BiVO4-Based Systems Magnetron Sputtered with Silver Nanoparticles for the Artificial Photosynthesis Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Synthesis of Photocatalysts
2.2.2. Photocatalytic Reactions
3. Results and Discussion
3.1. Characterisation
3.2. Photocatalytic Activity Measurements
3.3. Post-Reaction Characterisation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, B.; Sun, L. Artificial photosynthesis: Opportunities and challenges of molecular catalysts. Chem. Soc. Rev. 2019, 48, 2216–2264. [Google Scholar] [CrossRef] [PubMed]
- Wiltshire, A.; Gornall, J.; Booth, B.; Dennis, E.; Falloon, P.; Kay, G.; McNeall, D.; McSweeney, C.; Betts, R. The importance of population, climate change and CO2 plant physiological forcing in determining future global water stress. Glob. Environ. Chang. 2013, 23, 1083–1097. [Google Scholar] [CrossRef]
- Kinney, P.L. Interactions of Climate Change, Air Pollution, and Human Health. Curr. Environ. Health Rep. 2018, 5, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Battin, T.J.; Luyssaert, S.; Kaplan, L.A.; Aufdenkampe, A.K.; Richter, A.; Tranvik, L.J. The boundless carbon cycle. Nat. Geosci. 2009, 2, 598–600. [Google Scholar] [CrossRef]
- Osman, A.I.; Hefny, M.; Abdel Maksoud, M.I.A.; Elgarahy, A.M.; Rooney, D.W. Recent advances in carbon capture storage and utilisation technologies: A review. Environ. Chem. Lett. 2021, 19, 797–849. [Google Scholar] [CrossRef]
- Song, C. CO2 Conversion and Utilization: An Overview. In CO2 Conversion and Utilization; ACS: Washington, DC, USA, 2002. [Google Scholar]
- Kolobov, N.; Goesten, M.G.; Gascon, J. Metal–Organic Frameworks: Molecules or Semiconductors in Photocatalysis? Angew. Chem. 2021, 60, 26038–26052. [Google Scholar] [CrossRef]
- Yao, S.; He, J.; Gao, F.; Wang, H.; Lin, J.; Bai, Y.; Fang, J.; Zhu, F.; Huang, F.; Wang, M. Highly selective semiconductor photocatalysis for CO2 reduction. J. Mater. Chem. A Mater. Energy Sustain. 2023, 11, 12539–12558. [Google Scholar] [CrossRef]
- Mohan, H.; Vadivel, S.; Rajendran, S. Removal of harmful algae in natural water by semiconductor photocatalysis- A critical review. Chemosphere 2022, 302, 134827. [Google Scholar] [CrossRef]
- Wu, H.; Li, L.; Wang, S.; Zhu, N.; Li, Z.; Zhao, L.; Wang, Y. Recent advances of semiconductor photocatalysis for water pollutant treatment: Mechanisms, materials and applications. Phys. Chem. Chem. Phys. 2023, 25, 25899–25924. [Google Scholar] [CrossRef]
- Wang, F.; Lu, Z.; Guo, H.; Zhang, G.; Li, Y.; Hu, Y.; Jiang, W.; Liu, G. Plasmonic Photocatalysis for CO2 Reduction: Advances, Understanding and Possibilities. Chem. Eur. J. 2023, 29, 202202716. [Google Scholar] [CrossRef]
- Kang, Q.; Ning, S.; Jiang, D.; Wang, Y.; Zhou, F. Semiconductor-based artificial photosynthesis for water-splitting and CO2 reduction. In Photosynthesis: From Plants to Nanomaterials; Academic Press: Cambridge, MA, USA, 2023; pp. 377–405. [Google Scholar]
