Scientometric Analysis for Cross-Laminated Timber in the Context of Construction 4.0
Abstract
:1. Introduction
2. Research Methodology
2.1. Bibliometric Analysis
2.2. Scientometric Analysis
2.3. Future Trends
3. Results for Cross-Laminated Timber in Construction
3.1. Data Acquisition
3.2. Keyword Co-Occurrence Analysis
3.3. Co-Author Co-Occurrence Analysis
3.4. Network of Countries/Regions and Institutions
3.5. Author Co-Citation Network
3.6. Journal Co-Citation Network
3.7. Document Co-Citation Network and Clustering
4. Results for Industry 4.0 in Construction
4.1. Data Acquisition
4.2. Keyword Co-Occurrence Analysis
4.3. CiteSpace Network Maps
5. Future Trends
5.1. Overview
5.2. Future Trends
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, R.E.; Griffin, G.; Rice, T.; Hagehofer-Daniell, B. Mass timber: Evaluating construction performance. Arch. Eng. Des. Manag. 2017, 14, 127–138. [Google Scholar] [CrossRef]
- Sandoli, A.; D’Ambra, C.; Ceraldi, C.; Calderoni, B.; Prota, A. Sustainable Cross-Laminated Timber Structures in a Seismic Area: Overview and Future Trends. Appl. Sci. 2021, 11, 2078. [Google Scholar] [CrossRef]
- UNEP Sustainable Buildings and Climate Initiative. Buildings and Climate Change: Summary for Decision-Makers. 2009. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/32152/BCC_SDM.pdf?sequence=1&isAllowed=y (accessed on 19 May 2022).
- Kasal, B.; Friebel, S.; Gunschera, J.; Salthammer, T.; Schirp, A.; Schwab, H.; Thole, V. Wood-Based Materials. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; pp. 1–56. [Google Scholar] [CrossRef]
- Gagnon, S.; Podesto, E.T.; Crespell, P. CLT Introduction to cross-laminated timber. In CLT Handbook: Cross-Laminated Timber; Library and Archives Canada: Ottawa, ON, Canada, 2013; pp. 45–57. Available online: https://www.fpl.fs.fed.us/documnts/pdf2013/fpl_2013_gagnon001.pdf (accessed on 1 May 2022).
- Nordin, M.S.; Norshariza, M.B.; Lum, W.C.; Zainal, N.S.; Ahmad, Z. Assessment on Bonding Strength of Cross-laminated timber Made from Light Red Meranti Manufactured by Vacuum Press Method. In Proceedings of the 5th International Conference on Sustainable Civil Engineering Structures and Construction Materials, Sarawak, Malaysia, 11–13 August 2022; pp. 999–1012. [Google Scholar] [CrossRef]
- Ellinger, J.; Beorkrem, C.; Dodson, C. Computationally Derived Cross-Laminated Timber Reinforcement and Construction. In Digital Wood Design; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1135–1150. [Google Scholar] [CrossRef]
- Carvalho, N.G.P.; Cazarini, E.W. Industry 4.0—What Is It? In Industry 4.0—Current Status and Future Trends; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Maskuriy, R.; Selamat, A.; Ali, K.N.; Maresova, P.; Krejcar, O. Industry 4.0 for the Construction Industry—How Ready Is the Industry? Appl. Sci. 2019, 9, 2819. [Google Scholar] [CrossRef] [Green Version]
- Forcael, E.; Ferrari, I.; Opazo-Vega, A.; Pulido-Arcas, J.A. Construction 4.0: A Literature Review. Sustainability 2020, 12, 9755. [Google Scholar] [CrossRef]
- Pemarathne, W.P.J.; Fernando, T.G.I. Wire and cable routings and harness designing systems with AI, a review. In Proceedings of the 2016 IEEE International Conference on Information and Automation for Sustainability (ICIAfS), Galle, Sri Lanka, 16–19 December 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Kim, K.; Kim, H.; Kim, H. Image-based construction hazard avoidance system using augmented reality in wearable device. Autom. Constr. 2017, 83, 390–403. [Google Scholar] [CrossRef]
- Schubert, A. Scientometrics: The Research Field and its Journal. In Organizations and Strategies in Astronomy; Springer Science + Business: Berlin/Heidelberg, Germany, 2001; pp. 179–195. [Google Scholar] [CrossRef]
- Martinez, P.; Al-Hussein, M.; Ahmad, R. A scientometric analysis and critical review of computer vision applications for construction. Autom. Constr. 2019, 107, 102947. [Google Scholar] [CrossRef]
- Shukra, Z.A.; Zhou, Y. Holistic green BIM: A scientometrics and mixed review. Eng. Constr. Arch. Manag. 2020, 28, 2273–2299. [Google Scholar] [CrossRef]
