Pt-Promoted Tungsten Carbide Nanostructures on Mesoporous Pinewood-Derived Activated Carbon for Catalytic Oxidation of Formaldehyde at Low Temperatures
Abstract
:1. Introduction
2. Experimental
2.1. Wood-Derived Activated Carbon (AC) Preparation and Pretreatment
2.2. Preparation of AC Supported Tungsten Carbide
2.3. Preparation of Pt-WC/AC Catalysts
2.4. Analysis and Characterization of Samples
2.5. Evaluation of Catalytic Performance
3. Results and Discussion
3.1. Catalyst Analysis and Characterization
FTIR and TPD Analysis of AC Samples
3.2. Elemental Analysis
Surface Area and Porosity of the AC Supported Catalysts
3.3. X-ray Diffraction (XRD)
3.4. Field Emission Scanning Electron Microscope (FESEM)
3.5. High Resolution Transmission Electron Microscopy (HRTEM)
3.6. CO Chemisorption
3.7. Test of Complete Oxidation of HCHO
3.7.1. Effect of Pt Loading
3.7.2. Effect of Relative Humidity on Catalytic Oxidation of HCHO
3.7.3. Effect of Gas Hourly Space Velocity (GHSV) on HCHO Conversion Rate
3.7.4. Effect of Initial HCHO Concentration
3.8. Stability of 1% Pt/AC and 1% Pt-WC/AC Catalysts
3.9. Possible Promotion Effects of WC to Pt Catalyst
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Salthammer, T.; Mentese, S.; Marutzky, R. Formaldehyde in the Indoor Environment. Chem. Rev. 2010, 110, 2536–2572. [Google Scholar] [CrossRef]
- Athanassiadis, B.; George, G.A.; Abbott, P.V.; Wash, L.J. A review of the effects of formaldehyde release from endodontic materials. Int. Endod. J. 2015, 48, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Hesse, W. “Phenolic Resins” in Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2002. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.J. Comparison of formaldehyde emission from building finishing materials at various temperatures in under heating system; ONDOL. Indoor Air 2005, 15, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.J.; Li, D.D.; Zhang, P.Y.; Li, J.G.; Wang, J.; Yu, J.G. Formaldehyde and volatile organic compound (VOC) emissions from particleboard: Identification of odorous compounds and effects of heat treatment. Build. Environ. 2017, 117, 118–126. [Google Scholar] [CrossRef]
- McLaughlin, J.K. Formaldehyde and cancer: A critical review. Int. Arch. Occup. Environ. Heath 1994, 66, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Miao, H.; Rui, Z.; Ji, H. Enhanced Formaldehyde Removal from Air Using Fully Biodegradable Chitosan Grafted β-Cyclodextrin Adsorbent with Weak Chemical Interaction. Polymers 2019, 11, 276. [Google Scholar] [CrossRef] [Green Version]
- Dingle, P.; Tapsell, P.; Hu, S. Reducing Formaldehyde Exposure in Office Environments Using Plants. Bull. Environ. Contam. Toxicol. 2000, 64, 302–308. [Google Scholar] [CrossRef]
- Huang, Y.; Ho, S.; Lu, Y.F.; Niu, R.Y.; Xu, L.F.; Cao, J.J.; Lee, S.C. Removal of indoor volatile organic compounds via photocatalytic oxidation: A short review and prospect. Molecules 2016, 21, 56. [Google Scholar] [CrossRef] [Green Version]
- Thevenet, F.; Sivachandiran, L.; Guaitella, O.; Barakat, C.; Rousseau, A. Plasma-catalyst coupling for volatile organic compound removal and indoor air treatment: A review. J. Phys. D Appl. Phys. 2014, 47, 224011. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, M.; Shi, J.; Yuan, J.; Shangguan, W. Catalysis Removal of Indoor Volatile Organic Compounds in Room Temperature: From Photocatalysis to Active Species Assistance Catalysis. Catal. Surv. Asia 2015, 19, 1–16. [Google Scholar] [CrossRef]
