Design of Experiment: A Rational and Still Unexplored Approach to Inorganic Materials’ Synthesis
Abstract
:1. Introduction
2. Theoretical Background of DoE and Its Application to Inorganic Chemistry
2.1. Theoretical Background of DoE
- randomisation: both the allocation of the experimental units to treatments and the order in which the individual runs are to be performed are randomly determined;
- blocking: a technique for dealing with known and controllable nuisance factors (i.e., factors having an impact on the response, but of no interest to the experimenter), blocking out their potential effect on the response; and
- replication: each factor combination is, generally, assigned to more than one experimental unit. Replicates are indeed multiple independent executions of the same experimental conditions, which are processed individually in the experiment and should be run in random order.
- understanding the effect of factors on the response variable(s), possibly identifying also nonlinear trends, and
- identifying the optimal configuration of the levels of the factors, typically by a maximisation or a minimisation of the response variables.
- (1)
- Select factors (and their levels) and response variables. A screening experiment can be run to identify the most relevant factors.
- (2)
- Select an appropriate experimental design (usually an optimal design) and collect data.
- (3)
- Model the relationship between response variables and the factors.
- (4)
- Evaluate the quality of the fitted model.
- (5)
- Find optimal configurations of the factors’ levels.
2.2. Selected Examples
2.2.1. Solvent Optimisation
2.2.2. Synthesis of Inorganic Nanomaterials and Nanoparticles
2.2.3. Precious Metal NP Optimisation for Exhaust Gas After-Treatment
2.2.4. Application to Flow Chemistry
3. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gatti, T.; Lamberti, F.; Mazzaro, R.; Kriegel, I.; Schlettwein, D.; Enrichi, F.; Lago, N.; Di Maria, E.; Meneghesso, G.; Vomiero, A.; et al. Opportunities from Doping of Non-Critical Metal Oxides in Last Generation Light-Conversion Devices. Adv. Energy Mater. 2021, 11, 2101041. [Google Scholar] [CrossRef]
- European Commission. Critical Raw Materials for Strategic Technologies and Sectors in the EU—A Foresight Study. 2020. Available online: https://data.europa.eu/doi/10.2873/865242 (accessed on 20 December 2021).
- Kloo, L. Inorganic chemistry for renewable energy conversion and storage. Dalton Trans. 2014, 43, 14924–14925. [Google Scholar] [CrossRef] [PubMed]
- Salviulo, G.; Lavagnolo, M.C.; Dabalà, M.; Bernardo, E.; Polimeno, A.; Sambi, M.; Bonollo, F.; Gross, S. Enabling Circular Economy: The Overlooked Role of Inorganic Materials Chemistry. Chem.—Eur. J. 2021, 27, 6676–6695. [Google Scholar] [CrossRef] [PubMed]
- Anastas, P.; Warner, J. Green Chemistry: Theory and Practice; Oxford University Press Inc.: Oxford, UK, 2000. [Google Scholar]
- Keijer, T.; Bakker, V.; Slootweg, J.C. Circular chemistry to enable a circular economy. Nat. Chem. 2019, 11, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K.; Clark, J.H.; Zuin, V.G. Rethinking chemistry for a circular economy. Science 2020, 367, 369–370. [Google Scholar] [CrossRef]
- Clark, J.H. Green biorefinery technologies based on waste biomass. Green Chem. 2019, 21, 1168–1170. [Google Scholar] [CrossRef]