- Lee, P.-S.; West, J.D.; Howe, B. Viziometrics: Analyzing Visual Information in the Scientific Literature. IEEE Trans. Big Data 2017, 4, 117–129. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. CitNetExplorer: A new software tool for analyzing and visualizing citation networks. J. Inf. 2014, 8, 802–823. [Google Scholar] [CrossRef] [Green Version]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Abrizah, A.; Zainab, A.N.; Kiran, K.; Raj, R.G.; Abdullah, A. LIS journals scientific impact and subject categorization: A comparison between Web of Science and Scopus. Scientometrics 2012, 94, 721–740. [Google Scholar] [CrossRef]
- Leydesdorff, L.; Milojević, S. Scientometrics. arXiv 2012, arXiv:1208.4566. [Google Scholar]
- Dobrov, G.M.; Randolph, R.H.; Rauch, W.D. New options for team research via international computer networks. Scientometrics 1979, 1, 387–404. [Google Scholar] [CrossRef]
- Mulchenko, Z.M.; Granovsky, Y.V.; Strakhov, A.B. On scientometrical characteristics on information activities of leading scientists. Scientometrics 1979, 1, 307–325. [Google Scholar] [CrossRef]
- Brusilovsky, B. Partial and system forecasts in scientometrics. Technol. Forecast. Soc. Chang. 1978, 12, 193–200. [Google Scholar] [CrossRef]
- He, Q.; Wang, G.; Luo, L.; Shi, Q.; Xie, J.; Meng, X. Mapping the managerial areas of Building Information Modeling (BIM) using scientometric analysis. Int. J. Proj. Manag. 2017, 35, 670–685. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Lu, Y.; Peh, L.C. A Review and Scientometric Analysis of Global Building Information Modeling (BIM) Research in the Architecture, Engineering and Construction (AEC) Industry. Buildings 2019, 9, 210. [Google Scholar] [CrossRef] [Green Version]
- Vaseashta, A. Advanced sciences convergence based methods for surveillance of emerging trends in science, technology, and intelligence. Foresight 2014, 16, 17–36. [Google Scholar] [CrossRef]
- Jones, K. Mass Timber Construction Starting to Take Root in U.S. Constructionconnect. Available online: https://www.constructconnect.com/blog/mass-timber-construction-starting-take-root-u-s (accessed on 15 February 2017).
- Barber, D. Fire Safety of Mass timber Buildings with CLT in USA. Wood Fiber Sci. 2018, 50, 83–95. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics 2017, 111, 1053–1070. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2009, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Eck, N.J.; Waltman, L. Visualizing bibliometric networks. In Measuring Scholarly Impact; Springer: Cham, Switzerland, 2014; pp. 285–320. [Google Scholar] [CrossRef]
- Perianes-Rodriguez, A.; Waltman, L.; van Eck, N.J. Constructing bibliometric networks: A comparison between full and fractional counting. J. Inf. 2016, 10, 1178–1195. [Google Scholar] [CrossRef] [Green Version]
- Vilutiene, T.; Kalibatiene, D.; Hosseini, M.R.; Pellicer, E.; Zavadskas, E.K. Building Information Modeling (BIM) for Structural Engineering: A Bibliometric Analysis of the Literature. Adv. Civ. Eng. 2019, 2019, 1–19. [Google Scholar] [CrossRef]
- Oraee, M.; Hosseini, M.R.; Papadonikolaki, E.; Palliyaguru, R.; Arashpour, M. Collaboration in BIM-based construction networks: A bibliometric-qualitative literature review. Int. J. Proj. Manag. 2017, 35, 1288–1301. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. VOSviewer Manual Version 1.6.18. 2022. Available online: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.18.pdf (accessed on 20 April 2022).
- Chaomei, C. CiteSpace: A Practical Guide for Mapping Scientific Literature. 2016. Available online: https://www.researchgate.net/publication/308204148 (accessed on 20 April 2022).
- Kleinberg, J. Bursty and Hierarchical Structure in Streams. Data Min. Knowl. Discov. 2003, 7, 373–397. [Google Scholar] [CrossRef]
- Chen, C. The CiteSpace Manual; College of Computing and Informatics, Drexel University: Philadelphia, PA, USA, 2014; Volume 1, Available online: https://www.researchgate.net/profile/Arsev-Aydinoglu-2/publication/274377526_Collaborative_interdisciplinary_astrobiology_research_a_bibliometric_study_of_the_NASA_Astrobiology_Institute/links/5670463b08ae0d8b0cc0e112/Collaborative-interdisciplinary-astrobiology-research-a-bibliometric-study-of-the-NASA-Astrobiology-Institute.pdf (accessed on 27 April 2022).
- Newman, M.E.J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Schuurmans, D. Modular Community Detection in Networks. In Proceedings of the International Joint Conference on Artificial Intelligence 2011, Barcelona, Catalonia, Spain, 16–22 July 2011; pp. 1366–1371. Available online: https://www.aaai.org/ocs/index.php/IJCAI/IJCAI11/paper/viewPaper/3074 (accessed on 27 April 2022).