- Bai, B.; Qiao, Q.; Li, J.; Hao, J. Progress in research on catalysts for catalytic oxidation of formaldehyde. Chin. J. Catal. 2016, 37, 102–122. [Google Scholar] [CrossRef]
- Nie, L.; Yu, J.; Jaroniec, M.; Tao, F.F. Room-temperature catalytic oxidation of formaldehyde on catalysts. Catal. Sci. Technol. 2016, 6, 3649–3669. [Google Scholar] [CrossRef]
- Pei, J.; Zhang, J.S. Critical review of catalytic oxidization and chemisorption methods for indoor formaldehyde removal. Hvac R Res. 2011, 17, 476–503. [Google Scholar]
- Xu, Z.; Huang, G.; Yan, Z.; Wang, N.; Yue, L.; Liu, Q. Hydroxyapatite-Supported Low-Content Pt Catalysts for Efficient Removal of Formaldehyde at Room Temperature. ACS Omega 2019, 4, 21998–22007. [Google Scholar] [CrossRef] [Green Version]
- Oyama, S.T. Preparation and Catalytic Properties of Transition Metal Carbides and Nitrides. Catal. Today 1992, 15, 179–200. [Google Scholar] [CrossRef]
- Pang, J.; Sun, J.; Zheng, M.; Li, H.; Wang, Y.; Zhang, T. Transition metal carbide catalysts for biomass conversion: A review. Appl. Catal. B Environ. 2019, 254, 510–522. [Google Scholar] [CrossRef]
- Sullivan, M.M.; Chen, C.J.; Bhan, A. Catalytic deoxygenation on transition metal carbide catalysts. Catal. Sci. Technol. 2016, 6, 602–616. [Google Scholar] [CrossRef]
- Patt, J.; Moon, D.J.; Phillips, C.; Thompson, L.T. Molybdenum carbide catalysts for water–gas shift. Catal. Lett. 2000, 65, 193–195. [Google Scholar] [CrossRef]
- Ham, D.J.; Kim, Y.K.; Han, S.H.; Lee, J.S. Pt/WC as an anode catalyst for PEMFC: Activity and CO tolerance. Catal. Today 2008, 132, 117–122. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, C.; Shi, L.; Zeng, G.; Zhang, H.; Li, S.; Wu, P.; Sun, Y. Ultralow Pt Catalyst for Formaldehyde Removal: The Determinant Role of Support. iScience 2018, 9, 487–501. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Lu, Y.; To, F.; Li, Y.; Yu, F. Synthesis of tungsten carbide nanoparticles in wood-char matrix as a catalyst for dry reforming of methane to syngas. Catal. Sci. Technol. 2015, 5, 3270–3280. [Google Scholar] [CrossRef]
- Elezovic, N.R.; Babic, B.M.; Ercius, P.; Radmilovic, V.R.; Vracar, L.M.; Krstajic, N.V. Synthesis and characterization Pt nanocatalysts on tungsten based supports for oxygen reduction reaction. Appl. Catal. B Environ. 2012, 125, 390–397. [Google Scholar] [CrossRef]
- Şahin, Ö.; Saka, C. Preparation and characterization of activated carbon from acorn shell by physical activation with H2O–CO2 in two-step pretreatment. Bioresour. Technol. 2013, 136, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, Y.; Zhang, Y.; Chen, M.; Wang, L.; Zhang, C.; He, H. Effect of Support on the Activity of Ag-based Catalysts for Formaldehyde Oxidation. Sci. Rep. 2015, 5, 12950. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Wang, S. Performance and characterization of supported metal catalysts for complete oxidation of formaldehyde at low temperatures. Appl. Catal. B. 2007, 73, 282–291. [Google Scholar] [CrossRef]
- Nie, L.; Zheng, Y.; Yu, J. Efficient decomposition of formaldehyde at room temperature over Pt/honeycomb ceramics with ultra-low Pt content. Dalton Trans. 2014, 43, 12935–12942. [Google Scholar] [CrossRef] [PubMed]
