Impact of Chronic Diseases on Labour Force Participation among South African Women: Further Analysis of Population-Based Data
Abstract
:1. Background
2. Materials and Methods
2.1. Data Source
2.2. Variable Selection and Measurement
2.2.1. Outcome Variable
2.2.2. Exposure Variable
2.2.3. Covariates
- Age (years): 15–19/20–24/25–29/30–34/35–39/40–44/45–49/50+
- Region: Western Cape/Eastern Cape/Northern Cape/Free State/Kwazulu-Natal/North West/Gauteng/Mpumalanga/Limpopo
- Residential status: urban/rural
- Education: no formal education/primary/secondary/higher
- Sex of household head: male/female
- Household wealth quintiles: DHS calculated the household wealth index as a cumulative composite of household assets using principal component analysis (PCA) and placed them on a continuous relative wealth scale [27,28]. The z-scores and factor loadings of each household asset was calculated. The loadings were multiplied by the indicator values of each household asset and then added together to calculate the wealth index value. The overall standardized z-scores were grouped to the wealth quintiles poorest/poorer/middle/richer/richest.
- Marital status: single/currently in union or living with a man/formerly in union
- Respondent perception of own health: poor/average/good/excellent
- Covered by health insurance: no/yes
2.3. Ethical Considerations
2.4. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schofield, D.J.; Shrestha, R.N.; Passey, M.E.; Earnest, A.; Fletcher, S.L. Chronic disease and labour force participation among older Australians. Med. J. Aust. 2008, 189, 447–450. [Google Scholar] [CrossRef] [PubMed]
- Chestnov, O. Global Action Plan for the Prevention and Control of Noncommunicable Diseases; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Akinlua, J.T.; Meakin, R.; Umar, A.M.; Freemantle, N. Current Prevalence Pattern of Hypertension in Nigeria: A Systematic Review. PLoS ONE 2015, 10, e0140021. [Google Scholar] [CrossRef]
- Ekholuenetale, M.; Adeyoju, T.O.; Onuoha, H.; Barrow, A. Renal Failure among Women of Reproductive Age in Burundi: Estimating the Prevalence and Associated Factors Using Population-Based Data. Int. J. Nephrol. 2021, 2021, 6640495. [Google Scholar] [CrossRef] [PubMed]
- Kassa, G.M.; Muche, A.A.; Berhe, A.K.; Fekadu, G.A. Prevalence and determinants of anemia among pregnant women in Ethiopia; a systematic review and meta-analysis. BMC Hematol. 2017, 17, 17. [Google Scholar] [CrossRef] [PubMed]
- Amugsi, D.A.; Dimbuene, Z.T.; Mberu, B.; Muthuri, S.; Ezeh, A.C. Prevalence and time trends in overweight and obesity among urban women: An analysis of demographic and health surveys data from 24 African countries, 1991. BMJ Open 2017, 7, e017344. [Google Scholar] [CrossRef]
- Kirigia, J.M.; Sambo, H.B.; Sambo, L.G.; Barry, S.P. Economic burden of diabetes mellitus in the WHO African region. BMC Int. Health Hum. Rights 2009, 9, 6. [Google Scholar] [CrossRef]
- Currie, J.; Madrian, B.C. Health, Health Insurance and the Labor Market. In Handbook of Labor Economics; Elsevier: Amsterdam, The Netherlands, 1999; pp. 3309–3416. [Google Scholar]
- Cai, L.; Kalb, G. Health status and labour force participation: Evidence from Australia. Health Econ. 2005, 15, 241–261. [Google Scholar] [CrossRef]
- Mushtaq, A.; Mohsin, A.; Zaman, K. Effects of health on changing labor force participation in Pakistan. SpringerPlus 2013, 2, 610. [Google Scholar] [CrossRef]
- Chorus, A.M.J.; Miedema, H.S.; Wevers, C.J.; van der Linden, S. Labour force participation among patients with rheumatoid arthritis. Ann. Rheum. Dis. 2000, 59, 549–554. [Google Scholar] [CrossRef]
- Harris, A. Diabetes, Cardiovascular Disease and Labour Force Participation in Australia: An Endogenous Multivariate Probit Analysis of Clinical Prevalence Data. Econ. Rec. 2009, 85, 472–484. [Google Scholar] [CrossRef]
- Schofield, D.J.; Cunich, M.; Shrestha, R.N.; Callander, E.J.; Passey, M.E.; Kelly, S.J.; Tanton, R.; Veerman, L. The Impact of Diabetes on the Labour Force Participation and Income Poverty of Workers Aged 45–64 Years in Australia. PLoS ONE 2014, 9, e89360. [Google Scholar] [CrossRef]
- NCD Risk Factor Collaboration (NCD-RisC)—Africa Working Group. Trends in obesity and diabetes across Africa from 1980 to 2014: An analysis of pooled population-based studies. Int. J. Epidemiol. 2017, 46, 1421–1432. [Google Scholar] [CrossRef]
- Atlas, D.; International Diabetes Federation. IDF Diabetes Atlas; International Diabetes Federation: Brussels, Belgium, 2015; Available online: https://diabetesatlas.org/ (accessed on 27 November 2021).
