Waste Lignocellulosic Biomass as a Source for Bioethanol Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Process Feed and Thermodynamic Properties
2.2. Process Scheme
2.3. Simulation Procedure
2.3.1. Distillation Column RC-1
2.3.2. Pressure Swing Distillation
2.4. Sensitivity Analysis
2.5. Restrictions and Assumptions
- The distillation columns are modelled with the Radfrac mode.
- Pressure drops are neglected.
- The compressor is isentropic with isentropic efficiency of 0.72, based on commercially available compressors from certified manufacturers.
- The simulation was carried out in a steady state.
- For optimisation with the NQ analysis, the same weight of operating and investment costs was assumed.
3. Results and Discussion
3.1. Distillation in Column RC-1
3.2. Pressure Swing Distillation
3.3. Sensitivity Analysis
3.3.1. The Effect of EtOH Recovery
3.3.2. The Effect of the EtOH Content in the Distillate of the LPC
3.3.3. The Effect of the EtOH Content in the Distillate of the HPC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, W.-H.; Lin, B.-J.; Lin, Y.-Y.; Chu, Y.-S.; Ubando, A.T.; Show, P.L.; Ong, H.C.; Chang, J.-S.; Ho, S.-H.; Culaba, A.B.; et al. Progress in Biomass Torrefaction: Principles, Applications and Challenges. Prog. Energy Combust. Sci. 2021, 82, 100887. [Google Scholar] [CrossRef]
- Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2019; U.S. Environmental Protection Agency: Washington, DC, USA, 2021. [Google Scholar]
- Lamichhane, G.; Acharya, A.; Poudel, D.K.; Aryal, B.; Gyawali, N.; Niraula, P.; Phuyal, S.R.; Budhathoki, P.; Bk, G.; Parajuli, N. Recent Advances in Bioethanol Production from Lignocellulosic Biomass. Int. J. Green Energy 2021, 18, 731–744. [Google Scholar] [CrossRef]
- Amornraksa, S.; Subsaipin, I.; Simasatitkul, L.; Assabumrungrat, S. Systematic Design of Separation Process for Bioethanol Production from Corn Stover. BMC Chem. Eng. 2020, 2, 10. [Google Scholar] [CrossRef]
- Beluhan, S.; Mihajlovski, K.; Šantek, B.; Ivančić Šantek, M. The Production of Bioethanol from Lignocellulosic Biomass: Pretreatment Methods, Fermentation, and Downstream Processing. Energies 2023, 16, 7003. [Google Scholar] [CrossRef]
- Conde-Mejía, C.; Jiménez-Gutiérrez, A. Analysis of Ethanol Dehydration Using Membrane Separation Processes. Open Life Sci. 2020, 15, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Karimi, S.; Karri, R.R.; Tavakkoli Yaraki, M.; Koduru, J.R. Processes and Separation Technologies for the Production of Fuel-Grade Bioethanol: A Review. Environ. Chem. Lett. 2021, 19, 2873–2890. [Google Scholar] [CrossRef]
- Rumbo Morales, J.Y.; Ortiz-Torres, G.; García, R.O.D.; Cantero, C.A.T.; Rodriguez, M.C.; Sarmiento-Bustos, E.; Oceguera-Contreras, E.; Hernández, A.A.F.; Cerda, J.C.R.; Molina, Y.A.; et al. Review of the Pressure Swing Adsorption Process for the Production of Biofuels and Medical Oxygen: Separation and Purification Technology. Adsorpt. Sci. Technol. 2022, 2022, 3030519. [Google Scholar] [CrossRef]
- Mulia-Soto, J.F.; Flores-Tlacuahuac, A. Modeling, Simulation and Control of an Internally Heat Integrated Pressure-Swing Distillation Process for Bioethanol Separation. Comput. Chem. Eng. 2011, 35, 1532–1546. [Google Scholar] [CrossRef]
- Iqbal, A.; Ahmad, S.A. Pressure Swing Distillation of Azeotropic Mixture—A Simulation Study. Perspect. Sci. 2016, 8, 4–6. [Google Scholar] [CrossRef]
- Kiran, B.; Jana, A.K. A Hybrid Heat Integration Scheme for Bioethanol Separation through Pressure-Swing Distillation Route. Sep. Purif. Technol. 2015, 142, 307–315. [Google Scholar] [CrossRef]
- Quintero, J.A.; Cardona, C.A. Process Simulation of Fuel Ethanol Production from Lignocellulosics Using Aspen Plus. Ind. Eng. Chem. Res. 2011, 50, 6205–6212. [Google Scholar] [CrossRef]
- Thomas Rodgers Plotting Approximate Residue Curves and Pressure Swing. Available online: https://www.youtube.com/watch?v=o6zOi_Pp_80 (accessed on 25 December 2023).