- Chen, C.; Ibekwe-SanJuan, F.; Hou, J. The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1386–1409. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. The centrality of pivotal points in the evolution of scientific networks. In Proceedings of the 10th International Conference on Intelligent User Interfaces, San Diego, CA, USA, 9–12 January 2005; pp. 98–105. [Google Scholar] [CrossRef]
- Brandner, R.; Flatscher, G.; Ringhofer, A.; Schickhofer, G.; Thiel, A. Cross laminated timber (CLT): Overview and development. Eur. J. Wood Wood Prod. 2016, 74, 331–351. [Google Scholar] [CrossRef]
- Freeman, L.C. A Set of Measures of Centrality Based on Betweenness. Sociometry 1977, 40, 35. [Google Scholar] [CrossRef]
- Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; et al. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Espinoza, O.; Trujillo, V.R.; Mallo, M.F.L.; Buehlmann, U. Cross-Laminated Timber: Status and Research Needs in Europe. BioResources 2016, 11, 281–295. Available online: https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_11_1_281_Espinoza_Cross_Laminated_Timber_Europe (accessed on 1 May 2022). [CrossRef]
- Sikora, K.S.; McPolin, D.; Harte, A. Effects of the thickness of cross-laminated timber (CLT) panels made from Irish Sitka spruce on mechanical performance in bending and shear. Constr. Build. Mater. 2016, 116, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Gavric, I.; Fragiacomo, M.; Ceccotti, A. Cyclic Behavior of CLT Wall Systems: Experimental Tests and Analytical Prediction Models. J. Struct. Eng. 2015, 141, 04015034. [Google Scholar] [CrossRef]
- Asdrubali, F.; Ferracuti, B.; Lombardi, L.; Guattari, C.; Evangelisti, L.; Grazieschi, G. A review of structural, thermo-physical, acoustical, and environmental properties of wooden materials for building applications. Build. Environ. 2017, 114, 307–332. [Google Scholar] [CrossRef]
- Liao, Y.; Tu, D.; Zhou, J.; Zhou, H.; Yun, H.; Gu, J.; Hu, C. Feasibility of manufacturing cross-laminated timber using fast-grown small diameter eucalyptus lumbers. Constr. Build. Mater. 2017, 132, 508–515. [Google Scholar] [CrossRef]
- Izzi, M.; Casagrande, D.; Bezzi, S.; Pasca, D.; Follesa, M.; Tomasi, R. Seismic behaviour of Cross-Laminated Timber structures: A state-of-the-art review. Eng. Struct. 2018, 170, 42–52. [Google Scholar] [CrossRef]
- Gagnon, S.; Karacabeyli, E. Status of cross-laminated timber construction in North-America. In Structures and Architecture: Concepts, Applications and Challenges; Taylor & Francis Group: London, UK, 2013; pp. 66–73. [Google Scholar]
- Schmidt, E.L.; Riggio, M.; Barbosa, A.; Mugabo, I. Environmental response of a CLT floor panel: Lessons for moisture management and monitoring of mass timber buildings. Build. Environ. 2018, 148, 609–622. [Google Scholar] [CrossRef]
- Pierobon, F.; Huang, M.; Simonen, K.; Ganguly, I. Environmental benefits of using hybrid CLT structure in midrise non-residential construction: An LCA based comparative case study in the U.S. Pacific Northwest. J. Build. Eng. 2019, 26, 100862. [Google Scholar] [CrossRef]
- Jones, K.; Stegemann, J.; Sykes, J.; Winslow, P. Adoption of unconventional approaches in construction: The case of cross-laminated timber. Constr. Build. Mater. 2016, 125, 690–702. [Google Scholar] [CrossRef] [Green Version]
- McClung, R.; Ge, H.; Straube, J.; Wang, J. Hygrothermal performance of cross-laminated timber wall assemblies with built-in moisture: Field measurements and simulations. Build. Environ. 2014, 71, 95–110. [Google Scholar] [CrossRef]
- Ehrhart, T.; Brandner, R. Rolling shear: Test configurations and properties of some European soft- and hardwood species. Eng. Struct. 2018, 172, 554–572. [Google Scholar] [CrossRef]
- Gavric, I.; Fragiacomo, M.; Ceccotti, A. Cyclic behaviour of typical metal connectors for cross-laminated (CLT) structures. Mater. Struct. 2014, 48, 1841–1857. [Google Scholar] [CrossRef]
- Wang, L.; Ge, H. Hygrothermal performance of cross-laminated timber wall assemblies: A stochastic approach. Build. Envi-ron. 2016, 97, 11–25. [Google Scholar] [CrossRef]
- Aicher, S.; Hirsch, M.; Christian, Z. Hybrid cross-laminated timber plates with beech wood cross-layers. Constr. Build. Mater. 2016, 124, 1007–1018. [Google Scholar] [CrossRef]
- Bita, H.M.; Tannert, T. Disproportionate collapse prevention analysis for a mid-rise flat-plate cross-laminated timber building. Eng. Struct. 2018, 178, 460–471. [Google Scholar] [CrossRef]
- Hassanieh, A.; Valipour, H.; Bradford, M. Experimental and numerical investigation of short-term behaviour of CLT-steel composite beams. Eng. Struct. 2017, 144, 43–57. [Google Scholar] [CrossRef]
- Ceccotti, A.; Sandhaas, C.; Okabe, M.; Yasumura, M.; Minowa, C.; Kawai, N. SOFIE project—3D shaking table test on a seven-storey full-scale cross-laminated timber building. Earthq. Eng. Struct. Dyn. 2013, 42, 2003–2021. [Google Scholar] [CrossRef]
- Shahnewaz, I.; Tannert, T.; Alam, M.S.; Popovski, M. In-Plane Stiffness of Cross-Laminated Timber Panels with Openings. Struct. Eng. Int. 2017, 27, 217–223. [Google Scholar] [CrossRef]
- Amini, M.O.; van de Lindt, J.W.; Rammer, D.; Pei, S.; Line, P.; Popovski, M. Systematic experimental investigation to support the development of seismic performance factors for cross laminated timber shear wall systems. Eng. Struct. 2018, 172, 392–404. [Google Scholar] [CrossRef]
- He, M.; Sun, X.; Li, Z. Bending and compressive properties of cross-laminated timber (CLT) panels made from Canadian hemlock. Constr. Build. Mater. 2018, 185, 175–183. [Google Scholar] [CrossRef]
- Morandi, F.; De Cesaris, S.; Garai, M.; Barbaresi, L. Measurement of flanking transmission for the characterisation and classification of cross laminated timber junctions. Appl. Acoust. 2018, 141, 213–222. [Google Scholar] [CrossRef]
- Crespell, P.; Gagnon, S. Cross-Laminated Timber: A Primer, Special ed.; FPInnovations: Vancouver, BC, Canada, 2010; Available online: https://wood-works.ca/wp-content/uploads/CLT-Overview-FPInnovations.pdf (accessed on 2 May 2022).