- Rosa, W. (Ed.) Transforming Our World: The 2030 Agenda for Sustainable Development. In A New Era in Global Health; Springer Publishing Company: New York, NY, USA, 2017. [Google Scholar]
- WHO. Montevideo Roadmap 2018–2030 on NCDs as a Sustainable Development Priority; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Clausen, T.D.; Mathiesen, E.R.; Hansen, T.; Pedersen, O.; Jensen, D.M.; Lauenborg, J.; Damm, P. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: The role of intrauterine hyperglycemia. Diabetes Care 2008, 31, 340–346. [Google Scholar] [CrossRef]
- Albright, A. The National Diabetes Prevention Program: From Research to Reality. Diabetes Care Educ. Newsl. 2012, 33, 4–7. [Google Scholar]
- Fuchs, S.; Henschke, C.; Blümel, M.; Busse, R. Disease Management Programs for Type 2 Diabetes in Germany. Dtsch. Ärzteblatt Int. 2014, 111, 453–463. [Google Scholar] [CrossRef]
- Breton, M.-C.; Guenette, L.; Amiche, M.A.; Kayibanda, J.-F.; Gregoire, J.-P.; Moisan, J. Burden of Diabetes on the Ability to Work: A systematic review. Diabetes Care 2013, 36, 740–749. [Google Scholar] [CrossRef]
- Chaker, L.; Falla, A.; van der Lee, S.; Muka, T.; Imo, D.; Jaspers, L.; Colpani, V.; Mendis, S.; Chowdhury, R.; Bramer, W.; et al. The global impact of non-communicable diseases on macro-economic productivity: A systematic review. Eur. J. Epidemiol. 2015, 30, 357–395. [Google Scholar] [CrossRef]
- Seuring, T.; Archangelidi, O.; Suhrcke, M. The Economic Costs of Type 2 Diabetes: A Global Systematic Review. PharmacoEconomics 2015, 33, 811–831. [Google Scholar] [CrossRef]
- Ettaro, L.; Songer, T.J.; Zhang, P.; Engelgau, M.M. Cost-of-Illness Studies in Diabetes Mellitus. PharmacoEconomics 2004, 22, 149–164. [Google Scholar] [CrossRef]
- Latif, E. The impact of diabetes on employment in Canada. Health Econ. 2009, 18, 577–589. [Google Scholar] [CrossRef]
- Brown, H.S.; Pagán, J.A.; Bastida, E. The impact of diabetes on employment: Genetic IVs in a bivariate probit. Health Econ. 2005, 14, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Vyas, S.; Kumaranayake, L. Constructing socio-economic status indices: How to use principal components analysis. Health Policy Plan. 2006, 21, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Rutstein, S.O.; Staveteig, S. Making the Demographic and Health Surveys Wealth Index Comparable; DHS Methodological Reports No. 9; ICF International: Rockville, MA, USA, 2014. [Google Scholar]