- Roman, C.; García-Morales, M. Achieving a Better Understanding of Binary Azeotropic Mixtures Distillation through Aspen Plus Process Simulations. Comp. Applic. Eng. 2019, 27, 1453–1464. [Google Scholar] [CrossRef]
- Aspen Technology Inc. Pressure Swing Distillation with Aspen Plus® V8.0; Aspen Technology Inc.: Bedford, MA, USA, 2012. [Google Scholar]
- Morales, M.; Arvesen, A.; Cherubini, F. Integrated Process Simulation for Bioethanol Production: Effects of Varying Lignocellulosic Feedstocks on Technical Performance. Bioresour. Technol. 2021, 328, 124833. [Google Scholar] [CrossRef] [PubMed]
- Lassmann, T.; Kravanja, P.; Friedl, A. Simulation of the Downstream Processing in the Ethanol Production from Lignocellulosic Biomass with ASPEN Plus® and IPSEpro. Energy Sustain. Soc. 2014, 4, 27. [Google Scholar] [CrossRef]
Component | w (wt.%) |
---|---|
H2O | 0.9320 |
EtOH | 0.0540 |
H2SO4 | 0.0007 |
HMF | 0.0119 |
Furfural | 0.0010 |
Ca(OH)2 | 0.0004 |
LPC | HPC | |||
---|---|---|---|---|
RC-1 | After NQ Analysis 1 | After Additional Feed Tray Optimisation 2 | ||
ϕb (kW) | 4109 | 9171 | 8377 | 5910 |
ϕc (kW) | −3850 | −8470 | −7852 | −6436 |
RR (−) | 0.61 | 3.70 | 3.43 | 4.68 |
N (−) | 17 | 28 | 28 | 32 |
Nf (−) | 3 | 24 | REC-1: 18 | 14 |
D-1: 25 |
qm (kg/h) | T (°C) | p (bar) | wH2O (−) | wEtOH (−) | wH2SO4 (−) | wHMF (−) | wFurfural (−) | wCa(OH)2 (−) | |
---|---|---|---|---|---|---|---|---|---|
F-1 | 50,188.90 | 33.00 | 1 | 0.9320 | 0.0540 | 0.0007 | 0.0119 | 0.0010 | 0.0004 |
F-2 | 50,188.90 | 94.47 | 1 | 0.9320 | 0.0540 | 0.0007 | 0.0119 | 0.0010 | 0.0004 |
D-1 | 5411.45 | 81.83 | 1 | 0.4928 | 0.5000 | 3.47 × 10−12 | 2.24 × 10−09 | 0.0072 | 5.47 × 10−54 |
B-1 | 44,777.45 | 100.05 | 1 | 0.9851 | 0.0001 | 0.0008 | 0.0133 | 0.0002 | 0.0004 |
DLP-2 | 8774.91 | 77.99 | 1 | 0.0600 | 0.9400 | 3.64 × 10−132 | 3.82 × 10−108 | 6.42 × 10−19 | 0 |
DHP-2 | 8774.91 | 217.72 | 10 | 0.0600 | 0.9400 | 3.64 × 10−132 | 3.82 × 10−108 | 6.42 × 10−19 | 0 |
B-2 | 2703.14 | 99.12 | 1 | 0.9824 | 0.0031 | 6.95 × 10−12 | 4.48 × 10−09 | 0.0145 | 0 |
DHP-3 | 6066.60 | 149.43 | 10 | 0.0850 | 0.9150 | 0 | 0 | 0 | 0 |
REC-1 | 6066.60 | 138.46 | 1 | 0.0850 | 0.9150 | 0 | 0 | 0 | 0 |
B-3 | 2708.30 | 150.70 | 10 | 0.0040 | 0.9960 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rola, K.; Gruber, S.; Goričanec, D.; Urbancl, D. Waste Lignocellulosic Biomass as a Source for Bioethanol Production. Sustain. Chem. 2024, 5, 1-12. https://doi.org/10.3390/suschem5010001
Rola K, Gruber S, Goričanec D, Urbancl D. Waste Lignocellulosic Biomass as a Source for Bioethanol Production. Sustainable Chemistry. 2024; 5(1):1-12. https://doi.org/10.3390/suschem5010001
Chicago/Turabian StyleRola, Klemen, Sven Gruber, Darko Goričanec, and Danijela Urbancl. 2024. "Waste Lignocellulosic Biomass as a Source for Bioethanol Production" Sustainable Chemistry 5, no. 1: 1-12. https://doi.org/10.3390/suschem5010001
APA StyleRola, K., Gruber, S., Goričanec, D., & Urbancl, D. (2024). Waste Lignocellulosic Biomass as a Source for Bioethanol Production. Sustainable Chemistry, 5(1), 1-12. https://doi.org/10.3390/suschem5010001