- Coronado, J.M.; Fresno, F.; Hernández-Alonso, M.D.; Portela, R. The Role of Co-Catalysts: Interaction and Synergies with Semiconductors. In Design of Advanced Photocatalytic Materials for Energy and Environmental Applications; Green Energy and Technology; Springer: London, UK, 2013; Volume 71, pp. 195–216. [Google Scholar] [CrossRef]
- Wang, L.; Qi, G.; Liu, X. Ag/ɑ-Fe2O3 nanowire arrays enable effectively photoelectrocatalytic reduction of carbon dioxide to methanol. J. Power Sources 2021, 507, 230272. [Google Scholar] [CrossRef]
- Ueno, K.; Oshikiri, T.; Shi, X.; Zhong, Y.; Misawa, H. Plasmon-induced artificial photosynthesis. Interface Focus 2015, 5, 20140082. [Google Scholar] [CrossRef] [PubMed]
- Tamirat, A.G.; Rick, J.; Dubale, A.A.; Su, W.-N.; Hwang, B.-J. Using hematite for photoelectrochemical water splitting: A review of current progress and challenges. Nanoscale Horiz. 2016, 1, 243–267. [Google Scholar] [CrossRef] [PubMed]
- Min, S.; Wang, F.; Jin, Z.; Xu, J. Cu2O nanoparticles decorated BiVO4 as an effective visible-light-driven p-n heterojunction photocatalyst for methylene blue degradation. Superlattices Microstruct. 2014, 74, 294–307. [Google Scholar] [CrossRef]
- Ding, K.; Chen, B.; Li, Y.; Zhang, Y.; Chen, Z. Comparative density functional theory study on the electronic and optical properties of BiMO4 (M = V, Nb, Ta). J. Mater. Chem. A Mater. Energy Sustain. 2014, 2, 8294–8303. [Google Scholar] [CrossRef]
- Loka, C.; Gelija, D.; Vattikuti, S.V.P.; Lee, K.-S. Silver-Boosted WO3/CuWO4 Heterojunction Thin Films for Enhanced Photoelectrochemical Water Splitting Efficiency. ACS Sustain. Chem. Eng. 2023, 11, 11978–11990. [Google Scholar] [CrossRef]
- Xu, X.; Du, M.; Chen, T.; Xiong, S.; Wu, T.; Zhao, D.; Fan, Z. New insights into Ag-doped BiVO4 microspheres as visible light photocatalysts. RSC Adv. 2016, 6, 98788–98796. [Google Scholar] [CrossRef]
- Zhu, Z.; Jiang, B.X.; Wu, R.J.; Huang, C.L.; Chang, Y. Photoreduction of CO2 into CH4 Using Novel Composite of Triangular Silver Nanoplates on Graphene-BiVO4. Catalysts 2022, 12, 750. [Google Scholar] [CrossRef]
- Bakhtiarnia, S.; Sheibani, S.; Aubry, E.; Sun, H.; Briois, P.; Arab Pour Yazdi, M. One-step preparation of Ag-incorporated BiVO4 thin films: Plasmon-heterostructure effect in photocatalytic activity enhancement. Appl. Surf. Sci. 2022, 580, 152253. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.L.; Liu, R.-S.; Tsai, D.P. Plasmonic photocatalysis. Rep. Prog. Phys. 2013, 76, 046401. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Y.; Wang, R. Preparation of Visible-Light-Driven Ag/BiVO4 Photocatalysts and Their Performance for Cr(VI) Reduction. ChemistrySelect 2022, 7, e202201348. [Google Scholar] [CrossRef]
- Sánchez, O.A.; Rodríguez, J.L.; Barrera-Andrade, J.M.; Borja-Urby, R.; Valenzuela, M.A. High performance of Ag/BiVO4 photocatalyst for 2,4-Dichlorophenoxyacetic acid degradation under visible light. Appl. Catal. A Gen. 2020, 600, 117625. [Google Scholar] [CrossRef]
