The Validation of the Tanner–Whitehouse 3 Method for Radiological Bone Assessments in a Pediatric Population from the Canary Islands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.2.1. Inclusion and Exclusion Criteria
2.2.2. Sample Size Calculation
2.3. Test Methods
2.4. Analysis
3. Results
3.1. Characteristics of the Sample
3.2. Main Results
3.2.1. Precision
- Intra-rater Agreement
- Inter-rater agreement
3.2.2. Accuracy
4. Discussion
4.1. Precision of TW3
4.1.1. Intra-Rater Agreement
4.1.2. Inter-Rater Agreement
4.2. Accuracy of TW3
4.3. Limitations
4.4. Recommendations for Clinical Practice
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tanner, J.M. Growth at Adolescence; Blackwell Scientific Publications: Oxford, UK, 1962; pp. 1–350. [Google Scholar]
- Greulich, W.W.; Pyle, S.I. Radiographic Atlas of Skeletal Development of the Hand and Wrist, 2nd ed.; Stanford University Press: California, CA, USA, 1959; pp. 1–272. [Google Scholar]
- Ebrí Torné, B. Maduración Ósea: Metodología Numérica Sobre Tarso y Carpo; Heraldo de Aragón: Zaragoza, Spain, 1988; pp. 1–320. [Google Scholar]
- Martín Pérez, S.E.; Martín Pérez, I.M.; Vega González, J.M.; Molina Suárez, R.; León Hernández, C.; Rodríguez Hernández, F.; Herrera Pérez, M. Precision and Accuracy of Radiological Bone Age Assessment in Children among Different Ethnic Groups: A Systematic Review. Diagnostics 2023, 13, 3124. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.M.; Whitehouse, R.; Healy, M. A New System for Estimating Skeletal Maturity from the Hand and Wrist, with Standards Derived from a Study of 2600 Healthy British Children. Part II: The Scoring System; Centre International de L’Enfance: Paris, France, 1962; pp. 1–100. [Google Scholar]
- Tanner, J.M.; Whitehouse, R.H.; Marshall, W.A.; Healey, M.J.R.; Goldstein, H. Assessment of Skeletal Maturity and Prediction of Adult Height (TW2 Method); Academic Press: New York, NY, USA, 1975; pp. 1–142. [Google Scholar]
- Tanner, J.M.; Realy, J.; Goldstein, H. Assessment of Skeletal Maturity and Prediction of Adult Height (TW3 Method); Harcourt Publishers: New York, NY, USA, 2001; pp. 1–200. [Google Scholar]
- Fregel, R.; Ordóñez, A.C.; Serrano, J.G. The Demography of the Canary Islands from a Genetic Perspective. Hum. Mol. Genet. 2021, 30, R64–R71. [Google Scholar] [CrossRef] [PubMed]
- Tejera Gaspar, A. Tenerife y los Guanches; Centro de la Cultura Popular Canaria: Tenerife, Spain, 2002; p. 17. [Google Scholar]
- Afonso, L. Esquema de Geografía Física de las Islas Canarias; Ediciones Idea: Tenerife, Spain, 2004; p. 210. [Google Scholar]
- Martín Ruiz, J.F. La Población de Canarias: Análisis Sociodemográfico y Territorial (El Debate Actual); Anroart Ediciones: Las Palmas, Spain, 2005; p. 116. [Google Scholar]
- Burriel de Orueta, E.L. Canarias: Población y Agricultura en una Sociedad Dependientes; Oikos-Tau: Barcelona, Spain, 1982; pp. 46–47. [Google Scholar]
- Hernandez Hernández, P. Natura y Cultura de las Islas Canarias, 8th ed.; Tafor Publicaciones: La Laguna, Spain, 1997; pp. 56–63. [Google Scholar]
- Toledo Trujillo, F.M. Maduración Ósea en una Muestra de Población Urbana de las Islas Canarias. Ph.D. Thesis, Universidad de La Laguna, San Cristóbal de La Laguna, Spain, 1978. [Google Scholar]