- Popovski, M.; Schneider, J.; Schweinsteiger, M. Lateral Load Resistance of Cross-Laminated Wood Panels. In Proceedings of the World Conference in Timber Engineering, Trentino, Italy, 20–24 June 2010; p. 24. [Google Scholar]
- Polastri, A.; Izzi, M.; Pozza, L.; Loss, C.; Smith, I. Seismic analysis of multi-storey timber buildings braced with a CLT core and perimeter shear-walls. Bull. Earthq. Eng. 2018, 17, 1009–1028. [Google Scholar] [CrossRef]
- Oktavianus, Y.; Baduge, K.S.K.; Orlowski, K.; Mendis, P. Structural behaviour of prefabricated load bearing braced composite timber wall system. Eng. Struct. 2018, 176, 555–568. [Google Scholar] [CrossRef]
- Gasparri, E.; Lucchini, A.; Mantegazza, G.; Mazzucchelli, E.S. Construction management for tall CLT buildings: From partial to total prefabrication of façade elements. Wood Mater. Sci. Eng. 2015, 10, 256–275. [Google Scholar] [CrossRef]
- Pang, S.-J.; Jeong, G.Y. Effects of combinations of lamina grade and thickness, and span-to-depth ratios on bending properties of cross-laminated timber (CLT) floor. Constr. Build. Mater. 2019, 222, 142–151. [Google Scholar] [CrossRef]
- Pang, S.-J.; Jeong, G.Y. Load sharing and weakest lamina effects on the compressive resistance of cross-laminated timber under in-plane loading. J. Wood Sci. 2018, 64, 538–550. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, D.M. Cross-Laminated Timber Shear Walls with Toe-Screwed and Slip-Friction Connections. Doctor Thesis, Oregon State University, Corvallis, OR, USA, 2019. Available online: https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/6h441020v (accessed on 2 May 2022).
- Damtoft, J.S.; Lukasik, J.; Herfort, D.; Sorrentino, D.; Gartner, E.M. Sustainable development and climate change initiatives. Cem. Concr. Res. 2008, 38, 115–127. [Google Scholar] [CrossRef]
- Passarelli, R.N.; Koshihara, M. CLT panels in Japan from cradle to construction site gate: Global warming potential and freight costs impact of three supply options. Int. Wood Prod. J. 2017, 8, 127–136. [Google Scholar] [CrossRef]
- Ceccotti, A. New Technologies for Construction of Medium-Rise Buildings in Seismic Regions: The XLAM Case. Struct. Eng. Int. 2008, 18, 156–165. [Google Scholar] [CrossRef]
- Connolly, T.; Loss, C.; Iqbal, A.; Tannert, T. Feasibility Study of Mass-Timber Cores for the UBC Tall Wood Building. Buildings 2018, 8, 98. [Google Scholar] [CrossRef] [Green Version]
- Turner, C.J.; Oyekan, J.; Stergioulas, L.; Griffin, D. Utilizing Industry 4.0 on the Construction Site: Challenges and Opportunities. IEEE Trans. Ind. Inform. 2020, 17, 746–756. [Google Scholar] [CrossRef]
- Bianconi, F.; Filippucci, M.; Buffi, A. Automated design and modeling for mass-customized housing. A web-based design space catalog for timber structures. Autom. Constr. 2019, 103, 13–25. [Google Scholar] [CrossRef]
- Colella, M.; Fallacara, G. Towards a 4.0 Mass Customized Wooden Housing in the Mediterranean Area: The Ecodomus Project. In Digital Wood Design; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1201–1228. [Google Scholar] [CrossRef]
- Abbas, A.; Din, Z.; Farooqui, R. Integration of BIM in Construction Management Education: An Overview of Pakistani Engineering Universities. Procedia Eng. 2016, 145, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Monizza, G.P.; Bendetti, C.; Matt, D.T. Parametric and Generative Design techniques in mass-production environments as effective enablers of Industry 4.0 approaches in the Building Industry. Autom. Constr. 2018, 92, 270–285. [Google Scholar] [CrossRef]
- Rauch, E.; Dallasega, P.; Matt, D.T. Complexity reduction in engineer-to-order industry through real-time capable production planning and control. Prod. Eng. 2018, 12, 341–352. [Google Scholar] [CrossRef]
- Dallasega, P.; Rauch, E.; Linder, C. Industry 4.0 as an enabler of proximity for construction supply chains: A systematic literature review. Comput. Ind. 2018, 99, 205–225. [Google Scholar] [CrossRef]
- Oesterreich, T.D.; Teuteberg, F. Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. Comput. Ind. 2016, 83, 121–139. [Google Scholar] [CrossRef]
- Sawhney, A.; Riley, M.; Irizarry, J. Construction 4.0. An Innovation Platform for the Built Environment, 1st ed.; Routledge: London, UK, 2020; Available online: https://www.routledge.com/Construction-40-An-Innovation-Platform-for-the-Built-Environment/Sawhney-Riley-Irizarry/p/book/9780367027308?gclid=Cj0KCQjw1N2TBhCOARIsAGVHQc5Y-9×7Q5f-Q-ct1xK5wx8ApEXfUmn-2V9SK-6_x3Aoo4GH_l0c9fYaAnJpEALw_wcB (accessed on 7 May 2022).