- Mallikarjuna, K.; Vattikuti, S.V.P.; Manne, R.; Manjula, G.; Munirathnam, K.; Mallapur, S.; Marraiki, N.; Mohammed, A.; Reddy, L.V.; Rajesh, M.; et al. Sono-chemical synthesis of silver quantum dots immobilized on exfoliated graphitic carbon nitride nanostructures using ginseng extract for photocatalytic hydrogen evolution, dye degradation, and antimicrobial studies. Nanomaterials 2021, 11, 2918. [Google Scholar] [CrossRef] [PubMed]
- Naughton, E.; Sullivan, J.A. Influence of the presence of RuO2 on the reactivity of Fe2O3 in the artificial photosynthesis reaction. Sustain. Chem. Environ. 2024, 8, 100167. [Google Scholar] [CrossRef]
- Morais, E.; O’Modhrain, C.; Thampi, K.R.; Sullivan, J.A. RuO2/TiO2 photocatalysts prepared via a hydrothermal route: Influence of the presence of TiO2 on the reactivity of RuO2 in the artificial photosynthesis reaction. J. Catal. 2021, 401, 288–296. [Google Scholar] [CrossRef]
- Duan, Z.; Zhao, X.; Wei, C.; Chen, L. Ag-Bi/BiVO4 chain-like hollow microstructures with enhanced photocatalytic activity for CO2 conversion. App. Catal. A Gen. 2020, 594, 117459. [Google Scholar] [CrossRef]
- Xie, Y.-c.; Chen, J.H.; Lin, W.-Y.; Wu, R.-J.; Fegade, U.; Patil, N.; Ansar, S.; Pandey, S. Triangular silver nanoplates-BiVO4 composite for the photocatalytic CO2 reduction under irradiating LED light source. Opt. Mater. 2023, 143, 114141. [Google Scholar] [CrossRef]
- Huang, N.; Li, X.; Xing, T.; Sun, F.; Yang, M.; Yang, J.; Zhao, Y.; Wang, H. Ag Nanoparticle-Decorated BiVO4 Electrodeposited Film as Photoanode for Enhancing the Performance of a Photocatalytic H2O2 Fuel Cell. Energy Fuels 2024, 38, 19029–19037. [Google Scholar] [CrossRef]
- Bai, S.; Li, Q.; Han, N.; Zhang, K.; Tang, P.; Feng, Y.; Luo, R.; Li, D.; Chen, A. Synthesis of novel BiVO4/Cu2O heterojunctions for improving BiVO4 towards NO2 sensing properties. J. Colloid Interface Sci. 2020, 567, 37–44. [Google Scholar] [CrossRef]
- Ge, L.; Han, C.; Liu, J.; Li, Y. Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles. Appl. Catal. A Gen. 2011, 409–410, 215–222. [Google Scholar] [CrossRef]
- Sun, T.; Jiang, H.Y.; Ma, C.C.; Mao, F.; Xue, B. Ag/g-C3N4 photocatalysts: Microwave-assisted synthesis and enhanced visible-light photocatalytic activity. Catal. Commun. 2016, 79, 45–48. [Google Scholar] [CrossRef]
- Wan, J.; Liu, E.; Fan, J.; Hu, X.; Sun, L.; Tang, C.; Yin, Y.; Li, H.; Hu, Y. In-situ synthesis of plasmonic Ag/Ag3PO4 tetrahedron with exposed {111} facets for high visible-light photocatalytic activity and stability. Ceram. Int. 2015, 41, 6933–6940. [Google Scholar] [CrossRef]
- Booshehri, A.Y.; Chun-Kiat Goh, S.; Hong, J.; Jiang, R.; Xu, R. Effect of depositing silver nanoparticles on BiVO4 in enhancing visible light photocatalytic inactivation of bacteria in water. J. Mater. Chem. A Mater. Energy Sustain. 2014, 2, 6209–6217. [Google Scholar] [CrossRef]