- Clark, J.H.; Farmer, T.J.; Herrero-Davila, L.; Sherwood, J. Circular economy design considerations for research and process development in the chemical sciences. Green Chem. 2016, 18, 3914–3934. [Google Scholar] [CrossRef] [Green Version]
- Linder, M. Ripe for disruption: Reimagining the role of green chemistry in a circular economy. Green Chem. Lett. Rev. 2017, 10, 428–435. [Google Scholar] [CrossRef] [Green Version]
- Loste, N.; Roldán, E.; Giner, B. Is Green Chemistry a Feasible Tool for the Implementation of a Circular Economy? Environ. Sci. Pollut. Res. 2020, 27, 6215–6227. [Google Scholar] [CrossRef]
- Thomas, J.M.; Raja, R. Designing Catalysts for Clean Technology, Green Chemistry, and Sustainable Development. Annu. Rev. Mater. Sci. 2005, 35, 315–350. [Google Scholar] [CrossRef]
- Everts, S. GREEN CHEMISTRY Environmentally friendly synthesis of niacin generates less inorganic waste. Chem. Eng. News 2008, 86, 15. [Google Scholar] [CrossRef]
- Bretos, I.; Diodati, S.; Jiménez, R.; Tajoli, F.; Ricote, J.; Bragaggia, G.; Franca, M.; Calzada, M.L.; Gross, S. Low-Temperature Solution Crystallization of Nanostructured Oxides and Thin Films. Chem.—Eur. J. 2020, 26, 9157–9179. [Google Scholar] [CrossRef]
- Diodati, S.; Dolcet, P.; Casarin, M.; Gross, S. Pursuing the Crystallization of Mono- and Polymetallic Nanosized Crystalline Inorganic Compounds by Low-Temperature Wet-Chemistry and Colloidal Routes. Chem. Rev. 2015, 115, 11449–11502. [Google Scholar] [CrossRef] [PubMed]
- Einarsrud, M.-A.; Grande, T. 1D oxide nanostructures from chemical solutions. Chem. Soc. Rev. 2013, 43, 2187–2199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabenau, A. The Role of Hydrothermal Synthesis in Preparative Chemistry. Angew. Chem. Int. Ed. 1985, 24, 1026–1040. [Google Scholar] [CrossRef]
- Byrappa, K.Y.M. Handbook of Hydrothermal Technology; Elsevier: New York, NY, USA, 2013. [Google Scholar]
- Walton, R.I. Subcritical solvothermal synthesis of condensed inorganic materials. Chem. Soc. Rev. 2002, 31, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Modeshia, D.R.; Walton, R.I. Solvothermal synthesis of perovskites and pyrochlores: Crystallisation of functional oxides under mild conditions. Chem. Soc. Rev. 2010, 39, 4303–4325. [Google Scholar] [CrossRef]
- European Commission. Report on Critical Raw Materials and the Circular Economy. 2018. Available online: https://data.europa.eu/doi/10.2873/331561 (accessed on 20 December 2021).
- European Commission. List of Critical Raw Materials for the EU (COM/2017/0490 Final). 2017. Available online: https://op.europa.eu/en/publication-detail/-/publication/d34eb321-985d-11e7-b92d-01aa75ed71a1/language-en/format-PDF/source-252345577 (accessed on 20 December 2021).
- Hagelüken, C. Bedeutung des EU Kreislaufwirtschaftspakets für das Metallrecycling. Chem. Ing. Tech. 2017, 89, 17–28. [Google Scholar] [CrossRef]
- Espinoza, L.T.; Schrijvers, D.; Chen, W.-Q.; Dewulf, J.; Eggert, R.; Goddin, J.; Habib, K.; Hagelüken, C.; Hurd, A.J.; Kleijn, R.; et al. Greater circularity leads to lower criticality, and other links between criticality and the circular economy. Resour. Conserv. Recycl. 2020, 159, 104718. [Google Scholar] [CrossRef]
- Benedetti, B.; Caponigro, V.; Ardini, F. Experimental Design Step by Step: A Practical Guide for Beginners. Crit. Rev. Anal. Chem. 2020, 1–14. [Google Scholar] [CrossRef]
