Rural Development and Dynamics of Enhancing Agricultural Productivity in Senegal: Challenges, Opportunities, and Policy Implications
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. Survey Design and Sampling
2.3. Method
2.3.1. Research Farmwork and Description of the Selected Variables
2.3.2. Model Construction
- (1)
- The model specification
- Latent Utility Equations: For farmer i and outcome category j, the latent utility Uij is as follows:
- b.
- Observed Outcome: The observed categorical outcome Yi corresponds to the category with the highest utility:
- c.
- Probability Expression: The probability that farmer i selects category j is
- (2)
- Estimation Strategy
- ✓
- Dependent Variables: Three categorical outcomes are modeled separately:
- (a)
- Production Level (J = 4): 1 = <1 ton; 2 = 1–5 tons; 3 = 5–10 tons; 4 = >10 tons (reference).
- (b)
- Income Status (J = 3) 1 = increasing; 2 = decreasing; 3 = fluctuating (reference).
- (c)
- Sown Area Status (J = 3) = 1: increasing; 2 = decreasing; 3 = fluctuating (reference).
- ✓
- Independent Variables: Explanatory variables include gender, age groups, education levels, experience, training, fertilizer use, subsidies, etc. All categorical variables are dummy-coded with explicit reference categories (e.g., female for gender, illiterate for education).
- (3)
- Marginal Effects
- (4)
- Model Justification
3. Results
3.1. Total Agricultural Production (Reference: More than 10 Tons)
3.1.1. Farmers’ Income Status (Reference: Fluctuating)
3.1.2. Sown Area Status (Reference: Fluctuating)
4. Discussion
4.1. Agricultural Productivity Enhancement and Its Challenges
4.2. Agricultural Productivity Enhancement and Its Opportunities
4.3. Policy Implications
4.4. Potential Limits and Future Research of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Dependent Variables | |||||||
---|---|---|---|---|---|---|---|
Agricultural Production (Ref.: More than 10 Tons) | Farmer’s Income Status (Ref.: Fluctuating) | Sown Area Status (Ref.: Fluctuating) | |||||
Items | Less than 1 Ton | 1 to 5 Tons | 5 to 10 Tons | Increase | Decrease | Increase | Decrease |
Sex (Ref.: Female) | |||||||
Male | 0.185 | −0.069 | −0.276 | 0.364 | 0.456 * | −0.504 | 0.182 |
(0.741) | (0.681) | (0.591) | (0.332) | (0.237) | (0.681) | (0.262) | |
Age (Ref.: 18–30 years) | |||||||
31–40 years | −3.553 *** | −2.665 ** | −2.641 *** | 1.313 *** | 0.715 ** | 1.415 | 0.007 |
(1.204) | (1.106) | (0.964) | (0.503) | (0.361) | (0.946) | (0.373) | |
41–50 years | 1.043 | 0.695 | −0.152 | 1.242 ** | 0.476 | 1.602 | 0.775 |
(1.413) | (1.322) | (1.147) | (0.577) | (0.412) | (1.162) | (0.483) | |
51–60 years | −1.063 | −1.527 | −2.659 ** | 1.448 ** | 0.940 * | 1.754 | 0.598 |
(1.618) | (1.490) | (1.288) | (0.698) | (0.509) | (1.414) | (0.549) | |
>60 years | −1.772 | −1.942 | −3.359 ** | 1.573 * | 0.935 | 0.331 | 0.487 |
(1.782) | (1.638) | (1.457) | (0.814) | (0.581) | (1.771) | (0.611) | |
Education (Ref.: Illiterate) | |||||||
Primary | 0.093 | 0.866 | −1.127 | −0.419 | 0.360 | −0.719 | 0.440 |
(0.864) | (0.790) | (0.697) | (0.449) | (0.305) | (0.787) | (0.334) | |
Lower secondary | −2.464 ** | −2.368 ** | −3.891 *** | −0.882 * | −0.318 | −0.323 | 0.408 |
(1.187) | (1.124) | (1.048) | (0.508) | (0.354) | (0.988) | (0.408) | |
Upper secondary | −3.962 *** | −2.881 ** | −3.744 *** | 0.172 | −0.285 | −0.783 | −0.517 |
(1.408) | (1.293) | (1.155) | (0.550) | (0.425) | (1.188) | (0.434) | |
University | 0.059 | 0.174 | −1.622 * | −0.252 | 0.032 | −0.297 | 0.597 |
(1.352) | (1.244) | (0.967) | (0.573) | (0.421) | (0.918) | (0.488) | |
Agri-Experience (Ref.: less than 10 years) | |||||||
10 to 20 | 3.609 ** | 3.753 *** | 3.070 ** | −0.644 | −0.657 * | −0.821 | −0.327 |
(1.413) | (1.339) | (1.223) | (0.506) | (0.382) | (0.926) | (0.416) | |
20 to 30 | 1.838 | 1.460 | 1.290 | −1.055 * | −0.742 | −1.463 | −0.011 |
(1.625) | (1.536) | (1.354) | (0.641) | (0.483) | (1.242) | (0.523) | |
30 to 40 | 1.497 | 3.261 * | 2.648 * | −0.779 | 0.009 | −0.074 | 0.007 |
(1.922) | (1.784) | (1.539) | (0.798) | (0.616) | (1.486) | (0.641) | |
More than 40 | 1.860 | 2.462 | 1.547 | −1.950 ** | −0.746 | −0.875 | −0.321 |
(2.003) | (1.855) | (1.642) | (0.842) | (0.604) | (1.686) | (0.635) | |
Training in agriculture (Ref.: No) | |||||||
Yes | −1.323 | −1.471 | −0.701 | 0.222 | 0.276 | −1.730 | 0.426 |
(1.311) | (1.226) | (0.968) | (0.647) | (0.457) | (1.354) | (0.493) | |
Fertilizer use (Ref.: No) | |||||||
Yes | −1.678 | −0.274 | 15.303 | −0.167 | −0.438 | 0.891 | 0.275 |
(1.506) | (1.483) | (0.000) | (0.437) | (0.321) | (0.857) | (0.359) | |
Subsidy (Ref.: No) | |||||||
Yes | −3.157 *** | −1.826 * | −1.922 * | 0.579 | 0.371 | 0.537 | 0.063 |
(1.060) | (1.005) | (0.988) | (0.521) | (0.371) | (0.794) | (0.409) | |
The main agricultural expense (Ref.: Seed) | |||||||
Fertilizer | −2.188 * | −0.174 | 0.178 | −0.773 | −1.193 *** | −1.954 * | −1.393 *** |
(1.210) | (1.090) | (1.010) | (0.541) | (0.361) | (1.025) | (0.388) | |
Pesticide | 24.643 | 52.982 | −7.911 | −25.442 | 0.072 | −27.712 | 0.208 |
(0.000) | (0.000) | (0.000) | (0.000) | (1.302) | (0.000) | (1.341) | |
Hire of materials | 3.673 * | 3.799 * | 5.083 ** | −0.214 | −0.530 | −2.179 | −0.891 |
