang, Y. Investigation of the heat resistance, wettability and hemocompatibility of a polylactide membrane via surface crosslinking induced crystallization. RSC Adv. 2016, 6, 20492–20499. [Google Scholar] [CrossRef]
- Yu, Y.-H.; Li, W.-L.; Lin, W.-T.; Fu, P.; Xu, Z.-K.; Wan, L.-S. High Permeance Polyamide Nanofiltration Membranes Based on Poly(l-lactic acid) Electrospun Nanofibrous Membranes with Controlled Hydrophilicity. ACS Appl. Nano Mater. 2024, 7, 12003–12014. [Google Scholar] [CrossRef]
- Mao, Y.; Huang, Q.; Meng, B.; Zhou, K.; Liu, G.; Gugliuzza, A.; Drioli, E.; Jin, W. Roughness-enhanced hydrophobic graphene oxide membrane for water desalination via membrane distillation. J. Membr. Sci. 2020, 611, 118364. [Google Scholar] [CrossRef]
- Murthy, P.S.; Nanchariah, Y.V.; Venkatnarayanan, S.; Das, A.; Mohan, T.K. Antifouling mechanisms in and beyond nature: Leverages in realization of bioinspired biomimetic antifouling coatings. In Advances in Nanotechnology for Marine Antifouling; Elsevier: Amsterdam, The Netherlands, 2023; pp. 329–362. [Google Scholar]
- Guillen, G.R.; Pan, Y.; Li, M.; Hoek, E.M. Preparation and characterization of membranes formed by nonsolvent induced phase separation: A review. Ind. Eng. Chem. Res. 2011, 50, 3798–3817. [Google Scholar] [CrossRef]
Sample ID | Solvents |
---|---|
MNMP | NMP |
MDMAc | DMAc |
METAc | ETAc |
MGBL | GBL |
Dope Composition | RED | |||||
---|---|---|---|---|---|---|
PLA (polymer) | 15.56 | 8.57 | 11.06 | - | 11.1 | - |
NMP | 18.00 | 12.30 | 7.20 | 3.43 | - | 0.31 |
DMAc | 16.80 | 11.50 | 10.20 | 6.37 | - | 0.57 |
ETAc | 15.80 | 5.30 | 7.20 | 8.28 | - | 0.75 |
GBL | 19.00 | 16.60 | 7.40 | 6.72 | - | 0.60 |
Sample | (°C) * | (°C) * | (°C) * | (°C) * | (°C) * | (° C) * | (%) |
---|---|---|---|---|---|---|---|
PLA | 55.41 | 144.61 | 150.94 | 129.62 | 324.24 | 342.11 | 0.455 |
MNMP | 49.97 | 135.14 | 149.46 | 110.78 | 266.56 | 294.15 | 0.064 |
MDMAc | 50.71 | 136.91 | 142.56 | 116.96 | 279.36 | 312.17 | 0.311 |
METAc | 54.39 | 140.70 | 147.55 | 120.56 | 296.81 | 323.94 | 0.448 |
MGBL | 55.34 | 143.96 | 150.20 | 118.61 | 296.22 | 320.31 | 0.447 |
Filter Type | Filtration Mechanism | Efficiency (%) | Airflow Rate | Biodegradable | Ref. |
---|---|---|---|---|---|
METAc | Mechanical | >95 | 12.7 LPM @ 0.4 bar | Yes (polymer + solvent) | This study |
Commercial HEPA | Mechanical + Electrostatic | >99.97 | High † | No | [14,16] |
Electrospun PLA | Electrostatic | 99.2 | 9.8 cm/s @ 0.00125 bar ‡ | Partially (polymer only) | [2] |
Electrospun PLA-MOF | Electrostatic | 99.5 | Low pressure drop | Partially (polymer only) | [3] |
PVDF | Mechanical | - | ~180 L/m2/h @ 0.001 bar | No | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogbuoji, E.; Ewah, O.; Myers, A.; Roberts, C.; Shaverina, A.; Escobar, I.C. Investigation of Biodegradable and Non-Biodegradable Solvents for the Fabrication of Polylactic Acid Membranes via Nonsolvent Induced Phase Separation (NIPS) for Air Filtration Applications. Sustain. Chem. 2025, 6, 34. https://doi.org/10.3390/suschem6040034
Ogbuoji E, Ewah O, Myers A, Roberts C, Shaverina A, Escobar IC. Investigation of Biodegradable and Non-Biodegradable Solvents for the Fabrication of Polylactic Acid Membranes via Nonsolvent Induced Phase Separation (NIPS) for Air Filtration Applications. Sustainable Chemistry. 2025; 6(4):34. https://doi.org/10.3390/suschem6040034
Chicago/Turabian StyleOgbuoji, Ebuka, Odianosen Ewah, Anastasia Myers, Corey Roberts, Anastasia Shaverina, and Isabel C. Escobar. 2025. "Investigation of Biodegradable and Non-Biodegradable Solvents for the Fabrication of Polylactic Acid Membranes via Nonsolvent Induced Phase Separation (NIPS) for Air Filtration Applications" Sustainable Chemistry 6, no. 4: 34. https://doi.org/10.3390/suschem6040034
APA StyleOgbuoji, E., Ewah, O., Myers, A., Roberts, C., Shaverina, A., & Escobar, I. C. (2025). Investigation of Biodegradable and Non-Biodegradable Solvents for the Fabrication of Polylactic Acid Membranes via Nonsolvent Induced Phase Separation (NIPS) for Air Filtration Applications. Sustainable Chemistry, 6(4), 34. https://doi.org/10.3390/suschem6040034