- Midi, H.; Sarkar, S.K.; Rana, S. Collinearity diagnostics of binary logistic regression model. J. Interdiscip. Math. 2010, 13, 253–267. [Google Scholar] [CrossRef]
- Pedron, S.; Emmert-Fees, K.; Laxy, M.; Schwettmann, L. The impact of diabetes on labour market participation: A systematic review of results and methods. BMC Public Health 2019, 19, 25. [Google Scholar] [CrossRef]
- Schofield, D.; Cunich, M.; Kelly, S.; Passey, M.E.; Shrestha, R.; Callander, E.; Tanton, R.; Veerman, L. The Impact of Diabetes on the Labour Force Participation, Savings and Retirement Income of Workers Aged 45–64 Years in Australia. PLoS ONE 2015, 10, e0116860. [Google Scholar] [CrossRef]
- Kraut, A.; Walld, R.; Tate, R.; Mustard, C. Impact of diabetes on employment and income in Manitoba, Canada. Diabetes Care 2001, 24, 64–68. [Google Scholar] [CrossRef]
- Ng, Y.C.; Jacobs, P.; Johnson, J.A. Productivity losses associated with diabetes in the US. Diabetes Care 2001, 24, 257–261. [Google Scholar] [CrossRef]
- Hosney, S.H. Factors Influencing Female Labor Force Participationin Egypt and Germany: A Comparative Study; SOEPpapers on Multidisciplinary Panel Data Research, No. 826; Deutsches Institut für Wirtschaftsforschung (DIW): Berlin, Germany, 2016; p. 74. [Google Scholar]
- Davis-Ajami, M.L.; Nahata, M.C.; Reardon, G.; Seiber, E.E.; Balkrishnan, R. Associations between Joblessness and Oral Anti-diabetic Medication Adherence in US Diabetic Working-age Adults. Health Outcomes Res. Med. 2012, 3, e139–e151. [Google Scholar] [CrossRef]
- Rak, E.C. Employment Outcomes in Persons With Diabetes: The Role of Health Literacy and Diabetes Management Self-Efficacy. Rehabil. Couns. Bull. 2014, 57, 159–169. [Google Scholar] [CrossRef]
Variable | Number of Women | Percentage (%) |
---|---|---|
Diabetes | ||
No | 5817 | 95.0 |
Yes | 309 | 5.0 |
High blood pressure | ||
No | 4676 | 76.3 |
Yes | 1450 | 23.7 |
Heart attack | ||
No | 5873 | 95.9 |
Yes | 253 | 4.1 |
Cancer | ||
No | 6054 | 98.8 |
Yes | 72 | 1.2 |
Stroke | ||
No | 6020 | 98.3 |
Yes | 106 | 1.7 |
High blood cholesterol | ||
No | 5924 | 96.7 |
Yes | 202 | 3.3 |
Chronic bronchitis | ||
No | 6034 | 98.5 |
Yes | 92 | 1.5 |
Asthma | ||
No | 5880 | 96.0 |
Yes | 246 | 4.0 |
Age (in years) | ||
15–19 | 730 | 11.9 |
20–24 | 686 | 11.2 |
25–29 | 712 | 11.6 |
30–34 | 622 | 10.2 |
35–39 | 524 | 8.6 |
40–44 | 465 | 7.6 |
45–49 | 454 | 7.4 |
50+ | 1933 | 31.6 |
Region | ||
Western Cape | 474 | 7.7 |
Eastern Cape | 798 | 13.0 |
Northern Cape | 529 | 8.6 |
Free State | 647 | 10.6 |
Kwazulu-Natal | 968 | 15.8 |
North West | 581 | 9.5 |
Gauteng | 561 | 9.2 |