- Toledo, F.; Cruz, M.; Pastor, S.; Paz, G.; Fernández, J.; Machado, M. Estudios radio-antropométrico de una muestra preadulta de la población canaria. In Actualizaciones en Medicina del Hospital Universitario de Canarias; Cabildo de Tenerife: Tenerife, Spain, 1992; pp. 25–35. [Google Scholar]
- Martín Pérez, I.M.; Martín Pérez, S.E.; Vega González, J.M.; Molina Suárez, R.; García Hernández, A.M.; Rodríguez Hernández, F.; Herrera Pérez, M. The Validation of the Greulich and Pyle Atlas for Radiological Bone Age Assessments in a Pediatric Population from the Canary Islands. Healthcare 2024, 12, 1847. [Google Scholar] [CrossRef] [PubMed]
- Martín Pérez, S.E.; Martín Pérez, I.M.; Vega González, J.M.; Molina Suárez, R.; León Hernández, C.; Rodríguez Hernández, F.; Herrera Pérez, M. Análisis comparativo de dos métodos radiográficos para determinar la edad ósea en la población pediátrica canaria. In Proceedings of the III Congreso Internacional de Jóvenes por la Investigación, San Cristóbal de La Laguna, Spain, 14–16 November 2024; Universidad de La Laguna: Tenerife, Spain, 2024; pp. 15–20. [Google Scholar]
- Cohen, J.F.; Korevaar, D.A.; Altman, D.G.; Bruns, D.E.; Gatsonis, C.A.; Hooft, L.; Irwig, L.; Levine, D.; Reitsma, J.B.; de Vet, H.C.; et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: Explanation and elaboration. BMJ Open 2016, 6, e012799. [Google Scholar] [CrossRef] [PubMed]
- Fraga Bermúdez, J.M.; Fernández Lorenzo, J.R. La Pediatría, el Niño y el Pediatra: Una Aproximación General. In Tratado de Pediatría, 1st ed.; Moro Serrano, M., Málaga Guerrero, S., Madero López, L., Eds.; Editorial Médica Panamericana: Madrid, Spain, 2014; Volume 1, pp. 1–18. [Google Scholar]
- Pinchi, V.; De Luca, F.; Ricciardi, F.; Focardi, M.; Piredda, V.; Mazzeo, E.; Norelli, G.-A. Skeletal age estimation for forensic purposes: A comparison of GP, TW2, and TW3 methods on an Italian sample. Forensic Sci. Int. 2014, 238, 83–90. [Google Scholar] [CrossRef] [PubMed]
- López, P.; Morón, A.; Urdaneta, O. Maduración ósea de niños escolares (7–14 años) de las etnias Wayúu y Criolla del Municipio Maracaibo, Estado Zulia. Estudio Comparativo. Cienc. Odontol. 2020, 5, 99–111. Available online: https://produccioncientificaluz.org/index.php/cienciao/article/view/33940 (accessed on 12 November 2024).
- Kowo-Nyakoko, F.; Gregson, C.L.; Madanhire, T.; Stranix-Chibanda, L.; Rukuni, R.; Offiah, A.C.; Micklesfield, L.K.; Cooper, C.; Ferrand, R.A.; Rehman, A.M.; et al. Evaluation of two methods of bone age assessment in peripubertal children in Zimbabwe. Bone 2023, 170, 116725. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.R.; Lee, Y.S.; Yu, J. Assessment of bone age in prepubertal healthy Korean children: Comparison among the Korean Standard Bone Age Chart, Greulich-Pyle Method, and Tanner-Whitehouse Method. Korean J. Radiol. 2015, 16, 201–205. [Google Scholar] [CrossRef]
- Shin, N.Y.; Lee, B.D.; Kang, J.H.; Kim, H.R.; Oh, D.H.; Lee, B.I.; Kim, S.H.; Lee, M.S.; Heo, M.S. Evaluation of the Clinical Efficacy of a TW3-Based Fully Automated Bone Age Assessment System Using Deep Neural Networks. Imaging Sci. Dent. 2020, 50, 237–243. [Google Scholar] [CrossRef]