(2.154) | (2.047) | (2.132) | (0.694) | (0.528) | (1.563) | (0.576) | |
Hire of land | 21.720 | 20.164 | −20.204 | −2.155 | −2.094 ** | −30.654 | −0.863 |
(17,047.332) | (17,047.332) | (0.000) | (1.373) | (1.007) | (0.000) | (0.970) | |
Labor force | −1.694 | −0.970 | −0.681 | −0.766 | −1.234 *** | −3.088 *** | −0.668 * |
(1.221) | (1.079) | (0.930) | (0.496) | (0.384) | (0.983) | (0.396) | |
Other | −9.178 *** | −7.302 *** | −41.418 | −0.469 | −0.210 | 3.116 ** | 0.365 |
(2.148) | (2.064) | (0.000) | (0.882) | (0.508) | (1.583) | (0.771) | |
The farmer’s farming financial system (Ref.: Family) | |||||||
By itself | −2.094 | −2.970 ** | −2.361 * | 0.456 | −0.174 | 0.764 | −0.535 |
(1.298) | (1.246) | (1.296) | (0.442) | (0.369) | (0.729) | (0.374) | |
Agro-business | −2.381 | −2.306 | −35.448 | −0.944 | −1.133 | −28.360 | −2.546 *** |
(11.909) | (11.875) | (0.000) | (1.263) | (0.838) | (0.000) | (0.889) | |
Cooperative | −1.715 ** | −3.197 *** | −2.196 *** | −0.532 | −0.164 | −0.260 | −0.127 |
(0.871) | (0.797) | (0.706) | (0.450) | (0.267) | (0.762) | (0.294) | |
Materiel (Ref.: Only old materiel) | |||||||
Modern and old materials | −4.369 *** | −0.692 | −0.166 | 1.135 *** | −0.094 | −0.201 | 0.047 |
(1.274) | (1.155) | (1.118) | (0.436) | (0.343) | (0.836) | (0.389) | |
Persons in the house working as labor force in the farming sector (Ref.: 1–3 persons) | |||||||
3–6 persons | −0.021 | −0.173 | −0.980 | 0.089 | −0.197 | −0.467 | −0.628 ** |
(0.764) | (0.688) | (0.625) | (0.411) | (0.266) | (0.875) | (0.293) | |
6–9 persons | −0.422 | 0.545 | −0.526 | 0.605 | −0.698 ** | 2.086 ** | −1.028 *** |
(0.991) | (0.874) | (0.761) | (0.493) | (0.347) | (1.051) | (0.381) | |
9–12 persons | −2.002 | −2.224 | −3.549 ** | −0.138 | −1.164 ** | 0.396 | −1.345 *** |
(1.554) | (1.449) | (1.443) | (0.596) | (0.469) | (1.088) | (0.486) | |
12–15 persons | 5.090 ** | 2.896 | −35.566 | 0.650 | −1.101 | −1.051 | −1.391 |
(2.521) | (2.075) | (0.000) | (0.995) | (0.974) | (2.222) | (0.931) | |
15+ persons | −1.819 | −56.090 | −1.652 | 1.905* | −1.720 * | 4.040 ** | −2.708 *** |
(2.583) | (0.000) | (1.448) | (1.012) | (0.911) | (2.012) | (0.979) | |
The farmers’ sown land area (Hectare) (Ref.: Less than 1 ha) | |||||||
1–3 ha | −17.544 *** | −15.893 *** | −13.927 *** | −0.202 | −0.601 * | 1.149 | −0.466 |
(1.487) | (1.512) | (1.637) | (0.434) | (0.307) | (0.901) | (0.352) | |
3–5 ha | −19.746 *** | −18.223 *** | −15.707 *** | 0.211 | −0.518 | 0.706 | −0.512 |
(1.518) | (1.522) | (1.587) | (0.550) | (0.393) | (1.202) | (0.425) | |
5–7 ha | −21.609 | −19.765 *** | −15.830 *** | −0.568 | −0.764 | 0.871 | −1.750 *** |
(0.000) | (1.018) | (1.440) | (0.677) | (0.504) | (1.295) | (0.522) | |
+7 ha | −27.423 *** | −25.118 *** | −17.343 *** | 0.895 | −1.235 ** | 3.827 *** | −1.374 *** |
(2.108) | (2.045) | (1.540) | (0.581) | (0.481) | (1.328) | (0.479) | |
Farmers’ mode of acquisition of farmland (Ref.: Inheritance) | |||||||
Rental | 16.848 *** | 18.208 | −19.011 | 1.667 ** | −0.638 | 2.493 * | −0.877 |
(0.847) | (0.000) | (0.000) | (0.813) | (0.709) | (1.369) | (0.711) | |
Loan | 2.567 * | 1.783 | 1.438 | 0.191 | −0.663 | 0.090 | −0.995 ** |
(1.364) | (1.241) | (1.200) | (0.543) | (0.423) | (1.258) | (0.442) | |
Purchase | 0.388 | 1.523 | 0.829 | −0.516 | −0.402 | 3.147 * | −1.052 |
(2.093) | (1.704) | (1.473) | (1.036) | (0.615) | (1.632) | (0.691) | |
Other | 22.235 *** | 22.857 | −15.759 | 11.411 *** | 10.576 | −7.524 | 27.429 |
(1.384) | (0.000) | (0.000) | (1.317) | (0.000) | (0.000) | (0.000) | |
Strategy protects cultivated land (Ref.: Land registration) | |||||||
Get a title deed | −0.144 | −0.190 | −0.135 | −0.271 | −0.333 | −1.582 * | −0.482 |
(0.896) | (0.820) | (0.686) | (0.388) | (0.278) | (0.808) | (0.321) | |
Secure by fencing | −1.898 ** | −1.384 ** | −0.687 | 0.244 | −0.034 | −1.997 ** | −0.423 |
(0.756) | (0.678) | (0.590) | (0.389) | (0.286) | (0.898) | (0.313) | |
Orchard farming | 4.757 * | 4.973 * | 4.110 * | −0.512 | 0.702 | −0.742 | −0.843 |
(2.821) | (2.738) | (2.420) | (1.061) | (0.804) | (1.270) | (0.707) | |
No strategy | −0.176 | 0.920 | 0.868 | 0.933 | 1.019 ** | 0.328 | −0.354 |
(1.419) | (1.345) | (1.273) | (0.607) | (0.462) | (0.940) | (0.413) | |
Perceptions of farmers about the quality of cultivated land (Ref.: Very high) | |||||||
High | 0.848 | 0.935 | 0.961 | −0.057 | 0.286 | −0.744 | −0.120 |
(0.905) | (0.858) | (0.709) | (0.368) | (0.271) | (0.652) | (0.302) | |
Moderate | 0.788 | 0.872 | 1.432 * | −0.796 * | 0.528 * | −2.241 * | 0.291 |
(0.968) | (0.887) | (0.799) | (0.464) | (0.309) | (1.227) | (0.345) | |
Poor | 16.713 *** | 13.469 | −21.444 | 11.231 *** | 10.832 | −24.610 | −1.760 ** |
(4.418) | (0.000) | (0.000) | (1.058) | (0.000) | (0.000) | (0.874) | |
Quality’s seed (Ref.: Certified) | |||||||
Not Certified | 0.255 | −0.654 | 1.022 | 0.477 | −0.260 | −0.151 | −0.128 |
(1.181) | (0.979) | (0.818) | (0.470) | (0.406) | (0.878) | (0.430) | |
Do not know | 9.444 | 9.826 *** | 9.566 *** | 1.003 | 0.065 | 2.913 ** | 0.821 |
(0.000) | (0.673) | (1.247) | (0.713) | (0.574) | (1.484) | (0.676) | |
Seed’s origin (Ref.: Purchase) | |||||||
Own reserve | −0.251 | −2.026 * | −0.206 | −0.133 | −0.012 | −2.207 ** | −0.234 |