Mpumalanga | 705 | 11.5 |
Limpopo | 863 | 14.1 |
Residential status | ||
Urban | 3361 | 54.9 |
Rural | 2765 | 45.1 |
Education | ||
No formal education | 586 | 9.6 |
Primary | 1048 | 17.1 |
Secondary | 3927 | 64.1 |
Higher | 565 | 9.2 |
Sex of household head | ||
Male | 2304 | 37.6 |
Female | 3822 | 62.4 |
Household wealth | ||
Poorest | 1070 | 17.5 |
Poorer | 1226 | 20.0 |
Middle | 1340 | 21.9 |
Richer | 1250 | 20.4 |
Richest | 1240 | 20.2 |
Marital status | ||
Never in union | 3076 | 50.2 |
Currently in union/living with a man | 2053 | 33.5 |
Formerly in union | 997 | 16.3 |
Respondent perception of own health | ||
Poor | 792 | 12.9 |
Average | 2046 | 33.4 |
Good | 2493 | 40.7 |
Excellent | 795 | 13.0 |
Covered by health insurance | ||
No | 5295 | 86.4 |
Yes | 831 | 13.6 |
Currently working | ||
No | 4371 | 71.3 |
Yes | 1755 | 28.7 |
Variable | Currently Working | Not Currently Working | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diabetes (%) | Heart Attack (%) | Cancer (%) | Stroke (%) | High Blood Cholesterol (%) | High Blood Pressure (%) | Chronic Bronchitis (%) | Asthma (%) | Diabetes (%) | Heart Attack (%) | Cancer (%) | Stroke (%) | High Blood Cholesterol (%) | High Blood Pressure (%) | Chronic Bronchitis (%) | Asthma (%) | |
Age (in years) | ||||||||||||||||
15–19 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 5.0 | 5.0 | 5.0 | 0.3 | 0.7 | 0.3 | 0.3 | 0.4 | 1.8 | 0.4 | 2.4 |
20–24 | 1.9 | 2.8 | 0.0 | 0.0 | 1.9 | 3.7 | 0.0 | 1.9 | 0.2 | 0.9 | 0.2 | 0.4 | 0.5 | 3.6 | 0.7 | 2.1 |
25–29 | 0.4 | 1.6 | 0.0 | 0.0 | 1.6 | 8.4 | 0.0 | 2.8 | 0.0 | 1.3 | 0.0 | 0.4 | 0.2 | 7.6 | 0.4 | 2.2 |
30–34 | 0.8 | 1.9 | 0.0 | 1.5 | 1.5 | 10.3 | 1.2 | 2.7 | 1.4 | 2.5 | 1.4 | 1.9 | 0.6 | 9.7 | 0.6 | 5.3 |
35–39 | 1.7 | 2.2 | 1.3 | 2.2 | 1.3 | 10.7 | 0.4 | 0.9 | 3.1 | 2.4 | 1.7 | 1.4 | 1.7 | 17.2 | 1.0 | 3.8 |
40–44 | 2.3 | 2.7 | 2.7 | 1.8 | 2.3 | 22.4 | 1.8 | 3.7 | 4.9 | 2.4 | 1.6 | 0.8 | 2.4 | 20.3 | 0.4 | 2.0 |
45–49 | 3.4 | 4.3 | 1.3 | 2.6 | 3.8 | 28.9 | 2.1 | 2.1 | 8.7 | 7.3 | 1.8 | 1.8 | 2.7 | 24.7 | 0.5 | 5.5 |
50+ | 10.5 | 6.1 | 1.9 | 1.9 | 7.7 | 45.3 | 2.6 | 5.6 | 12.9 | 9.2 | 2.1 | 3.7 | 7.7 | 53.4 | 3.4 | 6.9 |
Region | ||||||||||||||||
Western Cape | 6.5 | 2.2 | 3.8 | 2.7 | 8.2 | 27.7 | 3.3 | 3.3 | 9.0 | 5.2 | 2.1 | 3.1 | 12.4 | 32.8 | 5.2 | 10.0 |
Eastern Cape | 7.5 | 3.8 | 2.4 | 0.9 | 2.4 | 27.2 | 1.4 | 2.8 | 7.4 | 5.3 | 1.4 | 2.4 | 3.9 | 29.1 | 1.0 | 8.2 |
Northern Cape | 2.8 | 2.8 | 1.4 | 1.4 | 0.7 | 25.0 | 1.4 | 1.4 | 5.5 | 6.2 | 1.3 | 1.3 | 1.6 | 30.4 | 0.5 | 5.5 |