- Leardi, R. Experimental design in chemistry: A tutorial. Anal. Chim. Acta 2009, 652, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Leardi, R. D-Optimal Designs. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd.: Chichester, UK, 2018; pp. 1–11. [Google Scholar]
- Fitzpatrick, D.; Ley, S. Engineering chemistry for the future of chemical synthesis. Tetrahedron 2018, 74, 3087–3100. [Google Scholar] [CrossRef] [Green Version]
- Fisher, R.A. The Design of Experiments. Nature 1936, 137, 252–254. [Google Scholar] [CrossRef]
- Papon, R.; Pierlot, C.; Sharma, S.; Shinde, S.M.; Kalita, G.; Tanemura, M. Optimization of CVD parameters for graphene synthesis through design of experiments. Phys. Status Solidi B 2016, 254, 1600629. [Google Scholar] [CrossRef]
- San, F.G.B.; Dursun, S.; Yazici, M.S. Optimization of the PEMFC operating parameters for cathode in the presence of PtCo/CVD graphene using factorial design. Int. J. Energy Res. 2019, 43, 4506–4519. [Google Scholar] [CrossRef]
- Arízaga, G.G.C.; Herrera, G.S.; Fischer, A.; López, O.E.C. Influence of reaction conditions on the growth of GaN rods in an ammono-CVD reactor. J. Cryst. Growth 2011, 319, 19–24. [Google Scholar] [CrossRef]
- Ramadan, Z.; Im, I.-T.; Park, C.W. Process Optimization and Modeling of the Silicon Growth in Trichlorosilane-Hydrogen Gas Mixture in a Planetary CVD Reactor. IEEE Trans. Semicond. Manuf. 2021, 34, 1–8. [Google Scholar] [CrossRef]
- Hößler, D.; Ernst, M. Optimization of a TiSi2 formation based on PECVD Ti using DoE methodology. Solid-State Electron. 2019, 158, 51–58. [Google Scholar] [CrossRef]
- Bucio, T.D.; Khokhar, A.Z.; Lacava, C.; Stankovic, S.; Mashanovich, G.Z.; Petropoulos, P.; Gardes, F.Y. Material and optical properties of low-temperature NH3 -free PECVD SiNx layers for photonic applications. J. Phys. D Appl. Phys. 2017, 50, 025106. [Google Scholar] [CrossRef]
- Kim, K.; Borojevic, N.; Winderbaum, S.; Duttagupta, S.; Zhang, X.; Park, J.; Hameiri, Z. Investigation of industrial PECVD AlOx films with very low surface recombination. Sol. Energy 2019, 186, 94–105. [Google Scholar] [CrossRef]
- Yu, D.; Wang, C.; Cheng, X.; Zhang, F. Optimization of hybrid PVD process of TiAlN coatings by Taguchi method. Appl. Surf. Sci. 2008, 255, 1865–1869. [Google Scholar] [CrossRef]
- Chou, W.-J.; Sun, C.-H.; Yu, G.-P.; Huang, J.-H. Optimization of the deposition process of ZrN and TiN thin films on Si(100) using design of experiment method. Mater. Chem. Phys. 2003, 82, 228–236. [Google Scholar] [CrossRef]
- Yang, J.; Cheng, Z.; Zhong, X.; Shao, F.; Zhao, H.; Zhuang, Y.; Sheng, J.; Ni, J.; Tao, S. Deposition Behavior of PS-PVD Yttria Partially Stabilized Zirconia Coatings. J. Therm. Spray Technol. 2021, 1–12. [Google Scholar] [CrossRef]
- Araújo, A.J.; Alves, H.P.; Andrade, R.M.; Campos, L.F.; Macedo, D.A.; Pinho, A.L.; Nascimento, R.M.; Paskocimas, C.A. Designing experiments for the optimization of solid-state synthesis and characterization of alumina-based composites. Ceram. Int. 2019, 45, 8525–8532. [Google Scholar] [CrossRef]
- Chable, J.; Martin, A.; Bourdin, A.; Body, M.; Legein, C.; Jouanneaux, A.; Crosnier-Lopez, M.-P.; Galven, C.; Dieudonné, B.; Leblanc, M.; et al. Fluoride solid electrolytes: From microcrystalline to nanostructured tysonite-type La0.95Ba0.05F2.95. J. Alloy. Compd. 2017, 692, 980–988. [Google Scholar] [CrossRef]
- Ryan, K.; Lengyel, J.; Shatruk, M. Crystal Structure Prediction via Deep Learning. J. Am. Chem. Soc. 2018, 140, 10158–10168. [Google Scholar] [CrossRef]