- Date, M.; Haruta, M. Moisture effect on CO oxidation over Au/TiO2 catalyst. J. Catal. 2001, 201, 221–224. [Google Scholar] [CrossRef]
- Huang, Y.C.; Luo, C.H.; Yang, S.; Lin, Y.C.; Chuang, C.Y. Improved removal of indoor volatile organic compounds by activated carbon fiber filters calcined with copper oxide catalyst. Clean Soil Air Water 2010, 38, 993–997. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X.; Crocker, M.; Chen, B.; Shi, C. A comparative study of the catalytic oxidation of HCHO and CO over Mn0.75Co2.25O4 catalyst: The effect of moisture. Appl. Catal. B Environ. 2014, 160, 542–551. [Google Scholar] [CrossRef]
- Chen, B.B.; Shi, C.; Crocker, M.; Wang, Y.; Zhu, A.M. Catalytic removal of formaldehyde at room temperature over supported gold catalysts. Appl. Catal. B 2013, 132, 245–255. [Google Scholar] [CrossRef]
- An, N.; Yu, Q.; Gang, L.; Li, S.; Jia, M.; Zhang, W. Complete oxidation of formaldehyde at ambient temperature over supported Pt/Fe2O3 catalysts prepared by colloid-deposition method. J. Hazard. Mater. 2011, 186, 1392–1397. [Google Scholar] [CrossRef]
- Kwon, D.W.; Seo, P.W.; Kim, G.J.; Hong, S.C. Characteristics of the HCHO oxidation reaction over Pt/TiO2 catalysts at room temperature: The effect of relative humidity on catalytic activity. Appl. Catal. B Environ. 2015, 163, 436–443. [Google Scholar] [CrossRef]
- Zhao, D.Z.; Shi, C.; Li, X.S.; Zhu, A.M.; Jang, B.W.L. Enhanced effect of water vapor on complete oxidation of formaldehyde in air with ozone over MnOx catalysts at room temperature. J. Hazard. Mater. 2012, 239, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiao, Y.; Li, L.; Song, K.; Wang, X.; Wang, C.; Jian, X.; Ji, C.; Qian, P. Formaldehyde oxidation on Co-doped reduced CeO2(111): First-principles calculations. Surf. Sci. 2020, 701, 121693. [Google Scholar] [CrossRef]
- Ordonez, S.; Bello, L.; Sastre, H.; Rosal, R.; Diez, F.V. Kinetics of the deep oxidation of benzene, toluene, n-hexane and their binary mixtures over a platinum on γ -alumina catalyst. Appl. Catal. B 2002, 38, 139–149. [Google Scholar] [CrossRef]
- Liotta, L.F. Catalytic oxidation of volatile organic compounds on supported noble metals. Appl. Catal. B Environ. 2010, 100, 403–412. [Google Scholar] [CrossRef]
- Wu, H.; Ma, S.; Song, W.; Hensen, E.J.M. Density Functional Theory Study of the Mechanism of Formaldehyde Oxidation on Mn-Doped Ceria. J. Phys. Chem. C 2016, 120, 3071–13077. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Song, W.; Jing, M.; Zheng, H.; Liu, J.; Zhao, Z.; Li, Z. Influence of surface termination on formaldehyde oxidation by Mn-doped ceria: A density function theory study. Mol. Catal. 2018, 448, 30–37. [Google Scholar] [CrossRef]
- Spivey, J.J. Complete catalytic oxidation of volatile organics. Ind. Eng. Chem. Res. 1987, 26, 2165–2180. [Google Scholar] [CrossRef]
- Karl, T.; Zhou, C.B.; Tong, S. Kinetics and Mechanism of Catalytic Oxidation of Formaldehyde over Hydrophobic Catalysts. Ind. Eng. Chem. Res. 1994, 33, 1680–1686. [Google Scholar]
- Park, S.J.; Bae, I.; Nam, I.S.; Cho, B.K.; Jung, S.M.; Lee, J.H. Oxidation of formaldehyde over Pd/Beta catalyst. Chem. Eng. J. 2012, 195, 392–402. [Google Scholar] [CrossRef]
- Zhang, C.B.; He, H.; Tanaka, K. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. Appl. Catal. B Environ. 2006, 65, 37–43. [Google Scholar] [CrossRef]