Free State | 2.9 | 4.6 | 0.6 | 0.6 | 5.2 | 28.3 | 0.6 | 2.9 | 6.8 | 6.1 | 1.9 | 2.1 | 3.2 | 30.8 | 1.3 | 3.2 |
Kwazulu-Natal | 1.8 | 1.8 | 0.4 | 3.5 | 3.1 | 14.5 | 0.0 | 2.6 | 6.8 | 1.6 | 0.4 | 1.2 | 3.0 | 17.3 | 1.6 | 3.2 |
North West | 4.4 | 3.9 | 0.0 | 1.1 | 2.8 | 26.0 | 1.7 | 4.4 | 3.5 | 5.5 | 1.0 | 2.5 | 3.3 | 31.0 | 0.8 | 4.5 |
Gauteng | 4.6 | 3.1 | 1.0 | 1.0 | 5.6 | 18.3 | 1.0 | 5.1 | 4.1 | 2.5 | 1.4 | 0.8 | 4.1 | 20.6 | 1.7 | 1.9 |
Mpumalanga | 2.3 | 5.6 | 0.5 | 1.9 | 0.9 | 20.0 | 0.9 | 4.7 | 4.3 | 5.7 | 1.6 | 2.0 | 1.6 | 20.6 | 1.4 | 3.5 |
Limpopo | 1.8 | 3.2 | 0.5 | 0.5 | 2.3 | 16.3 | 2.7 | 1.4 | 3.1 | 3.6 | 0.6 | 1.4 | 0.6 | 16.4 | 1.6 | 1.7 |
Residential status | ||||||||||||||||
Urban | 4.0 | 2.8 | 1.5 | 1.7 | 4.6 | 22.2 | 1.2 | 3.5 | 6.2 | 4.5 | 1.5 | 2.1 | 5.1 | 26.8 | 1.9 | 4.7 |
Rural | 3.5 | 4.6 | 0.5 | 1.3 | 1.3 | 22.2 | 1.8 | 2.7 | 4.9 | 4.3 | 0.9 | 1.5 | 1.4 | 21.6 | 1.2 | 4.0 |
Education | ||||||||||||||||
No formal education | 4.8 | 6.0 | 1.2 | 0.0 | 2.4 | 42.9 | 0.0 | 1.2 | 10.0 | 7.2 | 1.2 | 4.2 | 4.6 | 45.0 | 2.0 | 5.0 |
Primary | 5.6 | 6.0 | 0.9 | 3.2 | 3.7 | 27.8 | 0.9 | 5.6 | 8.8 | 8.3 | 1.3 | 2.8 | 3.7 | 39.1 | 1.9 | 5.7 |
Secondary | 3.1 | 2.6 | 1.1 | 1.7 | 2.8 | 20.9 | 1.5 | 3.0 | 3.7 | 3.0 | 1.0 | 1.2 | 2.7 | 16.8 | 1.3 | 3.9 |
Higher | 5.1 | 3.8 | 1.6 | 0.3 | 5.7 | 17.5 | 1.9 | 2.9 | 6.4 | 2.0 | 2.8 | 1.2 | 4.8 | 17.2 | 2.4 | 4.0 |
Sex of household head | ||||||||||||||||
Male | 3.5 | 3.3 | 1.7 | 1.5 | 3.9 | 21.7 | 1.5 | 3.3 | 5.7 | 4.5 | 1.5 | 2.0 | 4.1 | 22.5 | 1.8 | 4.3 |
Female | 4.0 | 3.5 | 0.8 | 1.6 | 3.1 | 22.4 | 1.4 | 3.1 | 5.4 | 4.4 | 1.0 | 1.7 | 2.7 | 25.3 | 1.4 | 4.4 |
Household wealth | ||||||||||||||||
Poorest | 1.2 | 3.7 | 1.2 | 2.4 | 0.8 | 19.5 | 0.0 | 2.0 | 2.6 | 2.8 | 0.7 | 1.1 | 1.3 | 16.6 | 1.0 | 3.8 |
Poorer | 1.4 | 1.7 | 1.0 | 1.0 | 2.0 | 20.6 | 0.3 | 1.7 | 3.2 | 5.3 | 0.7 | 2.3 | 1.6 | 26.3 | 1.0 | 5.4 |
Middle | 4.9 | 3.4 | 0.6 | 1.7 | 2.9 | 24.4 | 1.4 | 2.3 | 6.5 | 4.4 | 0.9 | 1.8 | 2.8 | 22.9 | 1.0 | 3.3 |
Richer | 6.0 | 5.0 | 1.5 | 1.5 | 4.5 | 23.3 | 2.5 | 4.5 | 7.5 | 5.5 | 1.7 | 2.2 | 4.0 | 26.9 | 2.1 | 4.4 |
Richest | 4.1 | 3.0 | 1.3 | 1.3 | 5.2 | 21.9 | 1.9 | 4.3 | 8.1 | 3.9 | 2.2 | 1.6 | 7.0 | 28.8 | 2.8 | 5.0 |
Marital status | ||||||||||||||||
Never in union | 2.9 | 2.4 | 1.0 | 1.3 | 2.5 | 15.6 | 0.8 | 2.7 | 2.8 | 2.3 | 0.7 | 1.1 | 1.7 | 12.9 | 1.0 | 2.6 |
Currently in union/living with a man | 3.9 | 3.5 | 1.5 | 1.6 | 4.2 | 24.9 | 1.6 | 3.5 | 7.4 | 5.9 | 1.8 | 2.1 | 4.8 | 29.7 | 2.1 | 5.1 |