- Benjavongkulchai, S.; Pittayapat, P. Age estimation methods using hand and wrist radiographs in a group of contemporary Thais. Forensic Sci. Int. 2018, 287, 218.e1–218.e8. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Zhang, W.; Ge, Y.; Wang, L.; Huang, P.; Liu, Y.; Shi, J.; Zhou, F.; Ma, K.; Blake, G.M.; et al. Inter-Rater Variability and Repeatability in the Assessment of the Tanner-Whitehouse Classification of Hand Radiographs for the Estimation of Bone Age. Skelet. Radiol. 2024, 53, 2635–2642. [Google Scholar] [CrossRef]
- Alshamrani, K.; Offiah, A.C. Applicability of Two Commonly Used Bone Age Assessment Methods to Twenty-First Century UK Children. Eur. Radiol. 2019, 30, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Yuh, Y.S.; Chou, T.Y.; Tung, T.H. Bone Age Assessment: Large-Scale Comparison of Greulich-Pyle Method and Tanner-Whitehouse 3 Method for Taiwanese Children. J. Chin. Med. Assoc. 2023, 86, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Toledo, F.; Rodríguez, I. Atlas Radiológico de Referencia de la Edad Ósea en la Población Canaria; Fundación Canaria Salud y Sanidad, Cabildo de Tenerife: Tenerife, Spain, 2009; p. 22. [Google Scholar]
- Ferrante, L.; Cameriere, R. Statistical methods to assess the reliability of measurements in the procedures for forensic age estimation. Int. J. Legal Med. 2009, 123, 277–283. [Google Scholar] [CrossRef]
- Ahmed, M.L.; Warner, J.T. TW2 and TW3 Bone Ages: Time to Change? Arch. Dis. Child. 2007, 92, 371–372. [Google Scholar] [CrossRef]
- Ebrí-Torné, B. Comparative Study Between Bone Ages: Carpal, Metacarpophalangic, Carpometacarpophalangic Ebrí, Greulich and Pyle, and Tanner Whitehouse 2. Med. Res. Arch. 2021, 9, 1–8. [Google Scholar] [CrossRef]
- Noirrit-Esclassan, E.; Valera, M.-C.; Tremollieres, F.; Arnal, J.-F.; Lenfant, F.; Fontaine, C.; Vinel, A. Critical Role of Estrogens on Bone Homeostasis in Both Male and Female: From Physiology to Medical Implications. Int. J. Mol. Sci. 2021, 22, 1568. [Google Scholar] [CrossRef]
- Roberts, D.F. Race, Genetics and Growth. J. Biosoc. Sci. 1969, 1, 43–67. [Google Scholar] [CrossRef]
- Díaz Gómez, N.M. Crecimiento y Desarrollo Físico del Niño; Santa Cruz de Tenerife, Spain, 1992; p. 18. [Google Scholar]
- Lejarraga, H. Growth in Infancy and Childhood: A Pediatric Approach. In Human Growth and Development, 2nd ed.; Academic Press (Elsevier Science): London, UK, 2002; pp. 21–44. [Google Scholar]
- Thomis, M.A.; Towne, B. Genetic Determinants of Prepubertal and Pubertal Growth and Development. Food Nutr. Bull. 2006, 27 (Suppl. 4), S257–S278. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, M.L.; Sawyer, A.J.; Bachrach, L.K. Rationale for Bone Health Assessment in Childhood and Adolescence. In Bone Health Assessment in Pediatrics; Fung, E., Bachrach, L., Sawyer, A., Eds.; Springer: Cham, Switzerland, 2016; pp. 1–21. [Google Scholar]
- López, J.M. Bone Development and Growth. Int. J. Mol. Sci. 2024, 25, 6767. [Google Scholar] [CrossRef]
- Perrone, S.; Caporilli, C.; Grassi, F.; Ferrocino, M.; Biagi, E.; Dell’Orto, V.; Beretta, V.; Petrolini, C.; Gambini, L.; Street, M.E.; et al. Prenatal and Neonatal Bone Health: Updated Review on Early Identification of Newborns at High Risk for Osteopenia. Nutrients 2023, 15, 3515. [Google Scholar] [CrossRef] [PubMed]
- Boyanov, M.A. Bone Development in Children and Adolescents. In Puberty; Kumanov, P., Agarwal, A., Eds.; Springer: Cham, Switzerland, 2016; pp. 105–123. [Google Scholar] [CrossRef]