(1.314) | (1.139) | (1.007) | (0.517) | (0.445) | (1.008) | (0.477) | |
Government subsidy | −8.012 *** | −6.025 *** | −4.660 *** | −25.126 | −1.326 ** | −32.598 | −1.149 ** |
(2.424) | (1.968) | (1.362) | (0.000) | (0.523) | (0.000) | (0.561) | |
Whether farmers practice crop rotation or not (Ref.: No) | |||||||
Yes | −1.753 ** | −1.316 * | −0.404 | −0.086 | 0.150 | 0.674 | −0.460 |
(0.825) | (0.768) | (0.710) | (0.344) | (0.271) | (0.643) | (0.292) | |
Whether farmers practice traditional ploughing or not (Ref.: No) | |||||||
Yes | −2.693 | −1.378 | 10.993 | −0.360 | −0.491 | 11.933 *** | −0.841 * |
(2.147) | (2.135) | (0.000) | (0.539) | (0.377) | (1.921) | (0.432) | |
If farmers are aware of the law regarding protected farmland (Ref.: No) | |||||||
Yes | −3.982 *** | −4.334 *** | −3.319 *** | −0.388 | −0.452 | 0.795 | −0.383 |
(1.221) | (1.192) | (1.145) | (0.367) | (0.279) | (0.666) | (0.313) | |
If farmers have received help to fight against farmland degradation (Ref.: No) | |||||||
Yes | 0.136 | −0.471 | 0.591 | 0.058 | −0.203 | 1.256 | −0.403 |
(0.994) | (0.833) | (0.728) | (0.508) | (0.394) | (0.789) | (0.413) | |
Constant | 31.520 *** | 27.816 *** | −4.023 | −0.619 | 2.737 *** | −13.734 | 3.961 *** |
(3.555) | (3.398) | (3.079) | (0.908) | (0.689) | (0.000) | (0.790) | |
Observations | 583 | 583 | 583 | 583 | 583 | 583 | 583 |
References
- Faye, B.; Du, G.; Li, Y.; Li, Q.; Diène, J.C.; Mbaye, E. Connecting the farmers’ knowledge and behaviors: Detection of influencing factors to sustainable cultivated land protection in Thiès Region, Senegal. J. Rural Stud. 2025, 116, 103634. [Google Scholar] [CrossRef]
- Bebbington, A. Development: Rural Development Strategies. Int. Encycl. Soc. Behav. Sci. 2001, 3578–3583. [Google Scholar] [CrossRef]
- Faye, B.; Diéne, J.C.; Du, G.; Liang, C.; Kouadio, Y.D.; Mbaye, E.; Li, Y. Decentralization Policies and Rural Socio-Economic Growth in Senegal: An Exploration of Their Contributions to Development and Transformation. World 2024, 5, 1054–1076. [Google Scholar] [CrossRef]
- Vlaicu, A.; Untea, A.E.; Popova, T.; Olabanji, M.F.; Chitakira, M. The Adoption and Scaling of Climate-Smart Agriculture Innovation by Smallholder Farmers in South Africa: A Review of Institutional Mechanisms, Policy Frameworks and Market Dynamics. World 2025, 6, 51. [Google Scholar] [CrossRef]
- Moller, K.; Nejadhashemi, P.; Talha, M.; Chikafa, M.; Eeswaran, R.; Junior, N.V.; Carcedo, A.J.P.; Ciampitti, I.; Bizimana, J.-C.; Diallo, A.; et al. Unveiling the resilience of smallholder farmers in Senegal amidst extreme climate conditions. Food Energy Secur. 2024, 13, e523. [Google Scholar] [CrossRef]
- Hoogeveen, A.C.; Sutanudjaja, E.H.; Falconnier, G.N.; van Beek, L.R.; Wanders, N.; Bierkens, M.F.; Hoch, J.M. A novel approach to include small reservoirs into a global hydrological model: Assessing its potential to reduce the agricultural water gap of smallholder farmers in Senegal. J. Hydrol. Reg. Stud. 2024, 56, 102074. [Google Scholar] [CrossRef]
- Dieng, M.; Mbow, C.; Skole, D.L.; Ba, B. Sustainable land management policy to address land degradation: Linking old forest management practices in Senegal with new REDD+ requirements. Front. Environ. Sci. 2023, 11, 1088726. [Google Scholar] [CrossRef]
- Faye, B.; Du, G.; Li, Q.; Faye, H.V.T.; Diéne, J.C.; Mbaye, E.; Seck, H.M. Lessons Learnt from the Influencing Factors of Forested Areas’ Vulnerability under Climatic Change and Human Pressure in Arid Areas: A Case Study of the Thiès Region, Senegal. Appl. Sci. 2024, 14, 2427. [Google Scholar] [CrossRef]
- Faye, B.; Du, G.; Mbaye, E.; Liang, C.; Sané, T.; Xue, R. Assessing the Spatial Agricultural Land Use Transition in Thiès Region, Senegal, and Its Potential Driving Factors. Land 2023, 12, 779. [Google Scholar] [CrossRef]
- Thabane, V.N.; Agholor, I.A.; Ludidi, N.N.; Morepje, M.T.; Mgwenya, L.I.; Msweli, N.S.; Sithole, M.Z. Irrigation Water and Security in South African Smallholder Farming: Assessing Strategies for Revitalization. World 2025, 6, 32. [Google Scholar] [CrossRef]
- Abdi, A.H.; Mohamed, A.A.; Mohamed, F.H. Enhancing food security in sub-Saharan Africa: Investigating the role of environmental degradation, food prices, and institutional quality. J. Agric. Food Res. 2024, 17, 101241. [Google Scholar] [CrossRef]
- Bergman, M.; Ema, E.-O.S.; Obidiegwu, J.E.; Chilaka, C.A.; Akpabio, E.M. Indigenous Food Yam Cultivation and Livelihood Practices in Cross River State, Nigeria. World 2023, 4, 314–332. [Google Scholar] [CrossRef]
- Faye, B.; Du, G.; Li, Q.; Sané, T.; Mbaye, E.; Zhang, R. Understanding the characteristics of agricultural land transition in Thiès region, Senegal: An integrated analysis combining remote sensing and survey data. Front. Environ. Sci. 2023, 11, 1124637. [Google Scholar] [CrossRef]
- Gero, A.A.; Egbendewe, A.Y.G. Macroeconomic effects of semi-subsistence agricultural productivity growth: Evidence from Benin and extension to the WAEMU countries. Sci. Afr. 2020, 7, e00222. [Google Scholar] [CrossRef]
- Mondlhane, C.; Munjonji, L.; Victorino, Í.; Huenchuleo, C.; Pimentel, P.; Cornejo, P. Sustainable Agricultural Alternatives to Cope with Drought Effects in Semi-Arid Areas of Southern Mozambique: Review and Strategies Proposal. World 2025, 6, 23. [Google Scholar] [CrossRef]