Formerly in union | 6.1 | 6.1 | 0.7 | 2.2 | 4.0 | 34.2 | 2.9 | 4.0 | 10.9 | 8.5 | 1.7 | 3.8 | 5.4 | 50.1 | 2.2 | 8.3 |
Respondent perception of own health | ||||||||||||||||
Poor | 9.4 | 12.6 | 1.3 | 6.9 | 5.0 | 39.6 | 2.5 | 7.6 | 12.2 | 12.3 | 2.4 | 5.5 | 4.7 | 47.2 | 3.0 | 9.3 |
Average | 6.3 | 4.7 | 1.7 | 1.5 | 5.6 | 32.0 | 2.1 | 5.0 | 8.1 | 5.4 | 1.6 | 2.0 | 4.5 | 32.1 | 2.0 | 5.0 |
Good | 2.2 | 1.7 | 1.1 | 1.0 | 2.2 | 16.1 | 1.1 | 1.7 | 2.2 | 1.7 | 0.6 | 0.5 | 2.3 | 14.5 | 0.9 | 2.9 |
Excellent | 0.0 | 0.4 | 0.0 | 0.0 | 1.7 | 9.2 | 0.4 | 1.3 | 1.1 | 0.7 | 0.5 | 0.9 | 1.1 | 6.3 | 0.5 | 1.3 |
Covered by health insurance | ||||||||||||||||
No | 3.5 | 4.1 | 0.9 | 1.6 | 3.0 | 21.6 | 1.1 | 3.0 | 5.0 | 4.3 | 1.1 | 1.7 | 2.5 | 23.5 | 1.3 | 4.2 |
Yes | 4.9 | 1.4 | 1.9 | 1.4 | 4.7 | 23.9 | 2.6 | 3.8 | 11.1 | 5.2 | 2.0 | 2.7 | 10.9 | 31.7 | 4.2 | 5.9 |
Total estimate | 3.8 | 3.4 | 1.1 | 1.5 | 3.4 | 22.2 | 1.4 | 3.2 | 5.5 | 4.4 | 1.2 | 1.8 | 3.3 | 24.3 | 1.5 | 4.4 |
Variable | Unadjusted Odds Ratio | 95% CI | Adjusted Odds Ratio | 95% CI |
---|---|---|---|---|
Diabetes | ||||
No | 1.00 | 1.00 | ||
Yes | 0.68 | 0.57 to 0.81 | 0.65 | 0.48 to 0.89 |
High blood pressure | ||||
No | 1.00 | 1.00 | ||
Yes | 0.89 | 0.81 to 0.97 | 0.95 | 0.80 to 1.12 |
Heart attack | ||||
No | 1.00 | 1.00 | ||
Yes | 0.77 | 0.63 to 0.93 | 0.97 | 0.70 to 1.34 |
Cancer | ||||
No | 1.00 | |||
Yes | 0.96 | 0.68 to 1.34 | ||
Stroke | ||||
No | 1.00 | |||
Yes | 0.84 | 0.64 to 1.13 | ||
High blood cholesterol | ||||
No | 1.00 | |||
Yes | 1.05 | 0.86 to 1.29 | ||
Chronic bronchitis | ||||
No | 1.00 | |||
Yes | 0.93 | 0.69 to 1.26 | ||
Asthma | ||||
No | 1.00 | 1.00 | ||
Yes | 0.73 | 0.59 to 0.88 | 0.74 | 0.53 to 1.04 |
Age (in years) | ||||
15–19 | 1.00 | 1.00 | ||
20–24 | 6.63 | 4.81 to 9.14 | 6.62 | 4.03 to 10.86 |
25–29 | 19.33 | 14.21 to 26.29 | 20.17 | 12.50 to 32.54 |
30–34 | 25.66 | 18.85 to 34.95 | 30.42 | 18.76 to 49.33 |
35–39 | 28.42 | 20.18 to 38.82 | 32.94 | 20.20 to 53.72 |
40–44 | 31.60 | 23.09 to 43.26 | 40.16 | 24.46 to 65.94 |
45–49 | 38.09 | 27.81 to 52.17 | 52.94 | 32.13 to 87.22 |
50+ | 10.10 | 7.49 to 13.61 | 15.94 | 9.80 to 25.91 |
Region | ||||
Western Cape | 1.00 | 1.00 | ||
Eastern Cape | 0.57 | 0.49 to 0.67 | 0.91 | 0.69 to 1.21 |
Northern Cape | 0.59 | 0.50 to 0.70 | 0.73 | 0.54 to 0.98 |
Free State | 0.58 | 0.49 to 0.68 | 0.68 | 0.51 to 0.90 |
Kwazulu-Natal | 0.48 | 0.41 to 0.56 | 0.72 | 0.55 to 0.95 |
North West | 0.71 | 0.60 to 0.84 | 1.02 | 0.76 to 1.36 |
Gauteng | 0.85 | 0.72 to 1.01 | 0.90 | 0.68 to 1.19 |