- Womack, S.R.; Beam, C.R.; Giangrande, E.J.; Scharf, R.J.; Tong, X.; Ponnapalli, M.; Davis, D.W.; Turkheimer, E. Nonlinear Catch-Up Growth in Height, Weight, and Head Circumference from Birth to Adolescence: A Longitudinal Twin Study. Behav. Genet. 2023, 53, 385–403. [Google Scholar] [CrossRef]
- Iuliano-Burns, S.; Hopper, J.; Seeman, E. The Age of Puberty Determines Sexual Dimorphism in Bone Structure: A Male/Female Co-Twin Control Study. J. Clin. Endocrinol. Metab. 2009, 94, 1638–1643. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, L.I.; Bruzzaniti, A.; Pianeta, R. Sexual Dimorphism in the Musculoskeletal System: Sex Hormones and Beyond. J. Endocr. Soc. 2024, 8, bvae153. [Google Scholar] [CrossRef] [PubMed]
- Sallam, A.A.; Briffa, N.; Mahmoud, S.S.; Imam, M.A. Normal Wrist Development in Children and Adolescents: A Geometrical Observational Analysis Based on Plain Radiographs. J. Pediatr. Orthop. 2020, 40, e860–e872. [Google Scholar] [CrossRef]
- Bakos, B.; Takacs, I.; Stern, P.H.; Lakatos, P. Skeletal Effects of Thyroid Hormones. Clin. Rev. Bone Miner. Metab. 2018, 16, 57–66. [Google Scholar] [CrossRef]
- Szulc, P. Biochemical Bone Turnover Markers in Hormonal Disorders in Adults: A Narrative Review. J. Endocrinol. Investig. 2020, 43, 1409–1427. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Pang, Y.; Xu, J.; Chen, X.; Zhang, C.; Wu, B.; Gao, J. Endocrine Regulation on Bone by Thyroid. Front. Endocrinol. 2022, 13, 873820. [Google Scholar] [CrossRef]
- Leung, A.M.; Brent, G.A. The Influence of Thyroid Hormone on Growth Hormone Secretion and Action. In Growth Hormone Deficiency; Cohen, L., Ed.; Springer: Cham, Switzerland, 2016; pp. 221–237. [Google Scholar] [CrossRef]
- Petrie, K.A.; Burbank, K.; Sizer, P.S.; James, C.R.; Zumwalt, M. Considerations of Sex Differences in Musculoskeletal Anatomy Between Males and Females. In The Active Female; Robert-McComb, J.J., Zumwalt, M., Fernandez-del-Valle, M., Eds.; Springer: Cham, Switzerland, 2023; pp. 45–61. [Google Scholar] [CrossRef]
- Papalia, D.E.; Martorell, G. Desarrollo Humano, 13th ed.; McGraw Hill: Ciudad de México, Mexico, 2017. [Google Scholar]
- Satoh, M.; Hasegawa, Y. Factors Affecting Prepubertal and Pubertal Bone Age Progression. Front. Endocrinol. 2022, 13, 967711. [Google Scholar] [CrossRef]
- Nieves, J.W. Sex-Differences in Skeletal Growth and Aging. Curr. Osteoporos. Rep. 2017, 15, 70–75. [Google Scholar] [CrossRef]
- Gavela-Pérez, T.; Garcés, C.; Navarro-Sánchez, P.; López Villanueva, L.; Soriano-Guillén, L. Earlier Menarcheal Age in Spanish Girls Is Related with an Increase in Body Mass Index Between Pre-Pubertal School Age and Adolescence. Pediatr. Obes. 2015, 10, 410–415. [Google Scholar] [CrossRef] [PubMed]
- De Bont, J.; Díaz, Y.; Casas, M.; García-Gil, M.; Vrijheid, M.; Duarte-Salles, T. Time Trends and Sociodemographic Factors Associated with Overweight and Obesity in Children and Adolescents in Spain. JAMA Netw. Open 2020, 3, e201171. [Google Scholar] [CrossRef] [PubMed]
- Itriyeva, K. The Effects of Obesity on the Menstrual Cycle. Curr. Probl. Pediatr. Adolesc. Health Care 2022, 52, 101241. [Google Scholar] [CrossRef]