- Woodhead, R.; Stephenson, P.; Morrey, D. Digital construction: From point solutions to IoT ecosystem. Autom. Constr. 2018, 93, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Al-Saeed, Y.; Edwards, D.J.; Scaysbrook, S. Automating construction manufacturing procedures using BIM digital objects (BDOs): Case study of knowledge transfer partnership project in UK. Constr. Innov. 2020, 20, 345–377. [Google Scholar] [CrossRef]
- Li, C.Z.; Zhong, R.Y.; Xue, F.; Xu, G.; Chen, K.; Huang, G.G.; Shen, G.Q. Integrating RFID and BIM technologies for mitigating risks and improving schedule performance of prefabricated house construction. J. Clean. Prod. 2017, 165, 1048–1062. [Google Scholar] [CrossRef]
- Shirowzhan, S.; Sepasgozar, S.M.; Edwards, D.J.; Li, H.; Wang, C. BIM compatibility and its differentiation with interoperability challenges as an innovation factor. Autom. Constr. 2020, 112, 103086. [Google Scholar] [CrossRef]
- Bortolini, R.; Formoso, C.T.; Viana, D.D. Site logistics planning and control for engineer-to-order prefabricated building systems using BIM 4D modeling. Autom. Constr. 2018, 98, 248–264. [Google Scholar] [CrossRef]
- Buswell, R.A.; De Silva, W.R.L.; Jones, S.Z.; Dirrenberger, J. 3D printing using concrete extrusion: A roadmap for research. Cem. Concr. Res. 2018, 112, 37–49. [Google Scholar] [CrossRef]
- Li, J.; Greenwood, D.; Kassem, M. Blockchain in the built environment and construction industry: A systematic review, conceptual models and practical use cases. Autom. Constr. 2019, 102, 288–307. [Google Scholar] [CrossRef]
- Foster, R.M.; Ramage, M.H. Briefing: Super tall timber—Oakwood Tower. Proc. Inst. Civ. Eng. Constr. Mater. 2017, 170, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Kosacka-Olejnik, M.; Pitakaso, R. Industry 4.0: State of the art and research implications. Logforum 2015, 15, 478–485. [Google Scholar] [CrossRef]
- Loss, C.; Rossi, S.; Tannert, T. In-Plane Stiffness of Hybrid Steel–Cross-Laminated Timber Floor Diaphragms. J. Struct. Eng. 2018, 144, 04018128. [Google Scholar] [CrossRef]
- Mayencourt, P.; Mueller, C. Structural Optimization of Cross-laminated Timber Panels in One-way Bending. Structures 2018, 18, 48–59. [Google Scholar] [CrossRef]
- Orlowski, K. Verified and validated design curves and strength reduction factors for post-tensioned composite steel-timber stiffened wall systems. Eng. Struct. 2019, 204, 110053. [Google Scholar] [CrossRef]
- Ghafoor, S.; Crawford, R.H. Comparative study of the life cycle embodied greenhouse gas emissions of panelised prefabricated residential walling systems in Australia. In Proceedings of the International Conference of Architectural Science Association, Auckland, New Zealand, 25–28 November 2020; Volume 2020, pp. 256–265. [Google Scholar]
- Østnor, T.; Faanes, S.; Lædre, O. Laminated Timber Versus on-Site Cast Concrete: A Comparative Study. In Proceedings of the 26th Annual Conference of the International Group for Lean Construction, Chennai, India, 16–22 July 2018; pp. 1302–1312. [Google Scholar] [CrossRef] [Green Version]
- Bechert, S.; Aldinger, L.; Wood, D.; Knippers, J.; Menges, A. Urbach Tower: Integrative structural design of a lightweight structure made of self-shaped curved cross-laminated timber. Structures 2021, 33, 3667–3681. [Google Scholar] [CrossRef]
- Jamnitzky, J.; Deák, A. TUM-Campus im Olympiapark München. Bautechnik 2019, 96, 855–862. [Google Scholar] [CrossRef]
- Gasparri, E.; Aitchison, M. Unitised timber envelopes. A novel approach to the design of prefabricated mass timber envelopes for multi-storey buildings. J. Build. Eng. 2019, 26, 100898. [Google Scholar] [CrossRef]
- Gamerro, J.; Bocquet, J.F.; Weinand, Y. Experimental investigations on the load-carrying capacity of digitally produced wood-wood connections. Eng. Struct. 2020, 213, 110576. [Google Scholar] [CrossRef]
- Fini, A.A.F.; Maghrebi, M.; Forsythe, P.J.; Waller, T.S. Using existing site surveillance cameras to automatically measure the installation speed in prefabricated timber construction. Eng. Constr. Arch. Manag. 2021, 29, 573–600. [Google Scholar] [CrossRef]
- Yazdi, A.J.; Fini, A.A.F.; Forsythe, P. Mass-customisation of cross-laminated timber wall systems at early design stages. Autom. Constr. 2021, 132, 103938. [Google Scholar] [CrossRef]