- He, Y.; Ji, H. In-Situ DRIFTS study on catalytic oxidation of formaldehyde over Pt/TiO2 under mild conditions. Chin. J. Catal. 2010, 31, 171–175. [Google Scholar] [CrossRef]
- Zellner, M.B.; Chen, J.G. Surface science and electrochemical studies of WC and W2C PVD films as potential electrocatalysts. Catal. Today 2005, 99, 299–307. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; He, H. Significant enhancement in activity of Pd/TiO2 catalyst for formaldehyde oxidation by Na addition. Catal. Today 2017, 281, 412–417. [Google Scholar] [CrossRef]
- Sirijaruphan, A.; Goodwin, J.G.; Rice, R.W. Investigation of the initial rapid deactivation of platinum catalysts during the selective oxidation of carbon monoxide. J. Catal. 2004, 221, 288–293. [Google Scholar] [CrossRef]
- Huang, H.B.; Leung, D.Y.C. Complete elimination of indoor formaldehyde over supported Pt catalysts with extremely low Pt content at ambient temperature. J. Catal. 2011, 280, 60–67. [Google Scholar] [CrossRef]
- Ma, L.; Liu, C.; Guan, Q.; Li, W. Relationship between Pt particle size and catalyst activity for catalytic oxidation of ultrahigh-concentration formaldehyde. Appl. Organomet. Chem. 2019, 33, e5217. [Google Scholar] [CrossRef]
- Sun, X.; Lin, J.; Chen, Y.; Wang, Y.; Li, L.; Miao, S.; Pan, X.; Wang, X. Unravelling platinum nanoclusters as active sites to lower the catalyst loading for formaldehyde oxidation. Commun. Chem. 2019, 2, 27. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Chen, T.; Chen, Y.; Lee, J.; Chen, C. Formaldehyde oxidation on silica-supported Pt catalysts: The influence of thermal pretreatments on particle formation and on oxidation mechanism. J. Catal. 2017, 355, 87–100. [Google Scholar] [CrossRef]
- Lin, M.; Yu, X.; Yang, X.; Li, K.; Ge, M.; Li, J. Highly Active and Stable Interface Derived from Pt Supported on Ni/Fe Layered Double Oxides for HCHO Oxidation. Catal. Sci. Technol. 2017, 7, 1573–1580. [Google Scholar] [CrossRef]
- Colussi, S.; Boaro, M.; De Rogatis, L.; Pappacena, A.; de Leitenburg, C.; Llorca, J.; Trovarelli, A. Room temperature oxidation of formaldehyde on Pt-based catalysts: A comparison between ceria and other supports (TiO2, Al2O3 and ZrO2). Catal. Today 2015, 253, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Yang, Y.; Liu, J.; Wang, Z. Catalytic reaction mechanism of formaldehyde oxidation by oxygen species over Pt/TiO2 catalyst. Chemosphere 2020, 248, 125980. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.X.; Xu, Z.H.; Yu, J.G.; Jaroniec, M. Enhanced formaldehyde oxidation on CeO2/AlOOH-supported Pt catalyst at room temperature. Appl. Catal. B Environ. 2016, 199, 458–465. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, L.; Ma, C. Kinetics and thermodynamics of H2O dissociation and CO oxidation on the Pt/WC (0001) surface: A density functional theory study. Surf. Sci. 2017, 656, 7–16. [Google Scholar] [CrossRef]
- Wang, R.; Xie, Y.; Shi, K.; Wang, J.; Tian, C.; Shen, P.; Fu, H. Small-sized and contacting Pt–WC nanostructures on graphene as highly efficient anode catalysts for direct methanol fuel cells. Chem. A Eur. J. 2012, 18, 7443–7451. [Google Scholar] [CrossRef]
- Cui, G.; Shen, P.K.; Meng, H.; Zhao, J.; Wu, G. Tungsten carbide as supports for Pt electrocatalysts with improved CO tolerance in methanol oxidation. J. Power Sources 2011, 196, 6125–6130. [Google Scholar] [CrossRef]