- Huang, K.; Lv, Y.; Zhang, W.; Sun, S.; Yang, B.; Chi, F.; Ran, S.; Liu, X. One-step synthesis of Ag3PO4/Ag photocatalyst with visible-light photocatalytic activity. Mater. Res. 2015, 18, 939–945. [Google Scholar] [CrossRef]
- Singh, S.; Bharti, A.; Meena, V.K. Green synthesis of multi-shaped silver nanoparticles: Optical, morphological and antibacterial properties. J. Mater. Sci,. Mater. Electron. 2015, 26, 3638–3648. [Google Scholar] [CrossRef]
- Fang, W.; Lin, Y.; Xv, R.; Shang, X.; Fu, L. Band-gap and interface engineering by Ni doping and CoPi deposition of BiVO4 photoanode to boost photoelectrochemical water splitting. Electrochim. Acta 2023, 437, 141511. [Google Scholar] [CrossRef]
- Yuan, Y.; Huang, Y.; Ma, F.; Zhang, Z.; Wei, X.; Zhu, G. Structural stability, band structure and optical properties of different BiVO4 phases under pressure. J. Mater. Sci. 2016, 51, 6662–6673. [Google Scholar] [CrossRef]
- Zhong, K.; Gao, H.; Feng, J.; Zhang, Y.; Lai, K. Facile synthesis of Z-scheme Se/BiVO4 heterojunction with enhanced visible-light-driven photocatalytic performance. J. Mater. Sci. 2019, 54, 10632–10643. [Google Scholar] [CrossRef]
- Kelly, A.; Knowles, K.M. Crystallography and Crystal Defects, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Lv, F.Z.; Zhao, W.; Zhong, Y.; Hu, C.H.; Zhou, H.Y.; Chen, R. Synthesis and Photocatalytic Activity of Ag-Doped BiVO4. Adv. Mater. Res. 2013, 734–737, 2204–2209. [Google Scholar] [CrossRef]
- Xu, B.; Zada, A.; Wang, G.; Qu, Y. Boosting the visible-light photoactivities of BiVO4 nanoplates by Eu doping and coupling CeOx nanoparticles for CO2 reduction and organic oxidation. Sustain. Energy Fuels 2019, 3, 3363–3369. [Google Scholar] [CrossRef]
- Barberio, M.; Barone, P.; Imbrogno, A.; Xu, F. CO2 adsorption on silver nanoparticle/carbon nanotube nanocomposites: A study of adsorption characteristics. Phys. Status Solidi (B) Basic Res. 2015, 252, 1955–1959. [Google Scholar] [CrossRef]
- Ye, Y.; Yang, H.; Qian, J.; Su, H.; Lee, K.-J.; Cheng, T.; Xiao, H.; Yano, J.; Goddard, W.A.; Crumlin, E.J.; et al. Dramatic differences in carbon dioxide adsorption and initial steps of reduction between silver and copper. Nat. Commun. 2019, 10, 1875. [Google Scholar] [CrossRef] [PubMed]
- Czanderna, A.W. The interaction of carbon dioxide and ethane with silver. J. Colloid Interface Sci. 1966, 22, 482–490. [Google Scholar] [CrossRef]
- Jiang, L.; Li, Z.; Wang, D.; Guo, T.; Hu, Y. In-situ growth of p-type Ag2O on n-type Bi2O2S with intimate interfacial contact for NIR light-driven photocatalytic CO2 reduction. Appl. Surf. Sci. 2022, 601, 154185. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Yu, H.; Yu, J.; Liu, S. Ag2O as a New Visible-Light Photocatalyst: Self-Stability and High Photocatalytic Activity. Chem. Eur. J. 2011, 17, 7777–7780. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Gao, M.; Shen, J.; Pu, X.; Zhang, Z.; Lin, H.; Wang, X. BiVO4/Bi4Ti3O12 heterojunction enabling efficient photocatalytic reduction of CO2 with H2O to CH3OH and CO. Appl. Catal. B Environ. 2020, 270, 118876. [Google Scholar] [CrossRef]