- Joyce, G.; Pelosi, A. Robotic Connections for CLT Panels. In Proceedings of the 25th International Conference on Computer-Aided Architectural Design Research in Asia, CAADRIA 2020, RE: Anthropocene, Design in the Age of Humans, Bangkok, Thailand, 5–6 August, 2020; Volume 2, pp. 405–414. [Google Scholar]
- Früh, N.; Amorth, A.; Wieland, T. Holzbau-Formen für Stuttgart 21. Bautechnik 2018, 95, 505–511. [Google Scholar] [CrossRef]
- Gollwitzer, T.; Amorth, A.; Zausinger, D. Synagoge Regensburg—Eine Schale aus zweiachsig gekrümmtem Brettsperrholz. Bautechnik 2019, 96, 873–879. [Google Scholar] [CrossRef]
Journal Title | Number of Articles | % Total Publications |
---|---|---|
Engineering Structures | 36 | 8.93% |
Construction and Building Materials | 33 | 8.19% |
Journal of Structural Engineering (United States) | 19 | 4.71% |
Bautechnik | 15 | 3.72% |
Journal of Building Engineering | 15 | 3.72% |
Sustainability (Switzerland) | 14 | 3.47% |
BioResources | 12 | 2.98% |
Buildings | 12 | 2.98% |
Energy and Buildings | 9 | 2.23% |
Structures | 9 | 2.23% |
European Journal of Wood and Wood Products | 8 | 1.99% |
Wood and Fiber Science | 8 | 1.99% |
Journal of Structural and Construction Engineering | 7 | 1.74% |
Building and Environment | 6 | 1.49% |
Journal of Materials in Civil Engineering | 6 | 1.49% |
Journal of the Korean Wood Science and Technology | 6 | 1.49% |
AIJ Journal of Technology and Design | 5 | 1.24% |
Journal of Architectural Engineering | 5 | 1.24% |
Journal of Cleaner Production | 5 | 1.24% |
Structural Engineer | 5 | 1.24% |
Wood Material Science and Engineering | 5 | 1.24% |
Applied Acoustics | 4 | 0.99% |
Applied Sciences (Switzerland) | 4 | 0.99% |
Energies | 4 | 0.99% |
Conference Title | Number of Articles | % Total Publications |
World Conference on Timber Engineering | 168 | 48.00% |
International Congress on Noise Control Engineering | 23 | 6.57% |
IABSE—International Association for Bridge and Structural Engineering | 19 | 5.43% |
International Conference on Structures and Architecture | 12 | 3.43% |
Annual Conference of the Canadian Society for Civil Engineering | 10 | 2.86% |
Nordic Symposium on Building Physics | 8 | 2.29% |
International Congress on Sound and Vibration | 6 | 1.71% |
Structures Congress | 6 | 1.71% |
International Conference of the Association for Computer-Aided Architectural Design Research in Asia | 5 | 1.43% |
International Congress on Acoustics | 4 | 1.14% |
International Conference on Structural Engineering, Mechanics and Computation | 4 | 1.14% |
International Conference and Exhibition on Fire and Materials | 3 | 0.86% |
Australasian Conference on the Mechanics of Structures and Materials | 3 | 0.86% |
Keyword | Occurrences | Average Year Published | Links | Total Link Strength |
---|---|---|---|---|
Cross-laminated timber | 546 | 2018 | 111 | 3698 |
Wooden buildings | 172 | 2018 | 109 | 1428 |
Wooden construction | 107 | 2018 | 103 | 918 |
Building materials | 94 | 2017 | 103 | 786 |
Timber construction | 94 | 2017 | 98 | 660 |
Walls (structural partitions) | 90 | 2018 | 105 | 751 |
Floors | 85 | 2017 | 102 | 682 |
Structural design | 83 | 2018 | 102 | 686 |
Construction industry | 82 | 2018 | 102 | 646 |
Architectural design | 71 | 2018 | 97 | 619 |
Construction | 68 | 2017 | 103 | 588 |
Buildings | 66 | 2016 | 98 | 600 |
Stiffness | 65 | 2019 | 93 | 533 |
Reinforced concrete | 56 | 2018 | 86 | 441 |
Wood | 54 | 2017 | 101 | 475 |
Seismology | 50 | 2018 | 80 | 409 |
Seismic design | 49 | 2018 | 81 | 457 |
Finite element method | 48 | 2018 | 88 | 371 |
Shear walls | 48 | 2018 | 73 | 391 |
Timber buildings | 48 | 2018 | 85 | 408 |
Building codes | 47 | 2017 | 95 | 415 |
Laminated composites | 47 | 2018 | 101 | 425 |
Tall buildings | 46 | 2017 | 101 | 445 |
Timber structures | 46 | 2017 | 97 | 363 |
Wood products | 46 | 2017 | 86 | 415 |
Sound insulation | 45 | 2017 | 58 | 296 |
Sustainable development | 45 | 2018 | 76 | 363 |
Lamination | 40 | 2017 | 81 | 366 |
Office buildings | 39 | 2017 | 84 | 318 |
Design | 38 | 2016 | 92 | 341 |
Life cycle | 38 | 2019 | 65 | 319 |
Housing | 36 | 2018 | 68 | 301 |