- Jeon, M.K.; Daimon, H.; Lee, K.R.; Nakahara, A.; Woo, S.I. CO tolerant Pt/WC methanol electro-oxidation catalyst. Electrochem. Commun. 2007, 9, 2692–2695. [Google Scholar] [CrossRef]
Sample | Raw Wood-Char | Acid Treated Wood-Char | Wood Char- 1000 °C | WC/AC | 1 wt% Pt-WC/AC | 1 wt% Pt/AC |
---|---|---|---|---|---|---|
C (wt%)a | 88.9 ± 0.7 | 85.3 ± 0.8 | 92.5 ± 0.5 | 68.3 ± 0.4 | 67.6 ± 0.3 | 91.2 ± 0.5 |
H (wt%)a | 1.8 ± 0.2 | 2.0 ± 0.3 | 0.5 ± 0.1 | 0.3 ± 0.1 | 0.4 ± 0.05 | 0.4 ± 0.08 |
O (wt%)c | 9.2 ± 0.5 | 12.5 ± 0.6 | 7.0 ± 0.5 | 0.9 ± 0.3 | 0.9 ± 0.3 | 7.4 ± 0.4 |
N (wt%)a | 0.1 ± 0.05 | 0.1 ± 0.03 | – | – | – | – |
W (wt%)b | – | – | – | 30.5 ± 0.3 | 30.1 ± 0.7 | – |
Pt (wt%)b | – | – | – | – | 0.99 ± 0.05 | 1.02 ± 0.03 |
Sample | BET Surface Area (m2/g) | Pore Volume (cm3/g) | Average Pore Diameter (nm) |
---|---|---|---|
Raw AC | 602 | 0.53 | 4.89 |
Acid Treated AC | 655 | 0.62 | 5.37 |
AC Thermal Treated at 1000°C | 703 | 0.73 | 7.39 |
WC/AC | 351 | 0.27 | 8.05 |
0.1 wt% Pt-WC/AC | 307 | 0.25 | 8.11 |
0.2 wt% Pt-WC/AC | 298 | 0.25 | 8.1 |
0.5 wt% Pt-WC/AC | 285 | 0.23 | 8.15 |
1.0 wt% Pt-WC/AC | 273 | 0.22 | 8.25 |
2.0 wt% Pt-WC/AC | 270 | 0.20 | 8.28 |
1.0 wt% Pt/AC | 638 | 0.66 | 7.5 |
Catalyst | Pt Particle Size (nm) | Reaction Conditions | HCHO Conversion (%) | Time-on-Stream (h) | Works |
---|---|---|---|---|---|
1% Pt-WC/AC | 2–3 | 0.2 g catalyst, 30 °C, HCHO 100 ppm, O2 20 vol%, argon balance, total flow rate 200 mL/min and GHSV = 50,000 h−1 | 93–96 | 60 | Current work |
1% Pt/AC | 5 | 6000 ppm HCHO in air, 40–80 °C, GHSV = 8727 h−1. | 40–100 | 2 | 49 |
0.08% Pt/TiO2 | <1 | 160 ppm HCHO, 20 vol% O2 with different relative humidity (RH), 30 °C, weight hourly space velocity (WHSV) = 30,000 mL h−1 gcat−1 | 100 | 20 | 50 |
0.2% Pt/SiO2 | <1 | 0.05 g catalyst, 11.4 ppm HCHO/N2 flowing at 45 mL/min and pure O2 flowing at 5 mL/min, 25–100 °C. | Turnover frequency: 1–2 | 60 | 51 |
Pt/LDO(N) | 2.6 | 100 ppm HCHO, 20% O2, balanced by N2, 75 °C, space velocity (SV) = 6000 mL g−1 min−1 | 95–100 | 60 | 52 |
1% Pt/CeO2 (Al2O3, ZrO2, TiO2) | 2–3 | 25°C, HCHO/H2O/O2/N2 = 100 ppm/500 ppm/20 vol.%/balance N2 with a total flow rate of 300 mL∙min−1. | 20–60 | – | 53 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Q.; Cai, Z. Pt-Promoted Tungsten Carbide Nanostructures on Mesoporous Pinewood-Derived Activated Carbon for Catalytic Oxidation of Formaldehyde at Low Temperatures. Sustain. Chem. 2020, 1, 86-105. https://doi.org/10.3390/suschem1020008
Yan Q, Cai Z. Pt-Promoted Tungsten Carbide Nanostructures on Mesoporous Pinewood-Derived Activated Carbon for Catalytic Oxidation of Formaldehyde at Low Temperatures. Sustainable Chemistry. 2020; 1(2):86-105. https://doi.org/10.3390/suschem1020008
Chicago/Turabian StyleYan, Qiangu, and Zhiyong Cai. 2020. "Pt-Promoted Tungsten Carbide Nanostructures on Mesoporous Pinewood-Derived Activated Carbon for Catalytic Oxidation of Formaldehyde at Low Temperatures" Sustainable Chemistry 1, no. 2: 86-105. https://doi.org/10.3390/suschem1020008
APA StyleYan, Q., & Cai, Z. (2020). Pt-Promoted Tungsten Carbide Nanostructures on Mesoporous Pinewood-Derived Activated Carbon for Catalytic Oxidation of Formaldehyde at Low Temperatures. Sustainable Chemistry, 1(2), 86-105. https://doi.org/10.3390/suschem1020008