Optimizing Autonomous Wheel Loader Performance—An End-to-End Approach
Abstract
1. Introduction
2. Related Work
3. Problem Formulation
Assumptions and Delimitations
4. Method
4.1. Loading Prediction
Optimal Loading Action Parameters
4.2. V-Turn Model
4.3. Dumping
4.4. Look-Ahead Tree Search
Algorithm 1: Look-ahead tree search with depth d and planning horizon N |
4.4.1. Greedy Strategy
4.4.2. Maximum Loading Strategy
4.4.3. Nominal Strategy
4.5. Computational Time
5. Results
5.1. Greedy Strategy
5.2. Long-Horizon Planning with Look-Ahead Tree Search
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DEM | Discrete element method |
LHD | Load–haul–dump |
References
- Singh, S.P.; Narendrula, R. Factors affecting the productivity of loaders in surface mines. Int. J. Min. Reclam. Environ. 2006, 20, 20–32. [Google Scholar] [CrossRef]
- Singh, S.; Simmons, R.G. Task planning for robotic excavation. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Raleigh, NC, USA, 7–10 July 1992; Volume 92, pp. 1284–1291. [Google Scholar] [CrossRef]
- Aoshima, K.; Fälldin, A.; Wadbro, E.; Servin, M. World modeling for autonomous wheel loaders. Automation 2024, 5, 259–281. [Google Scholar] [CrossRef]
- Ding, J. Understanding World or Predicting Future? A Comprehensive Survey of World Models. arXiv 2024, arXiv:2411.14499. [Google Scholar] [CrossRef]
- Lever, P.J. An automated digging control for a wheel loader. Robotica 2001, 19, 497–511. [Google Scholar] [CrossRef]
- Wang, L.; Ye, Z.; Zhang, L. Hierarchical planning for autonomous excavator on material loading tasks. In Proceedings of the 38th International Symposium on Automation and Robotics in Construction, Dubai, United Arab Emirates, 2–4 November 2021; pp. 827–834. [Google Scholar]
- Dobson, A.; Marshall, J.; Larsson, J. Admittance Control for Robotic Loading: Design and Experiments with a 1-Tonne Loader and a 14-Tonne Load-Haul-Dump Machine. J. Field Robot. 2017, 34, 123–150. [Google Scholar] [CrossRef]
- Singh, S.; Cannon, H. Multi-resolution planning for earthmoving. In Proceedings of the 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146), Leuven, Belgium, 20 May 1998; pp. 121–126. [Google Scholar]
- Magnusson, M.; Kucner, T.; Lilienthal, A.J. Quantitative evaluation of coarse-to-fine loading strategies for material rehandling. In Proceedings of the 2015 IEEE International Conference on Automation Science and Engineering (CASE), Gothenburg, Sweden, 24–28 August 2015; pp. 450–455. [Google Scholar]
- Backman, S.; Lindmark, D.; Bodin, K.; Servin, M.; Mörk, J.; Löfgren, H. Continuous control of an underground loader using deep reinforcement learning. Machines 2021, 9, 216. [Google Scholar] [CrossRef]
- Lindmark, D.M.; Servin, M. Computational exploration of robotic rock loading. Robot. Auton. Syst. 2018, 106, 117–129. [Google Scholar] [CrossRef]
- Sarata, S.; Weeramhaeng, Y.; Tsubouchi, T. Planning of Scooping Position and Approach Path for Loading Operation by Wheel Loader. In Proceedings of the 22nd International Symposium on Automation and Robotics in Construction, Ferrara, Italy, 11–14 September 2005. [Google Scholar] [CrossRef]
- Takei, T.; Hoshi, T.; Sarata, S.; Tsubouchi, T. Simultaneous determination of an optimal unloading point and paths between scooping points and the unloading point for a wheel loader. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 5923–5929. [Google Scholar] [CrossRef]
- Alshaer, B.; Darabseh, T.; Alhanouti, M. Path planning, modeling and simulation of an autonomous articulated heavy construction machine performing a loading cycle. Appl. Math. Model. 2013, 37, 5315–5325. [Google Scholar] [CrossRef]