Moisture | 35 | 2019 | 52 | 209 |
Concretes | 33 | 2017 | 87 | 289 |
Building construction | 32 | 2018 | 78 | 252 |
Screws | 32 | 2017 | 77 | 275 |
Residential building | 31 | 2016 | 78 | 260 |
Engineered wood products | 30 | 2017 | 76 | 291 |
Forests | 30 | 2014 | 77 | 300 |
Gluing | 30 | 2018 | 66 | 254 |
Bending tests | 28 | 2019 | 55 | 200 |
Building | 28 | 2019 | 77 | 215 |
Forestry | 28 | 2017 | 65 | 202 |
Product design | 28 | 2017 | 71 | 235 |
Fire resistance | 27 | 2017 | 71 | 218 |
Architectural acoustics | 26 | 2016 | 40 | 165 |
Fasteners | 26 | 2016 | 67 | 224 |
Laminated veneer lumber | 26 | 2018 | 75 | 224 |
Lumber | 26 | 2018 | 72 | 228 |
Self-tapping screws | 26 | 2018 | 67 | 212 |
Environmental impact | 25 | 2019 | 55 | 199 |
Structural systems | 25 | 2016 | 67 | 203 |
Connections | 24 | 2016 | 66 | 225 |
Fires | 24 | 2016 | 62 | 203 |
Mass timber | 24 | 2019 | 58 | 165 |
Seismic response | 24 | 2019 | 59 | 206 |
Testing | 24 | 2017 | 67 | 198 |
Acoustic noise | 23 | 2017 | 38 | 173 |
Acoustic variables control | 23 | 2016 | 39 | 167 |
Structural analysis | 23 | 2016 | 68 | 223 |
Bending strength | 22 | 2019 | 43 | 145 |
Earthquakes | 22 | 2017 | 64 | 205 |
Adhesives | 21 | 2019 | 49 | 130 |
Damping | 21 | 2018 | 59 | 162 |
Energy efficiency | 21 | 2019 | 46 | 122 |
Global warming | 21 | 2019 | 50 | 195 |
Loading | 21 | 2019 | 63 | 190 |
Seismic performance | 21 | 2018 | 52 | 156 |
Structural frames | 21 | 2017 | 59 | 181 |
Structural performance | 21 | 2017 | 67 | 182 |
Wall | 21 | 2019 | 63 | 210 |
Energy dissipation | 20 | 2018 | 51 | 157 |
Shear strength | 20 | 2019 | 58 | 154 |
Author | Institution | Country | Count | Percentage |
---|---|---|---|---|
T. Tannert | University of Northern British Columbia | Canada | 18 | 2.390% |
S. Pei | Colorado School of Mines | USA | 15 | 1.992% |
De. Van | Colorado State University | USA | 12 | 1.594% |
Ar. Barbosa | Oregon State University | USA | 10 | 1.328% |
A. Sinha | Oregon State University | USA | 9 | 1.195% |
I. Smith | University of New Brunswick | Canada | 8 | 1.062% |
M. Popovski | FPInnovations | Canada | 7 | 0.930% |
X. Li | Deakin University | Australia | 6 | 0.797% |
A. Polastri | National Research Council of Italy | Italy | 6 | 0.797% |
M. Fragiacomo | University of L’Aquila | Italy | 6 | 0.797% |
Network | Nodes | Links | Density | Modularity Q | Mean Silhouette Score |
---|---|---|---|---|---|
Co-authorship | 338 | 414 | 0.0073 | 0.7856 | 0.9443 |
No. | Article | Total Citations | Centrality | No. | Article | Total Citations | Centrality |
1 | Brandner et al. [43] | 56 | 0.20 | 14 | McClung et al. [56] | 6 | 0.03 |
2 | Ramage et al. [45] | 12 | 0.02 | 15 | Ehrhart et al. [57] | 6 | 0.00 |
3 | Espinoza et al. [46] | 11 | 0.03 | 16 | Gavric et al. [58] | 5 | 0.01 |
4 | Sikora et al. [47] | 11 | 0.02 | 17 | Wang and Ge [59] | 5 | 0.01 |
5 | Gavric et al. [48] | 9 | 0.15 | 18 | Aicher et al. [60] | 5 | 0.01 |
6 | Asdrubali et al. [49] | 9 | 0.04 | 19 | Bita and Tannert [61] | 5 | 0.03 |
7 | Liao et al. [50] | 8 | 0.02 | 20 | Hassanieh et al. [62] | 5 | 0.01 |
8 | Gagnon et al. [5] | 8 | 0.09 | 21 | Ceccotti et al. [63] | 5 | 0.01 |
9 | Izzi et al. [51] | 8 | 0.04 | 22 | Shahnewaz et al. [64] | 4 | 0.01 |
10 | Karacabeyli and Gagnon [52] | 7 | 0.14 | 23 | Amini et al. [65] | 4 | 0.05 |
11 | Schmidt et al. [53] | 7 | 0.01 | 24 | He et al. [66] | 4 | 0.00 |
12 | Pierobon et al. [54] | 7 | 0.01 | 25 | Morandi et al. [67] | 4 | 0.00 |
13 | Jones et al. [55] | 6 | 0.00 |
Cluster ID | Size | Abstract Cluster Label | Alternative Labels | Mean Publication Year | Representative Documents |
---|---|---|---|---|---|
#0 | 53 | Shear wall | Seismic characteristics | 2016 | Polastri [70], Brandner [43] |
#1 | 36 | Shear resistance | Rolling shear/structural behavior | 2016 | Ehrhart [57], Oktavianus [71] |
#2 | 32 | Milled portion | Mechanical properties | 2012 | Gagnon [52] |
#3 | 26 | Energy consumption | Time/cost optimization | 2016 | Gasparri [72] |
#4 | 24 | Longitudinal lamina | Lamina properties | 2017 | Pang [73,74] |
#5 | 22 | Laboratory condition | Material properties/energy performance | 2017 | Asdrubali [49], Wang [75] |