- Sadowski, A.; Wojcieszak-Zbierska, M.M.; Zmyślona, J. Agricultural production in the least developed countries and its impact on emission of greenhouse gases—An energy approach. Land Use Policy 2024, 136, 106968. [Google Scholar] [CrossRef]
- Faye, B.; Du, G.; Zhang, R. Efficiency Analysis of Land Use and the Degree of Coupling Link between Population Growth and Global Built-Up Area in the Subregion of West Africa. Land 2022, 11, 847. [Google Scholar] [CrossRef]
- Haug, R.; Nchimbi-Msolla, S.; Murage, A.; Moeletsi, M.; Magalasi, M.; Mutimura, M.; Hundessa, F.; Cacchiarelli, L.; Westengen, O.T. From Policy Promises to Result through Innovation in African Agriculture? World 2021, 2, 253–266. [Google Scholar] [CrossRef]
- Touch, V.; Tan, D.K.; Cook, B.R.; Li Liu, D.; Cross, R.; Tran, T.A.; Utomo, A.; Yous, S.; Grunbuhel, C.; Cowie, A. Smallholder farmers’ challenges and opportunities: Implications for agricultural production, environment and food security. J. Environ. Manag. 2024, 370, 122536. [Google Scholar] [CrossRef]
- Dibbern, T.; Romani, L.A.S.; Massruhá, S.M.F.S. Main drivers and barriers to the adoption of Digital Agriculture technologies. Smart Agric. Technol. 2024, 8, 100459. [Google Scholar] [CrossRef]
- Ruzzante, S.; Bilton, A. Adoption of agricultural technologies in the developing world: A meta-analysis dataset of the empirical literature. Data Brief 2021, 38, 107384. [Google Scholar] [CrossRef]
- Gamage, A.; Gangahagedara, R.; Subasinghe, S.; Gamage, J.; Guruge, C.; Senaratne, S.; Randika, T.; Rathnayake, C.; Hameed, Z.; Madhujith, T.; et al. Advancing sustainability: The impact of emerging technologies in agriculture. Curr. Plant Biol. 2024, 40, 100420. [Google Scholar] [CrossRef]
- Faye, M.; Tine, D.; Diouf, F.; Cissay, A.; Faye, C.S. Climate Change and Land Use Dynamics in Djirnda Commune (Fatick Region—Senegal): Remote Sensing Approach. Eur. J. Biol. Biotechnol. 2022, 3, 1–7. [Google Scholar] [CrossRef]
- Faye, M.; Fall, A.; Faye, G.; Van Hecke, E. Rainfall variability and its impacts on agricultural yields in the New Land area (Eastern Senegal). Belgeo 2018, 1. [Google Scholar] [CrossRef]
- Diallo, S.; Faye, M.; Nacro, H.B. The rainfall Variability and its Impacts on Yields and Cultivated Areas in Thies region, Senegal. VertigO-La Rev. Électronique En Sci. De L’environ. 2022. [Google Scholar] [CrossRef]
- TOP, A.; SALL, M.; ENdao, H.O. Yield Gap Assessment in Senegal and Senegal River Valley: Factors Affecting the Yield Gap and Postharvest Activities Impact on its Improvement. J. Exp. Agric. Int. 2024, 46, 819–834. [Google Scholar] [CrossRef]
- Ahmed, A.; Suleiman, M.; Abubakar, M.J.; Saleh, A. Impacts of climate change on agriculture in Senegal: A systematic review. J. Sustain. Environ. Peace 2021, 4, 30–38. [Google Scholar] [CrossRef]
- Jha, P.K.; Middendorf, G.; Faye, A.; Middendorf, B.J.; Prasad, P.V.V. Lives and Livelihoods in Smallholder Farming Systems of Senegal: Impacts, Adaptation, and Resilience to COVID-19. Land 2023, 12, 178. [Google Scholar] [CrossRef]
- Faye, A.; Abbey, G.A.; Ndiaye, A.; Diop, M. Climate-Related Risks and Agricultural Yield Assessment in the Senegalese Groundnut Basin. Atmosphere 2024, 15, 1246. [Google Scholar] [CrossRef]
- Samiappan, S.; Sarwary, M.; Venkatachalam, S.; Shinwari, E.; Sembanan, K.; Poornalingam, J.; Natarajan, K.; Muthusamy, N.; Murugiah, I.V.; Natesan, S.; et al. Determinants of Farmers’ Strategies for Adaptation to Climate Change in Agricultural Production in Afghanistan. World 2025, 6, 59. [Google Scholar] [CrossRef]
- Hutcheson, G.D. The Multivariate Social Scientist; SAGE Publications, Ltd.: Thousand Oaks, CA, USA, 1999. [Google Scholar] [CrossRef]
- Kaiser, H.F. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Cordonnier, V.; Covarrubias, K.A.; de la O Campos, A.P. The impacts of widespread agricultural interventions on yields and food security in Ethiopia☆. Food Policy 2024, 124, 102626. [Google Scholar] [CrossRef]
- Li, H.; Song, W. Spatial transformation of changes in global cultivated land. Sci. Total Environ. 2023, 859, 160194. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Yang, X.; Cai, H.; Zhang, D. Cultivated Land Changes and Agricultural Potential Productivity in Mainland China. Sustainability 2015, 7, 11893–11908. [Google Scholar] [CrossRef]
- Ulukan, D.; Bergkvist, G.; Lana, M.; Fasse, A.; Mager, G.; Öborn, I.; Chopin, P. Combining sustainable livelihood and farm sustainability approaches to identify relevant intensification options: Implications for households with crop-based and gathering-based livelihoods in Tanzania. Ecol. Indic. 2022, 144, 109518. [Google Scholar] [CrossRef]
- Bruce, A.; Neidecker, E.; Zheng, L.; Leslie, I.S.; Wilhelm, A. A farm is viable if it can keep its head above water’: Defining and measuring farm viability for small and mid-sized farms. Agric. Hum. Values 2025, 1–17. [Google Scholar] [CrossRef]
- Harkness, C.; Areal, F.J.; Semenov, M.A.; Senapati, N.; Shield, I.F.; Bishop, J. Towards stability of food production and farm income in a variable climate. Ecol. Econ. 2023, 204, 107676. [Google Scholar] [CrossRef]