- Gzyl, A.S.; Oliynyk, A.O.; Adutwum, L.A.; Mar, A. Solving the Coloring Problem in Half-Heusler Structures: Machine-Learning Predictions and Experimental Validation. Inorg. Chem. 2019, 58, 9280–9289. [Google Scholar] [CrossRef]
- Draheim, C.; De Crécy, F.; Hansen, S.; Collnot, E.-M.; Lehr, C.-M. A Design of Experiment Study of Nanoprecipitation and Nano Spray Drying as Processes to Prepare PLGA Nano- and Microparticles with Defined Sizes and Size Distributions. Pharm. Res. 2015, 32, 2609–2624. [Google Scholar] [CrossRef]
- Parikh, K.J.; Sawant, K.K. Comparative Study for Optimization of Pharmaceutical Self-Emulsifying Pre-concentrate by Design of Experiment and Artificial Neural Network. AAPS PharmSciTech 2018, 19, 3311–3321. [Google Scholar] [CrossRef]
- Turk, C.T.S.; Oz, U.C.; Serim, T.M.; Hascicek, C. Formulation and Optimization of Nonionic Surfactants Emulsified Nimesulide-Loaded PLGA-Based Nanoparticles by Design of Experiments. AAPS PharmSciTech 2013, 15, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Box, J.F.; Fisher, R.A. Design of Experiments. Am. Stat. 1980, 34, 1–7. [Google Scholar]
- Antony, J. Fractional Factorial Designs. In Design of Experiments for Engineers and Scientists, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 87–112. [Google Scholar]
- Antony, J. Full Factorial Designs. In Design of Experiments for Engineers and Scientists, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 63–85. ISBN 9780080994178. [Google Scholar]
- Box, G.E.P.; Wilson, K.B. On the Experimental Attainment of Optimum Conditions. J. R. Stat. Soc. Ser. B 1951, 13, 1–45. [Google Scholar] [CrossRef]
- Arboretti, R.; Ceccato, R.; Pegoraro, L.; Salmaso, L. Design of Experiments and machine learning for product innovation: A systematic literature review. Qual. Reliab. Eng. Int. 2021, 38, 1131–1156. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Eriksson, L.; Johansson, E.; Wikström, C. Mixture design-Design generation, PLS analysis, and model usage. Chemom. Intell. Lab. Syst. 1998, 43, 1–24. [Google Scholar] [CrossRef]
- Holtze, C.; Boehling, R. Batch or flow chemistry?—A current industrial opinion on process selection. Curr. Opin. Chem. Eng. 2022, 36, 100798. [Google Scholar] [CrossRef]
- Winterton, N. The green solvent: A critical perspective. Clean Technol. Environ. Policy 2021, 23, 2499–2522. [Google Scholar] [CrossRef]
- Zhang, C.; Amar, Y.; Cao, L.; Lapkin, A.A. Solvent Selection for Mitsunobu Reaction Driven by an Active Learning Surrogate Model. Org. Process Res. Dev. 2020, 24, 2864–2873. [Google Scholar] [CrossRef]
- Murray, P.M.; Bellany, F.; Benhamou, L.; Bučar, D.-K.; Tabor, A.B.; Sheppard, T.D. The application of design of experiments (DoE) reaction optimisation and solvent selection in the development of new synthetic chemistry. Org. Biomol. Chem. 2015, 14, 2373–2384. [Google Scholar] [CrossRef] [Green Version]
- Baker, R.W.; Forfar, L.; Liang, X.; Cameron, P.J. Using design of experiment to obtain a systematic understanding of the effect of synthesis parameters on the properties of perovskite nanocrystals. React. Chem. Eng. 2021, 6, 709–719. [Google Scholar] [CrossRef]
- Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; McElroy, C.R.; Sherwood, J. Tools and techniques for solvent selection: Green solvent selection guides. Sustain. Chem. Process. 2016, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Amar, Y.; Schweidtmann, A.M.; Deutsch, P.; Cao, L.; Lapkin, A. Machine learning and molecular descriptors enable rational solvent selection in asymmetric catalysis. Chem. Sci. 2019, 10, 6697–6706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shields, B.J.; Stevens, J.; Li, J.; Parasram, M.; Damani, F.; Alvarado, J.I.M.; Janey, J.M.; Adams, R.P.; Doyle, A.G. Bayesian reaction optimization as a tool for chemical synthesis. Nature 2021, 590, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Roussel, R.; Gonzalez-Aguilera, J.P.; Kim, Y.-K.; Wisniewski, E.; Liu, W.; Piot, P.; Power, J.; Hanuka, A.; Edelen, A. Turn-key constrained parameter space exploration for particle accelerators using Bayesian active learning. Nat. Commun. 2021, 12, 5612. [Google Scholar] [CrossRef] [PubMed]
- Rauscher, H.; Roebben, G.; Mech, A.; Gibson, N.; Kestens, V.; Linsinger, T.P.J.; Riego Sintes, J. An Overview of Concepts and Terms Used in the European Commission’s Definition of Nanomaterial, EUR 29647 EN; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Liu, L.; Corma, A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018, 118, 4981–5079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmid, G. (Ed.) Nanoparticles; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010. [Google Scholar]
- Stark, W.J.; Stoessel, P.R.; Wohlleben, W.; Hafner, A. Industrial applications of nanoparticles. Chem. Soc. Rev. 2015, 44, 5793–5805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barglik-Chory, C.; Remenyi, C.; Strohm, H.; Müller, G. Adjustment of the Band Gap Energies of Biostabilized CdS Nanoparticles by Application of Statistical Design of Experiments. J. Phys. Chem. B 2004, 108, 7637–7640. [Google Scholar] [CrossRef]
- Sadat-Shojai, M.; Atai, M.; Nodehi, A. Design of experiments (DOE) for the optimization of hydrothermal synthesis of hydroxyapatite nanoparticles. J. Braz. Chem. Soc. 2011, 22, 571–582. [Google Scholar] [CrossRef]
- Pu’Ad, N.M.; Haq, R.A.; Noh, H.M.; Abdullah, H.; Idris, M.; Lee, T. Synthesis method of hydroxyapatite: A review. Mater. Today Proc. 2020, 29, 233–239. [Google Scholar] [CrossRef]
- Golmohammad, M.; Mirhabibi, A.; Golestanifard, F.; Kelder, E.M. Optimizing Synthesis of Maghemite Nanoparticles as an Anode for Li-Ion Batteries by Exploiting Design of Experiment. J. Electron. Mater. 2015, 45, 426–434. [Google Scholar] [CrossRef]
- Pourmortazavi, S.M.; Sahebi, H.; Zandavar, H.; Mirsadeghi, S. Fabrication of Fe3O4 nanoparticles coated by extracted shrimp peels chitosan as sustainable adsorbents for removal of chromium contaminates from wastewater: The design of experiment. Compos. Part B Eng. 2019, 175, 107130. [Google Scholar] [CrossRef]
- Jalees, M.I. Synthesis and application of magnetized nanoparticles to remove lead from drinking water: Taguchi design of experiment. J. Water Sanit. Hyg. Dev. 2020, 10, 56–65. [Google Scholar] [CrossRef]
- Núñez, R.N.; Veglia, A.V.; Pacioni, N.L. Improving reproducibility between batches of silver nanoparticles using an experimental design approach. Microchem. J. 2018, 141, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Baldassari, S.; Corradi, A.B.; Bondioli, F.; Ferrari, A.; Romagnoli, M.; Villa, C. DOE analyses on aqueous suspensions of TiO2 nanoparticles. J. Eur. Ceram. Soc. 2008, 28, 2665–2671. [Google Scholar] [CrossRef]