#6 | 19 | Six-story CLT | CLT in tall buildings | 2017 | Fitzgerald [75] |
#15 | 8 | CLT | Sustainability comparison/CLT and concrete | 2009 | Crespell [68], Damtoft [76] |
#18 | 7 | Freight cost | Transportation analysis | 2015 | Passarelli [77] |
#20 | 5 | State | North America state | 2011 | Popovski [69] |
Journal Title | Number of Articles | % Total Publications |
---|---|---|
Buildings | 12 | 3.82% |
Applied Sciences (Switzerland) | 10 | 3.18% |
Automation in Construction | 10 | 3.18% |
Smart and Sustainable Built Environment | 9 | 2.87% |
Structural Integrity | 8 | 2.55% |
Construction Innovation | 7 | 2.23% |
IEEE Access | 6 | 1.91% |
IEEE Transactions on Industrial Informatics | 6 | 1.91% |
Advances in Science, Technology and Innovation | 5 | 1.59% |
Energies | 5 | 1.59% |
Conference Title | Number of Articles | % Total Publications |
International Symposium on Automation and Robotics in Construction | 8 | 3.14% |
International Seminar on Industrial Engineering and Management | 6 | 2.35% |
Annual Conference of the International Group for Lean Construction | 6 | 2.35% |
IEEE International Conference on Automation/23rd Congress of the Chilean Association of Automatic Control | 5 | 1.96% |
Smart Structures and NDE for Industry 4.0, Smart Cities, and Energy Systems | 5 | 1.96% |
International Conference on Flexible Automation and Intelligent Manufacturing | 5 | 1.96% |
Annual Conference on Association of Researchers in Construction Management | 4 | 1.57% |
World Tunnel Congress | 4 | 1.57% |
International Conference on Innovation in Engineering | 3 | 1.18% |
International Workshop on Intelligent Computing in Engineering | 3 | 1.18% |
Keyword | Occurrences | Average Year Published | Links | Total Link Strength |
---|---|---|---|---|
Industry 4.0 | 322 | 2020 | 55 | 839 |
Construction industry | 157 | 2019 | 54 | 535 |
Internet of things | 52 | 2020 | 47 | 197 |
Architectural design | 48 | 2020 | 49 | 254 |
Embedded systems | 42 | 2020 | 51 | 200 |
Manufacture | 39 | 2019 | 41 | 124 |
Industrial revolutions | 38 | 2020 | 45 | 166 |
Automation | 37 | 2019 | 46 | 122 |
Life cycle | 33 | 2019 | 44 | 143 |
Decision making | 32 | 2020 | 41 | 109 |
Digital twin | 31 | 2021 | 44 | 131 |
Industrial research | 31 | 2020 | 45 | 128 |
Project management | 31 | 2020 | 39 | 115 |
Building information modeling | 29 | 2020 | 39 | 122 |
Artificial intelligence | 27 | 2020 | 40 | 102 |
Robotics | 27 | 2020 | 36 | 105 |
BIM | 26 | 2020 | 32 | 94 |
Augmented reality | 25 | 2020 | 34 | 72 |
Sustainable development | 24 | 2020 | 41 | 100 |
Machine learning | 23 | 2020 | 35 | 79 |
Design/methodology/approach | 22 | 2021 | 38 | 108 |
Smart manufacturing | 22 | 2020 | 27 | 64 |
Cluster ID | Size | Abstract Cluster Label | Alternative Labels | Mean Publication Year | Representative Documents |
---|---|---|---|---|---|
#0 | 40 | OSC type | Literature review | 2018 | Dallasega [86], Woodhead [89] |
#1 | 29 | Smart factory | Case study | 2016 | Al-Saeed [90], Li [91] |
#2 | 25 | Digital twin | BIM | 2018 | Shirowzhan [92], Busswell [94] |
#4 | 18 | Key technological factor | Blockchain/information sharing | 2018 | Li [95] |
#6 | 10 | Digital engineering | Digitalization/prefabrication | 2018 | Bortolini [94] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez Villanueva, E.; Cardenas Castañeda, J.A.; Ahmad, R. Scientometric Analysis for Cross-Laminated Timber in the Context of Construction 4.0. Automation 2022, 3, 439-470. https://doi.org/10.3390/automation3030023
Martinez Villanueva E, Cardenas Castañeda JA, Ahmad R. Scientometric Analysis for Cross-Laminated Timber in the Context of Construction 4.0. Automation. 2022; 3(3):439-470. https://doi.org/10.3390/automation3030023
Chicago/Turabian StyleMartinez Villanueva, Emanuel, Jennifer Alejandra Cardenas Castañeda, and Rafiq Ahmad. 2022. "Scientometric Analysis for Cross-Laminated Timber in the Context of Construction 4.0" Automation 3, no. 3: 439-470. https://doi.org/10.3390/automation3030023
APA StyleMartinez Villanueva, E., Cardenas Castañeda, J. A., & Ahmad, R. (2022). Scientometric Analysis for Cross-Laminated Timber in the Context of Construction 4.0. Automation, 3(3), 439-470. https://doi.org/10.3390/automation3030023