- Saeed, S.; Makhdum, M.S.A.; Anwar, S.; Yaseen, M.R. Climate Change Vulnerability, Adaptation, and Feedback Hypothesis: A Comparison of Lower-Middle, Upper-Middle, and High-Income Countries. Sustainability 2023, 15, 4145. [Google Scholar] [CrossRef]
- Carnegie, M.; Cornish, P.S.; Htwe, K.K.; Htwe, N.N. Gender, decision-making and farm practice change: An action learning intervention in Myanmar. J. Rural. Stud. 2020, 78, 503–515. [Google Scholar] [CrossRef]
- Quisumbing, A.R.; Doss, C.R. Gender in agriculture and food systems. Handb. Agric. Econ. 2021, 5, 4481–4549. [Google Scholar] [CrossRef]
- Nazier, H.; Ezzat, A. Gender differences and time allocation: A comparative analysis of Egypt and Tunisia. Q. Rev. Econ. Financ. 2022, 85, 174–193. [Google Scholar] [CrossRef]
- Akpa, A.F.; Amegnaglo, C.J.; Chabossou, A.F. Women’s engagement in agriculture and income inequality in sub-Saharan Africa. Soc. Sci. Humanit. Open 2024, 9, 100888. [Google Scholar] [CrossRef]
- Oli, D.; Gyawali, B.; Acharya, S.; Oshikoya, S. Factors influencing learning attitude of farmers regarding adoption of farming technologies in farms of Kentucky, USA. Smart Agric. Technol. 2025, 10, 100801. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Q.; Al Mamun, A.; Masukujjaman, M.; Masud, M.M. Acceptance of new agricultural technology among small rural farmers. Humanit. Soc. Sci. Commun. 2024, 11, 1641. [Google Scholar] [CrossRef]
- Araya, A.; Jha, P.K.; Zambreski, Z.; Faye, A.; Ciampitti, I.A.; Min, D.; Gowda, P.H.; Singh, U.; Prasad, P.V.V. Evaluating crop management options for sorghum, pearl millet and peanut to minimize risk under the projected midcentury climate scenario for different locations in Senegal. Clim. Risk Manag. 2022, 36, 100436. [Google Scholar] [CrossRef]
- Antonelli, C.; Coromaldi, M.; Pallante, G. Crop and income diversification for rural adaptation: Insights from Ugandan panel data. Ecol. Econ. 2022, 195, 107390. [Google Scholar] [CrossRef]
- Shaffril, H.A.M.; Samah, A.A.; Samsuddin, S.F.; Ahmad, N.; Tangang, F.; Sidique, S.F.A.; Rahman, H.A.; Burhan, N.A.S.; Shah, J.A.; Khalid, N.A. Diversification of agriculture practices as a response to climate change impacts among farmers in low-income countries: A systematic literature review. Clim. Serv. 2024, 35, 100508. [Google Scholar] [CrossRef]
- Khan, F.U.; Nouman, M.; Negrut, L.; Abban, J.; Cismas, L.M.; Siddiqi, M.F. Constraints to agricultural finance in underdeveloped and developing countries: A systematic literature review. Int. J. Agric. Sustain. 2024, 22, 2329388. [Google Scholar] [CrossRef]
- Ozdemir, D. Reconsidering agricultural credits and agricultural production nexus from a global perspective. Food Energy Secur. 2024, 13, e504. [Google Scholar] [CrossRef]
- Villalba, R.; Venus, T.E.; Sauer, J. The ecosystem approach to agricultural value chain finance: A framework for rural credit. World Dev. 2023, 164, 106177. [Google Scholar] [CrossRef]
- Vlaicu, A.; Niazifar, M.; Ghahremanzadeh, M.; Taghizadeh, A.; Abachi, S.; Palangi, V.; Lackner, M. Predicting Livestock Farmers’ Attitudes towards Improved Sheep Breeds in Ahar City through Data Mining Methods. World 2024, 5, 848–864. [Google Scholar] [CrossRef]
- Childress, M.; Choudhury, P.; Sanjak, J.; Childress, M.; Choudhury, P.; Sanjak, J. People-Land Relationships on the Path to Sustainable Food Security. In Land Tenure Security and Sustainable Development; Springer International Publishing: Cham, Switzerland, 2022; pp. 101–130. [Google Scholar] [CrossRef]
- Löbmann, M.T.; Maring, L.; Prokop, G.; Brils, J.; Bender, J.; Bispo, A.; Helming, K. Systems knowledge for sustainable soil and land management. Sci. Total Environ. 2022, 822, 153389. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, G.; Wen, J.; Zhao, N.; Du, G.; Stanny, M. The measurement of agricultural disaster vulnerability in China and implications for land-supported agricultural resilience building. Land Use Policy 2025, 148, 107400. [Google Scholar] [CrossRef]
- Ntihinyurwa, P.D.; de Vries, W.T. Farmland Fragmentation, Farmland Consolidation and Food Security: Relationships, Research Lapses and Future Perspectives. Land 2021, 10, 129. [Google Scholar] [CrossRef]
- Otieno, G.; Ogola, R.J.O.; Recha, T.; Mohammed, J.N.; Fadda, C. Climate Change and Seed System Interventions Impact on Food Security and Incomes in East Africa. Sustainability 2022, 14, 6519. [Google Scholar] [CrossRef]
- Angon, P.B.; Anjum, N.; Akter, M.M.; Kc, S.; Sum, R.P.; Jannat, S. An Overview of the Impact of Tillage and Cropping Systems on Soil Health in Agricultural Practices. Adv. Agric. 2023, 2023, 8861216. [Google Scholar] [CrossRef]
- Zou, Y.; Liu, Z.; Chen, Y.; Wang, Y.; Feng, S. Crop Rotation and Diversification in China: Enhancing Sustainable Agriculture and Resilience. Agriculture 2024, 14, 1465. [Google Scholar] [CrossRef]
- Motavalli, P.; Nelson, K.; Udawatta, R.; Jose, S.; Bardhan, S. Global achievements in sustainable land management. Int. Soil Water Conserv. Res. 2013, 1, 1–10. [Google Scholar] [CrossRef]
- Sun, B.; Wang, X.; Luo, P.; Zhao, Y.; Rijal, M. Importance of Farmers’ Awareness on Ecological Revitalization to Promote Sustainable Development. Sustainability 2024, 16, 10134. [Google Scholar] [CrossRef]