Mpumalanga | 0.69 | 0.59 to 0.81 | 1.17 | 0.88 to 1.56 |
Limpopo | 0.54 | 0.46 to 0.63 | 0.94 | 0.70 to 1.26 |
Residential status | ||||
Urban | 1.00 | 1.00 | ||
Rural | 0.58 | 0.54 to 0.63 | 0.65 | 0.56 to 0.76 |
Education | ||||
No formal education | 1.00 | 1.00 | ||
Primary | 1.55 | 1.30 to 1.86 | 1.44 | 1.08 to 1.92 |
Secondary | 2.44 | 2.09 to 2.86 | 2.02 | 1.54 to 2.66 |
Higher | 7.53 | 6.25 to 9.07 | 3.87 | 2.76 to 5.42 |
Sex of household head | ||||
Male | 1.00 | |||
Female | 0.98 | 0.91 to 1.05 | ||
Household wealth | ||||
Poorest | 1.00 | 1.00 | ||
Poorer | 1.07 | 0.94 to 1.21 | 1.00 | 0.81 to 1.24 |
Middle | 1.18 | 1.04 to 1.33 | 1.05 | 0.85 to 1.30 |
Richer | 1.57 | 1.39 to 1.77 | 1.17 | 0.95 to 1.45 |
Richest | 2.01 | 1.78 to 2.27 | 1.21 | 0.97 to 1.53 |
Marital status | ||||
Never in union | 1.00 | 1.00 | ||
Currently in union/living with a man | 1.45 | 1.34 to 1.57 | 0.73 | 0.64 to 0.85 |
Formerly in union | 1.12 | 1.05 to 1.24 | 1.00 | 0.82 to 1.22 |
Respondent perception of own health | ||||
Poor | 1.00 | 1.00 | ||
Average | 1.42 | 1.24 to 1.61 | 1.21 | 0.98 to 1.51 |
Good | 1.95 | 1.72 to 2.22 | 1.55 | 1.24 to 1.93 |
Excellent | 1.70 | 1.46 to 1.98 | 1.56 | 1.19 to 2.05 |
Covered by health insurance | ||||
No | 1.00 | 1.00 | ||
Yes | 3.16 | 2.86 to 3.48 | 2.07 | 1.72 to 2.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekholuenetale, M.; Wegbom, A.I.; Edet, C.K.; Joshua, C.E.; Barrow, A.; Nzoputam, C.I. Impact of Chronic Diseases on Labour Force Participation among South African Women: Further Analysis of Population-Based Data. World 2023, 4, 110-121. https://doi.org/10.3390/world4010008
Ekholuenetale M, Wegbom AI, Edet CK, Joshua CE, Barrow A, Nzoputam CI. Impact of Chronic Diseases on Labour Force Participation among South African Women: Further Analysis of Population-Based Data. World. 2023; 4(1):110-121. https://doi.org/10.3390/world4010008
Chicago/Turabian StyleEkholuenetale, Michael, Anthony Ike Wegbom, Clement Kevin Edet, Charity Ehimwenma Joshua, Amadou Barrow, and Chimezie Igwegbe Nzoputam. 2023. "Impact of Chronic Diseases on Labour Force Participation among South African Women: Further Analysis of Population-Based Data" World 4, no. 1: 110-121. https://doi.org/10.3390/world4010008
APA StyleEkholuenetale, M., Wegbom, A. I., Edet, C. K., Joshua, C. E., Barrow, A., & Nzoputam, C. I. (2023). Impact of Chronic Diseases on Labour Force Participation among South African Women: Further Analysis of Population-Based Data. World, 4(1), 110-121. https://doi.org/10.3390/world4010008