- Shi, J.; Sun, D.; Qin, D.; Hu, M.; Kan, Y.; Ma, K.; Chen, R. Planning the trajectory of an autonomous wheel loader and tracking its trajectory via adaptive model predictive control. Robot. Auton. Syst. 2020, 131, 103570. [Google Scholar] [CrossRef]
- Hong, B.; Ma, X. Path planning for wheel loaders: A discrete optimization approach. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Nezhadali, V.; Frank, B.; Eriksson, L. Wheel loader operation—Optimal control compared to real drive experience. Control Eng. Pract. 2016, 48, 1–9. [Google Scholar] [CrossRef]
- Sardarmehni, T.; Song, X. Path planning and energy optimization in optimal control of autonomous wheel loaders using reinforcement learning. IEEE Trans. Veh. Technol. 2023, 72, 9821–9834. [Google Scholar] [CrossRef]
- Filla, R.; Frank, B. Towards finding the optimal bucket filling strategy through simulation. In Proceedings of the 15th Scandinavian International Conference on Fluid Power, Linköping, Sweden, 7–9 June 2017; pp. 402–417. [Google Scholar] [CrossRef]
- Frank, B.; Kleinert, J.; Filla, R. Optimal control of wheel loader actuators in gravel applications. Autom. Constr. 2018, 91, 1–14. [Google Scholar] [CrossRef]
- Bradley, D.A.; Seward, D.W. The development, control and operation of an autonomous robotic excavator. J. Intell. Robot. Syst. 1998, 21, 73–97. [Google Scholar] [CrossRef]
- Piegl, L.; Tiller, W. The NURBS Book; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar] [CrossRef]
- Dubin, L.B. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 1957, 79, 497–516. [Google Scholar] [CrossRef]
- Maekawa, T.; Noda, T.; Tamura, S.; Ozaki, T.; Machida, K.-i. Curvature continuous path generation for autonomous vehicle using B-spline curves. Comput.-Aided Des. 2010, 42, 350–359. [Google Scholar] [CrossRef]
- Aoshima, K.; Servin, M.; Wadbro, E. Simulation-based optimization of high-performance wheel loading. In Proceedings of the 38th International Symposium on Automation and Robotics in Construction, Dubai, United Arab Emirates, 2–4 November 2021; pp. 688–695. [Google Scholar]
- Hong, B.; Ma, X. Path optimization for a wheel loader considering construction site terrain. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 2098–2103. [Google Scholar] [CrossRef]
- Perlin, K. An image synthesizer. In Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques, San Francisco, CA, USA, 22–26 July 1985; pp. 287–296. [Google Scholar] [CrossRef]
Function | Time [ms] | Dominant Computing Cost | |
---|---|---|---|
cutout | 9.0 | heightfield rotation | |
2.5 | |||
replace | 12.0 | heightfield rotation | |
∼45.0 | grad-descent (1.5 [ms] × iteration) | ||
2.5 | generating 2 × cubic spline | ||
2.5 | generating 2 × cubic spline | ||
Total | ∼73.5 |
Load | V-Turns | Total | |||||
---|---|---|---|---|---|---|---|
Strategy | |||||||
Greedy | 197 | 6.2 | 421 | 9.3 | |||
Max loading | 62.6 | 453 | 10.4 | 717 | 16.4 | ||
Nominal | 59.8 | 260 | 9.4 | 697 | 16.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aoshima, K.; Wadbro, E.; Servin, M. Optimizing Autonomous Wheel Loader Performance—An End-to-End Approach. Automation 2025, 6, 31. https://doi.org/10.3390/automation6030031
Aoshima K, Wadbro E, Servin M. Optimizing Autonomous Wheel Loader Performance—An End-to-End Approach. Automation. 2025; 6(3):31. https://doi.org/10.3390/automation6030031
Chicago/Turabian StyleAoshima, Koji, Eddie Wadbro, and Martin Servin. 2025. "Optimizing Autonomous Wheel Loader Performance—An End-to-End Approach" Automation 6, no. 3: 31. https://doi.org/10.3390/automation6030031
APA StyleAoshima, K., Wadbro, E., & Servin, M. (2025). Optimizing Autonomous Wheel Loader Performance—An End-to-End Approach. Automation, 6(3), 31. https://doi.org/10.3390/automation6030031