- Bolduc, D. A practical technique to estimate multinomial probit models in transportation. Transp. Res. Part B Methodol. 1999, 33, 63–79. [Google Scholar] [CrossRef]
- Gates, R. A Mata Geweke–Hajivassiliou–Keane Multivariate Normal Simulator. Stata J. 2006, 6, 190–213. [Google Scholar] [CrossRef]
- Shah, J.; Alharthi, M. Factors affecting farmers’ choice to adopt risk management strategies: The application of multivariate and multinomial probit models. J. Integr. Agric. 2024, 23, 4250–4262. [Google Scholar] [CrossRef]
- May, D.; Arancibia, S.; Behrendt, K.; Adams, J. Preventing young farmers from leaving the farm: Investigating the effectiveness of the young farmer payment using a behavioural approach. Land Use Policy 2019, 82, 317–327. [Google Scholar] [CrossRef]
- Huang, W.; Wang, X. The Impact of Technological Innovations on Agricultural Productivity and Environmental Sustainability in China. Sustainability 2024, 16, 8480. [Google Scholar] [CrossRef]
- Huffman, W.E.; Orazem, P.F. Chapter 43 Agriculture and Human Capital in Economic Growth: Farmers, Schooling and Nutrition. Handb. Agric. Econ. 2007, 3, 2281–2341. [Google Scholar] [CrossRef]
- Hidrobo, M.; Kosec, K.; Gartaula, H.N.; Van Campenhout, B.; Carrillo, L. Making complementary agricultural resources, technologies, and services more gender-responsive. Glob. Food Secur. 2024, 42, 100778. [Google Scholar] [CrossRef]
- Ayanlade, A.; Oluwatimilehin, I.A.; Ayanlade, O.S.; Adeyeye, O.; Abatemi-Usman, S. Gendered vulnerabilities to climate change and farmers’ adaptation responses in Kwara and Nassarawa States, Nigeria. Humanit. Soc. Sci. Commun. 2023, 10, 911. [Google Scholar] [CrossRef]
- Yang, B.; Duan, Y.; Zhao, Q. The effect of land fragmentation on farmers’ rotation behavior in rural China. Front. Environ. Sci. 2022, 10, 1992. [Google Scholar] [CrossRef]
- Faye, B.; Du, G. Agricultural Land Transition in the ‘Groundnut Basin’ of Senegal: 2009 to 2018. Land 2021, 10, 996. [Google Scholar] [CrossRef]
- Smidt, H.J.; Jokonya, O. Factors affecting digital technology adoption by small-scale farmers in agriculture value chains (AVCs) in South Africa. Inf. Technol. Dev. 2022, 28, 558–584. [Google Scholar] [CrossRef]
- Wittstock, F.; Paulus, A.; Beckmann, M.; Hagemann, N.; Baaken, M.C. Understanding farmers’ decision-making on agri-environmental schemes: A case study from Saxony, Germany. Land Use Policy 2022, 122, 106371. [Google Scholar] [CrossRef]
- Su, D.; Cao, Y.; Wang, J.; Fang, X.; Wu, Q. Toward constructing an eco-account of cultivated land by quantifying the resources flow and eco-asset transfer in China. Land Use Policy 2023, 132, 106822. [Google Scholar] [CrossRef]
- Bergman, M.; Agholor, I.A.; Ludidi, N.; Morepje, M.T.; Sithole, M.Z.; Msweli, N.S.; Thabane, V.N. Unpacking the Multifaceted Benefits of Indigenous Crops for Food Security: A Review of Nutritional, Economic and Environmental Impacts in Southern Africa. World 2025, 6, 16. [Google Scholar] [CrossRef]
- Kama, R.; He, J.; Nabi, F.; Aidara, M.; Faye, B.; Diatta, S.; Li, H. Crop rotation and green manure type enhance organic carbon fractions and reduce soil arsenic content. Agric. Ecosyst. Environ. 2025, 378, 109287. [Google Scholar] [CrossRef]
- Du, G.; Yao, L.; Han, L.; Bonoua, F. What Should Be Learned from the Dynamic Evolution of Cropping Patterns in the Black Soil Region of Northeast China? A Case Study of Wangkui County, Heilongjiang Province. Land 2023, 12, 1574. [Google Scholar] [CrossRef]
- Montoya, D.; Gaba, S.; de Mazancourt, C.; Bretagnolle, V.; Loreau, M. Reconciling biodiversity conservation, food production and farmers’ demand in agricultural landscapes. Ecol. Model. 2020, 416, 108889. [Google Scholar] [CrossRef] [PubMed]
- Taera, E.G.; Lakner, Z. Sustainable Finance: Bridging Circular Economy Goals and Financial Inclusion in Developing Economies. World 2025, 6, 44. [Google Scholar] [CrossRef]
- Basile, A.; Gallo, M. Investigating the Impact of Accessibility on Internal Migration Flows in Italy Through the Calibration of Multiple Linear Regression Models. World 2025, 6, 46. [Google Scholar] [CrossRef]
- Čajková, A.; Čajka, P. Challenges and Sustainability of China’s Socio-Economic Stability in the Context of Its Demographic Development. Societies 2021, 11, 22. [Google Scholar] [CrossRef]
- Boillat, S.; Belmin, R.; Bottazzi, P. The agroecological transition in Senegal: Transnational links and uneven empowerment. Agric. Hum. Values 2022, 39, 281–300. [Google Scholar] [CrossRef]
- Ahmed, N.; Xinagyu, G.; Alnafissa, M.; Sikder, M.; Faye, B. Evaluating the impact of sustainable technology, resource utilization, and climate change on soil emissions: A CS-ARDL analysis of leading agricultural economies. Clean. Eng. Technol. 2024, 24, 100869. [Google Scholar] [CrossRef]
- Yessoufou, A.N.D.; Kumar, S.; Houessionon, P.; Worou, O.N.; Wane, A.; Whitbread, A. Vulnerability and resilience in the face of climate changes in Senegal’s drylands: Measurement at the household level and determinant assessment. Front. Clim. 2024, 6, 1330025. [Google Scholar] [CrossRef]
- Oelviani, R.; Adiyoga, W.; Suhendrata, T.; Bakti, I.G.M.Y.; Sutanto, H.A.; Fahmi, D.A.; Chanifah, C.; Jatuningtyas, R.K.; Samijan, S.; Malik, A.; et al. Effects of soil salinity on rice production and technical efficiency: Evidence from the northern coastal region of Central Java, Indonesia. Case Stud. Chem. Environ. Eng. 2024, 10, 101010. [Google Scholar] [CrossRef]