- Sani, S.; Adnan, R.; Iqbal, M.A.M. One-step statistical design of experiment for the screening and optimization of magnetite nanoparticles yields from solvothermal synthesis. Microporous Mesoporous Mater. 2020, 312, 110775. [Google Scholar] [CrossRef]
- Duff, D.G.; Ohrenberg, A.; Voelkening, S.; Boll, M. A Screening Workflow for Synthesis and Testing of 10,000 Heterogeneous Catalysts per Day– Lessons Learned. Macromol. Rapid Commun. 2003, 25, 169–177. [Google Scholar] [CrossRef]
- Spolaore, F. Size- and Shape-Controlled Syntheses of Metal and Alloy Nano-Particles by Sustainable and Green Colloidal and Wet Chemistry Routes for Automotive Applications. Ph.D. Thesis, University of Padova, Padua, Italy, 2020. [Google Scholar]
- Franceschini, G.; Macchietto, S. Model-based design of experiments for parameter precision: State of the art. Chem. Eng. Sci. 2008, 63, 4846–4872. [Google Scholar] [CrossRef]
- Khan, R.M. Problem Solving and Data Analysis Using Minitab; John Wiley & Sons, Ltd.: Chichester, UK, 2013. [Google Scholar]
- DeMello, J.; DeMello, A. Microscale Reactors: Nanoscale Products. Lab Chip. 2004, 4, 11–15. [Google Scholar]
- Elvira, K.S.; Solvas, X.C.; Wootton, R.C.R.; de Mello, A.J. The Past, Present and Potential for Microfluidic Reactor Technology in Chemical Synthesis. Nat. Chem. 2013, 5, 905–915. [Google Scholar] [CrossRef]
- Taylor, C.J.; Baker, A.; Chapman, M.R.; Reynolds, W.R.; Jolley, K.E.; Clemens, G.; Smith, G.E.; Blacker, A.J.; Chamberlain, T.W.; Christie, S.D.R.; et al. Flow chemistry for process optimisation using design of experiments. J. Flow Chem. 2021, 11, 75–86. [Google Scholar] [CrossRef]
- Tajoli, F.; Dengo, N.; Mognato, M.; Dolcet, P.; Lucchini, G.; Faresin, A.; Grunwaldt, J.-D.; Huang, X.; Badocco, D.; Maggini, M.; et al. Microfluidic Crystallization of Surfactant-Free Doped Zinc Sulfide Nanoparticles for Optical Bioimaging Applications. ACS Appl. Mater. Interfaces 2020, 12, 44074–44087. [Google Scholar] [CrossRef] [PubMed]
- Dengo, N.; Faresin, A.; Carofiglio, T.; Maggini, M.; Wu, L.; Hofmann, J.P.; Hensen, E.J.M.; Dolcet, P.; Gross, S. Ligand-free ZnS nanoparticles: As easy and green as it gets. Chem. Commun. 2020, 56, 8707–8710. [Google Scholar] [CrossRef] [PubMed]
- Abou-Hassan, A.; Sandre, O.; Cabuil, V. Microfluidics in Inorganic Chemistry. Angew. Chem. Int. Ed. 2010, 49, 6268–6286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, E.M.; Mathies, A.R.A.; Alivisatos, A.P. Size-Controlled Growth of CdSe Nanocrystals in Microfluidic Reactors. Nano Lett. 2003, 3, 199–201. [Google Scholar] [CrossRef]
- Nightingale, A.M.; de Mello, J.C. Microscale synthesis of quantum dots. J. Mater. Chem. 2010, 20, 8454–8463. [Google Scholar] [CrossRef]
- Nightingale, A.M.; Bannock, J.H.; Krishnadasan, S.H.; O’Mahony, F.T.F.; Haque, S.A.; Sloan, J.; Drury, C.; McIntyre, R.; Demello, J.C. Large-scale synthesis of nanocrystals in a multichannel droplet reactor. J. Mater. Chem. A 2013, 1, 4067–4076. [Google Scholar] [CrossRef] [Green Version]
- Edel, J.B.; Fortt, R.; Demello, J.C.; Demello, A.J. Microfluidic routes to the controlled production of nanoparticlesElectronic supplementary information ESI available: Image of the central portion of the micromixer chip. See http://www.rsc.org/suppdata/cc/b2/b202998g/. Chem. Commun. 2002, 1136–1137. [Google Scholar] [CrossRef]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef]