- Chang, X.; Wang, T.; Gong, J. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196. [Google Scholar] [CrossRef]
- Hiragond, C.; Ali, S.; Sorcar, S.; In, S.-I. Hierarchical Nanostructured Photocatalysts for CO2 Photoreduction. Catalysts 2019, 9, 370. [Google Scholar] [CrossRef]
- Wu, H.; Kong, X.Y.; Wen, X.; Chai, S.P.; Lovell, E.C.; Tang, J.; Ng, Y.H. Metal–Organic Framework Decorated Cuprous Oxide Nanowires for Long-lived Charges Applied in Selective Photocatalytic CO2 Reduction to CH4. Angew. Chem. (Int. Ed.) 2021, 60, 8455–8459. [Google Scholar] [CrossRef]
- Yang, R.; Zhu, R.; Fan, Y.; Hu, L.; Chen, Q. In situ synthesis of C-doped BiVO4 with natural leaf as a template under different calcination temperatures. RSC Adv. 2019, 9, 14004–14010. [Google Scholar] [CrossRef]
- Regmi, C.; Dhakal, D.; Lee, S.W. Visible-light-induced Ag/BiVO4 semiconductor with enhanced photocatalytic and antibacterial performance. Nanotechnology 2018, 29, 064001. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Duan, X.; Qian, Y.; Yang, L.; Liao, H. Nanocrystalline Silver Particles: Synthesis, Agglomeration, and Sputtering Induced by Electron Beam. J. Colloid Interface Sci. 1999, 209, 347–349. [Google Scholar] [CrossRef] [PubMed]
Sample | Wt. % Ag | Colour |
---|---|---|
BiVO4 | 0 | Yellow |
Ag/BiVO4 100 | 0.26 | Khaki |
Ag/BiVO4 250 | 0.73 | Dark Green |
Sample | Band Gap (eV) |
---|---|
BiVO4 | 2.49 |
Ag/BiVO4 100 | 2.47 |
Ag/BiVO4 250 | 2.46 |
Sample | [CO2] (μmol/g) | [Ag] (moles/20 mg) |
---|---|---|
BiVO4 | 10 | 0 |
Ag/BiVO4 100 | 32 | 4.8 × 10−7 |
Ag/BiVO4 250 | 34 | 1.4 × 10−6 |
Sample | Surface Area (m2/g) |
---|---|
BiVO4 | 1.46 |
Ag/BiVO4 100 | 1.45 |
Ag/BiVO4 250 | 1.45 |
Sample | CO/μmol g−1 | CH4/μmol g−1 |
---|---|---|
BiVO4 | 0.95 | 0 |
Ag/BiVO4 100 | 2.49 | 2.49 |
Ag/BiVO4 250 | 5.19 | 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naughton, E.; Kohlrausch, E.C.; Alves Fernandes, J.; Sullivan, J.A. BiVO4-Based Systems Magnetron Sputtered with Silver Nanoparticles for the Artificial Photosynthesis Reaction. Sustain. Chem. 2025, 6, 4. https://doi.org/10.3390/suschem6010004
Naughton E, Kohlrausch EC, Alves Fernandes J, Sullivan JA. BiVO4-Based Systems Magnetron Sputtered with Silver Nanoparticles for the Artificial Photosynthesis Reaction. Sustainable Chemistry. 2025; 6(1):4. https://doi.org/10.3390/suschem6010004
Chicago/Turabian StyleNaughton, Eva, Emerson C. Kohlrausch, Jesum Alves Fernandes, and James A. Sullivan. 2025. "BiVO4-Based Systems Magnetron Sputtered with Silver Nanoparticles for the Artificial Photosynthesis Reaction" Sustainable Chemistry 6, no. 1: 4. https://doi.org/10.3390/suschem6010004
APA StyleNaughton, E., Kohlrausch, E. C., Alves Fernandes, J., & Sullivan, J. A. (2025). BiVO4-Based Systems Magnetron Sputtered with Silver Nanoparticles for the Artificial Photosynthesis Reaction. Sustainable Chemistry, 6(1), 4. https://doi.org/10.3390/suschem6010004