Variables | Descriptive | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Dependent Variables | |||||
Agricultural production | Total agricultural harvest (Tons): 1 = less than 1 ton; 2 = 1–5 tons; 3 = 5–10 tons; 4 = +10 tons | 1.942 | 1.158 | 1 | 4 |
Agricultural income | Farmers income status: 1 = increase, 2 = decreasing, 3 = fluctuating | 2.089 | 0.543 | 1 | 3 |
Farmer-sown land area evolution | Sown area status: 1 = increase, 2 = decreasing, 3 = fluctuating | 2.13 | 0.473 | 1 | 3 |
Independent Variables | |||||
Sex | Gender: 1 = male; 0 = Female | 0.72 | 0.449 | 0 | 1 |
Age of the farmers | Age: 1 = {18–30} years, 2 = {31–40} years, 3 = {41–50} years, 4 = {51–60} years, 5 = +60 years | 3.129 | 1.472 | 1 | 5 |
Education | Education level: 0 = illiterate, 1 = primary, 2 = lower secondary education, 3 = upper secondary education; 4 = university | 1.029 | 1.302 | 0 | 4 |
Farmer experience in agricultural | Experience in agriculture: 1 = less than 10 years; 2 = {10 to 20}; 3 = {20 to 30}; 3 = {30 to 40}; 4 = + 40 | 3.077 | 1.456 | 1 | 5 |
Farmer training in agriculture | If farmers have received training in agricultural; yes = 1, no = 0 | 0.07 | 0.256 | 0 | 1 |
Farmer using fertilizer in agricultural | Fertilizer use: 1 = yes, 2 = no | 0.595 | 0.491 | 0 | 1 |
Farmer subsidy status | If farmers have received agricultural subsidies yes = 1, no = 0 | 0.156 | 0.363 | 0 | 1 |
Farmer means agricultural investment | The main agricultural expense: 1 = seed; 2 = fertilizer; 3 = pesticide; 4 = hire of materials; 5 = hire of land; 6 = labor force; 7 = other | 2.05 | 1.896 | 1 | 7 |
Farmer agricultural financial system | The farmer’s farming financial system: 1 = family; 2 = by itself; 3 = agro-business; 4 = cooperative | 1.763 | 1.199 | 1 | 4 |
Farmer agricultural material | Material: 1 = only old material; 2 = modern and old material | 1.273 | 0.446 | 1 | 2 |
Farmer agricultural labor force | Persons in the house working as labor force in the farming sector: 1 = {1–3} persons; 2 = {3–6} persons; 3 = {6–9} persons; 4 = {9–12} persons; 5 = {12–15} persons; and 6 = {+15} persons | 1.978 | 1.051 | 1 | 6 |
Farmer’s total sown land area | The farmers sown land area (Hectare): less than 1 ha = 1; 2 = {1–3} ha; 3 = {3–5} ha; 4 = {5–7} ha; 5 = {+7} ha | 2.144 | 1.231 | 1 | 5 |
Cultivated land property | Farmers’ mode of acquisition of farmland. 1 = inheritance; 2 = rental; 3 = loan; 4 = purchase; 5 = other | 1.262 | 0.759 | 1 | 5 |
Farmer-cultivated land protection strategy | Farmers practiced one of these methods: 1 = land registration; 2 = obtain title deed; 3 = secure land by fencing; 4 = orchard farming; 5 = no strategy | 2.123 | 1.297 | 1 | 5 |
Cultivated land quality status | Perceptions of farmers on the quality of cultivated land. 1 = very high; 2 = high; 3 = moderate; 4 = poor | 1.966 | 0.818 | 1 | 4 |
Seed quality | The quality of the seed: 1 = certified, 2 = not certified, 3 = do not know | 1.576 | 0.637 | 1 | 3 |
Seed origin | What is the origin of the seed: 1 = purchase; 2 = personal reserve; 3 = subsidies | 1.779 | 0.544 | 1 | 3 |
Crop rotation practices | Whether farmers practice crop rotation or not: yes = 1; no = 0 | 0.451 | 0.498 | 0 | 1 |
Traditional plough | Whether farmers practice traditional ploughing or not, yes = 1; no = 0 | 0.714 | 0.452 | 0 | 1 |
Awareness of land policies | If farmers are aware of the law regarding protected farmland: yes = 1; no = 0 | 0.482 | 0.5 | 0 | 1 |
Improve cultivated land quality | If farmers have received help to fight against cultivated land degradation, yes = 1; no = 0 | 0.067 | 0.25 | 0 | 1 |
Dependent Variables | |||||||
---|---|---|---|---|---|---|---|
Agricultural Production (Ref.: >10 Tons) | Farmer’s Income Status (Ref.: Fluctuating) | Sown Area Status (Ref.: Fluctuating) | |||||
Items | <1 Ton | 1 to 5 | 5 to 10 | Increase | Decrease | Increase | Decrease |
Sex (Ref.: Female) | |||||||
Male | 0.185 | −0.069 | −0.276 | 0.364 | 0.456 * | −0.504 | 0.182 |
Age (Ref.: 18–30 years) | |||||||
31–40 years | −3.553 *** | −2.665 ** | −2.641 *** | 1.313 *** | 0.715 ** | 1.415 | 0.007 |
41–50 years | 1.043 | 0.695 | −0.152 | 1.242 ** | 0.476 | 1.602 | 0.775 |
51–60 years | −1.063 | −1.527 | −2.659 ** | 1.448 ** | 0.940 * | 1.754 | 0.598 |
>60 years | −1.772 | −1.942 | −3.359 ** | 1.573 * | 0.935 | 0.331 | 0.487 |
Education (Ref.: Illiterate) | |||||||
Lower secondary | −2.464 ** | −2.368 ** | −3.891 *** | −0.882 * | −0.318 | −0.323 | 0.408 |
Upper secondary | −3.962 *** | −2.881 ** | −3.744 *** | 0.172 | −0.285 | −0.783 | −0.517 |
University | 0.059 | 0.174 | −1.622 * | −0.252 | 0.032 | −0.297 | 0.597 |
Agri-Experience (Ref.: less than 10 years) | |||||||
10 to 20 | 3.609 ** | 3.753 *** | 3.070 ** | −0.644 | −0.657 * | −0.821 | −0.327 |
20 to 30 | 1.838 | 1.460 | 1.290 | −1.055 * | −0.742 | −1.463 | −0.011 |
30 to 40 | 1.497 | 3.261* | 2.648 * | −0.779 | 0.009 | −0.074 | 0.007 |
More than 40 | 1.860 | 2.462 | 1.547 | −1.950 ** | −0.746 | −0.875 | −0.321 |
Subsidy (Ref.: No) | |||||||
Yes | −3.157 *** | −1.826 * | −1.922 * | 0.579 | 0.371 | 0.537 | 0.063 |