- Plunkett, A.; Eldridge, C.; Schneider, G.A.; Domènech, B. Controlling the Large-Scale Fabrication of Supraparticles. J. Phys. Chem. B 2020, 124, 11263–11272. [Google Scholar] [CrossRef]
- Degli Esposti, L.; Dotti, A.; Adamiano, A.; Fabbi, C.; Quarta, E.; Colombo, P.; Catalucci, D.; De Luca, C.; Iafisco, M. Calcium Phosphate Nanoparticle Precipitation by a Continuous Flow Process: A Design of Experiment Approach. Crystals 2020, 10, 953. [Google Scholar] [CrossRef]
- Bagi, S.D.; Yuan, S.; Rojas-Buzo, S.; Shao-Horn, Y.; Román-Leshkov, Y. A continuous flow chemistry approach for the ultrafast and low-cost synthesis of MOF-808. Green Chem. 2021. [Google Scholar] [CrossRef]
- Valotta, A.; Maier, M.C.; Soritz, S.; Pauritsch, M.; Koenig, M.; Brouczek, D.; Schwentenwein, M.; Gruber-Woelfler, H. 3D printed ceramics as solid supports for enzyme immobilization: An automated DoE approach for applications in continuous flow. J. Flow Chem. 2021, 11, 675–689. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.A.; Tan, J.; Davidson, M.G.; Bull, S.; Hutchby, M.; Mattia, D.; Plucinski, P. Continuous-flow liquid-phase dehydrogenation of 1,4-cyclohexanedione in a structured multichannel reactor. React. Chem. Eng. 2018, 4, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Örkényi, R.; Beke, G.; Riethmüller, E.; Szakács, Z.; Kóti, J.; Faigl, F.; Éles, J.; Greiner, I. Environmentally Friendly Synthesis of Indoline Derivatives using Flow-Chemistry Techniques. Eur. J. Org. Chem. 2017, 2017, 6525–6532. [Google Scholar] [CrossRef] [Green Version]
- Fath, V.; Lau, P.; Greve, C.; Weller, P.; Kockmann, N.; Röder, T. Simultaneous self-optimisation of yield and purity through successive combination of inline FT-IR spectroscopy and online mass spectrometry in flow reactions. J. Flow Chem. 2021, 11, 285–302. [Google Scholar] [CrossRef]
- Perera, D.; Tucker, J.W.; Brahmbhatt, S.; Helal, C.J.; Chong, A.; Farrell, W.; Richardson, P.; Sach, N.W. A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow. Science 2018, 359, 429–434. [Google Scholar] [CrossRef] [Green Version]
- Biyani, S.A.; Qi, Q.; Wu, J.; Moriuchi, Y.; Larocque, E.A.; Sintim, H.O.; Thompson, D.H. Use of High-Throughput Tools for Telescoped Continuous Flow Synthesis of an Alkynylnaphthyridine Anticancer Agent, HSN608. Org. Process Res. Dev. 2020, 24, 2240–2251. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamberti, F.; Mazzariol, C.; Spolaore, F.; Ceccato, R.; Salmaso, L.; Gross, S. Design of Experiment: A Rational and Still Unexplored Approach to Inorganic Materials’ Synthesis. Sustain. Chem. 2022, 3, 114-130. https://doi.org/10.3390/suschem3010009
Lamberti F, Mazzariol C, Spolaore F, Ceccato R, Salmaso L, Gross S. Design of Experiment: A Rational and Still Unexplored Approach to Inorganic Materials’ Synthesis. Sustainable Chemistry. 2022; 3(1):114-130. https://doi.org/10.3390/suschem3010009
Chicago/Turabian StyleLamberti, Francesco, Chiara Mazzariol, Federico Spolaore, Riccardo Ceccato, Luigi Salmaso, and Silvia Gross. 2022. "Design of Experiment: A Rational and Still Unexplored Approach to Inorganic Materials’ Synthesis" Sustainable Chemistry 3, no. 1: 114-130. https://doi.org/10.3390/suschem3010009
APA StyleLamberti, F., Mazzariol, C., Spolaore, F., Ceccato, R., Salmaso, L., & Gross, S. (2022). Design of Experiment: A Rational and Still Unexplored Approach to Inorganic Materials’ Synthesis. Sustainable Chemistry, 3(1), 114-130. https://doi.org/10.3390/suschem3010009