The main agricultural expense (Ref.: Seed) | |||||||
Fertilizer | −2.188 * | −0.174 | 0.178 | −0.773 | −1.193 *** | −1.954 * | −1.393 *** |
Hire of materials | 3.673 * | 3.799 * | 5.083 ** | −0.214 | −0.530 | −2.179 | −0.891 |
Hire of land | 21.720 | 20.164 | −20.204 | −2.155 | −2.094 ** | −30.654 | −0.863 |
Labor force | −1.694 | −0.970 | −0.681 | −0.766 | −1.234 *** | −3.088 *** | −0.668 * |
Other | −9.178 *** | −7.302 *** | −41.418 | −0.469 | −0.210 | 3.116** | 0.365 |
The farmer’s farming financial system (Ref.: Family) | |||||||
By itself | −2.094 | −2.970** | −2.361 * | 0.456 | −0.174 | 0.764 | −0.535 |
Agro-business | −2.381 | −2.306 | −35.448 | −0.944 | −1.133 | −28.360 | −2.546 *** |
Cooperative | −1.715 ** | −3.197 *** | −2.196 *** | −0.532 | −0.164 | −0.260 | −0.127 |
Materiel (Ref.: Only old materiel) | |||||||
Modern and old materials | −4.369 *** | −0.692 | −0.166 | 1.135 *** | −0.094 | −0.201 | 0.047 |
Persons in the house working as labor force in the farming sector (Ref.: 1–3 persons) | |||||||
3–6 persons | −0.021 | −0.173 | −0.980 | 0.089 | −0.197 | −0.467 | −0.628 ** |
6–9 persons | −0.422 | 0.545 | −0.526 | 0.605 | −0.698 ** | 2.086 ** | −1.028 *** |
9–12 persons | −2.002 | −2.224 | −3.549 ** | −0.138 | −1.164 ** | 0.396 | −1.345 *** |
12–15 persons | 5.090 ** | 2.896 | −35.566 | 0.650 | −1.101 | −1.051 | −1.391 |
15+ persons | −1.819 | −56.090 | −1.652 | 1.905* | −1.720 * | 4.040 ** | −2.708 *** |
The farmers’ sown land area (Hectare) (Ref.: Less than 1 ha) | |||||||
1–3 ha | −17.544 *** | −15.893 *** | −13.927 *** | −0.202 | −0.601 * | 1.149 | −0.466 |
3–5 ha | −19.746 *** | −18.223 *** | −15.707 *** | 0.211 | −0.518 | 0.706 | −0.512 |
5–7 ha | −21.609 | −19.765 *** | −15.830 *** | −0.568 | −0.764 | 0.871 | −1.750 *** |
+7 ha | −27.423 *** | −25.118 *** | −17.343 *** | 0.895 | −1.235 ** | 3.827 *** | −1.374 *** |
Farmers’ mode of acquisition of farmland (Ref.: Inheritance) | |||||||
Rental | 16.848 *** | 18.208 | −19.011 | 1.667 ** | −0.638 | 2.493 * | −0.877 |
Loan | 2.567 * | 1.783 | 1.438 | 0.191 | −0.663 | 0.090 | −0.995 ** |
Purchase | 0.388 | 1.523 | 0.829 | −0.516 | −0.402 | 3.147 * | −1.052 |
Other | 22.235 *** | 22.857 | −15.759 | 11.411 *** | 10.576 | −7.524 | 27.429 |
Strategy protects cultivated land (Ref.: Land registration) | |||||||
Get a title deed | −0.144 | −0.190 | −0.135 | −0.271 | −0.333 | −1.582 * | −0.482 |
Secure by fencing | −1.898 ** | −1.384 ** | −0.687 | 0.244 | −0.034 | −1.997 ** | −0.423 |
Orchard farming | 4.757 * | 4.973 * | 4.110 * | −0.512 | 0.702 | −0.742 | −0.843 |
No strategy | −0.176 | 0.920 | 0.868 | 0.933 | 1.019 ** | 0.328 | −0.354 |
Perceptions of farmers about the quality of cultivated land (Ref.: Very high) | |||||||
Moderate | 0.788 | 0.872 | 1.432 * | −0.796 * | 0.528 * | −2.241 * | 0.291 |
Poor | 16.713 *** | 13.469 | −21.444 | 11.231 *** | 10.832 | −24.610 | −1.760 ** |
Quality’s seed (Ref.: Certified) | |||||||
Do not know | 9.444 | 9.826 *** | 9.566 *** | 1.003 | 0.065 | 2.913 ** | 0.821 |
Seed’s origin (Ref.: Purchase) | |||||||
Own reserve | −0.251 | −2.026 * | −0.206 | −0.133 | −0.012 | −2.207 ** | −0.234 |
Subsidy | −8.012 *** | −6.025 *** | −4.660 *** | −25.126 | −1.326 ** | −32.598 | −1.149 ** |
Whether farmers practice crop rotation or not (Ref.: No) | |||||||
Yes | −1.753 ** | −1.316 * | −0.404 | −0.086 | 0.150 | 0.674 | −0.460 |
Whether farmers practice traditional ploughing or not (Ref.: No) | |||||||
Yes | −2.693 | −1.378 | 10.993 | −0.360 | −0.491 | 11.933 *** | −0.841 * |
If farmers are aware of the law regarding protected farmland (Ref.: No) | |||||||
Yes | −3.982 *** | −4.334 *** | −3.319 *** | −0.388 | −0.452 | 0.795 | −0.383 |
Constant | 31.520 *** | 27.816 *** | −4.023 | −0.619 | 2.737 *** | −13.734 | 3.961 *** |
Observations | 583 | 583 | 583 | 583 | 583 | 583 | 583 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faye, B.; Faye, H.V.M.T.; Du, G.; Ma, Y.; Diéne, J.C.; Mbaye, E.; Faye, L.M.T.J.; Kouadio, Y.D.; Li, Y.; Seck, H.M. Rural Development and Dynamics of Enhancing Agricultural Productivity in Senegal: Challenges, Opportunities, and Policy Implications. World 2025, 6, 76. https://doi.org/10.3390/world6020076
Faye B, Faye HVMT, Du G, Ma Y, Diéne JC, Mbaye E, Faye LMTJ, Kouadio YD, Li Y, Seck HM. Rural Development and Dynamics of Enhancing Agricultural Productivity in Senegal: Challenges, Opportunities, and Policy Implications. World. 2025; 6(2):76. https://doi.org/10.3390/world6020076
Chicago/Turabian StyleFaye, Bonoua, Hélène Véronique Marie Thérèse Faye, Guoming Du, Yongfang Ma, Jeanne Colette Diéne, Edmée Mbaye, Liane Marie Thérèse Judith Faye, Yao Dinard Kouadio, Yuheng Li, and Henri Marcel Seck. 2025. "Rural Development and Dynamics of Enhancing Agricultural Productivity in Senegal: Challenges, Opportunities, and Policy Implications" World 6, no. 2: 76. https://doi.org/10.3390/world6020076
APA StyleFaye, B., Faye, H. V. M. T., Du, G., Ma, Y., Diéne, J. C., Mbaye, E., Faye, L. M. T. J., Kouadio, Y. D., Li, Y., & Seck, H. M. (2025). Rural Development and Dynamics of Enhancing Agricultural Productivity in Senegal: Challenges, Opportunities, and Policy Implications. World, 6(2), 76. https://doi.org/10.3390/world6020076