- Calcaterra, V.; Verduci, E.; Magenes, V.C.; Pascuzzi, M.C.; Rossi, V.; Sangiorgio, A.; Bosetti, A.; Zuccotti, G.; Mameli, C. The Role of Pediatric Nutrition as a Modifiable Risk Factor for Precocious Puberty. Life 2021, 11, 1353. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Yan, W.; Bigambo, F.M.; Zhou, Q.; Ma, C.; Gu, W.; Wang, X. Association Between Dietary Behavior and Puberty in Girls. BMC Pediatr. 2024, 24, 349. [Google Scholar] [CrossRef]
- Frenkel, B.; Hong, A.; Baniwal, S.K.; Coetzee, G.A.; Ohlsson, C.; Khalid, O.; Gabet, Y. Regulation of Adult Bone Turnover by Sex Steroids. J. Cell. Physiol. 2010, 224, 305–310. [Google Scholar] [CrossRef]
- Khosla, S.; Monroe, D.G. Regulation of Bone Metabolism by Sex Steroids. Cold Spring Harb. Perspect. Med. 2018, 8, a031211. [Google Scholar] [CrossRef]
Stage | Gender | N | Mean | SD | Min | Max | p-Value | |
---|---|---|---|---|---|---|---|---|
Age (mos.) | Preschool | Female | 24 | 39.33 | 15.18 | 20.00 | 67.00 | 0.235 |
Male | 45 | 46.49 | 13.33 | 18.00 | 69.00 | 0.105 | ||
Scholar | Female | 40 | 92.00 | 26.08 | 85.00 | 118.00 | 0.310 | |
Male | 62 | 100.16 | 20.33 | 75.00 | 109.00 | 0.089 | ||
Teenager | Female | 16 | 144.17 | 23.81 | 102.00 | 168.00 | 0.150 | |
Male | 27 | 151.53 | 20.17 | 107.00 | 192.00 | 0.080 | ||
Weight (kg) | Preschool | Female | 24 | 14.52 | 2.05 | 9.80 | 18.60 | 0.215 |
Male | 45 | 13.09 | 2.17 | 7.40 | 18.00 | 0.175 | ||
Scholar | Female | 40 | 29.58 | 7.14 | 17.60 | 40.00 | 0.200 | |
Male | 62 | 23.67 | 4.85 | 14.20 | 44.00 | 0.115 | ||
Teenager | Female | 16 | 33.84 | 4.62 | 22.00 | 39.50 | 0.250 | |
Male | 27 | 34.21 | 3.19 | 23.80 | 45.70 | 0.140 | ||
Height (m) | Preschool | Female | 24 | 0.91 | 0.07 | 0.77 | 1.05 | 0.289 |
Male | 45 | 0.94 | 0.05 | 0.80 | 1.10 | 0.175 | ||
Scholar | Female | 40 | 1.14 | 0.07 | 0.99 | 1.30 | 0.200 | |
Male | 62 | 1.16 | 0.05 | 0.94 | 1.40 | 0.115 | ||
Teenager | Female | 16 | 1.33 | 0.04 | 1.21 | 1.37 | 0.250 | |
Male | 27 | 1.33 | 0.03 | 1.16 | 1.45 | 0.140 | ||
BMI (kg/m2) | Preschool | Female | 24 | 17.53 | 2.47 | 8.32 | 19.49 | 0.180 |
Male | 45 | 14.81 | 2.45 | 18.81 | 18.87 | 0.120 | ||
Scholar | Female | 40 | 22.76 | 5.49 | 13.45 | 20.29 | 0.175 | |
Male | 62 | 17.59 | 3.60 | 12.57 | 20.92 | 0.150 | ||
Teenager | Female | 16 | 19.13 | 2.66 | 15.02 | 21.73 | 0.240 | |
Male | 27 | 19.33 | 1.80 | 14.61 | 20.99 | 0.130 |
Group | Time of Measurement | Gender | Mean | ICC | 95% CI Lower | 95% CI Upper |
---|---|---|---|---|---|---|
Rater 1 | T1 | Female | 76.82 | |||
Male | 77.94 | |||||
T2 | Female | 74.89 | 0.996 | 0.991 | 0.998 | |
Male | 75.67 | 0.994 | 0.989 | 0.997 | ||
Rater 2 | T1 | Female | 73.50 | |||
Male | 81.32 | |||||
T2 | Female | 71.12 | 0.988 | 0.976 | 0.994 | |
Male | 79.58 | 0.993 | 0.980 | 0.997 | ||
Rater 3 | T1 | Female | 77.45 | |||
Male | 79.02 | |||||
T2 | Female | 79.34 | 0.845 | 0.968 | 0.964 | |
Male | 80.21 | 0.935 | 0.986 | 0.989 |
Groups | Gender | Mean | ICC | 95% CI Lower | 95% CI Upper |
---|---|---|---|---|---|
Rater 1–Rater 2 | Female | 76.82 | |||
73.50 | 0.976 | 0.950 | 0.987 | ||
Male | 77.94 | ||||
81.32 | 0.968 | 0.940 | 0.982 | ||
Rater 1–Rater 3 | Female | 76.82 | |||
77.45 | 0.812 | 0.702 | 0.896 | ||
Male | 77.94 | ||||
79.02 | 0.857 | 0.770 | 0.921 | ||
Rater 2–Rater 3 | Female | 73.50 | |||
77.45 | 0.880 | 0.820 | 0.922 | ||
Male | 81.732 | ||||
79.02 | 0.912 | 0.860 | 0.946 |
Stage | Mean | SD | MD | Lower CI 95% | Superior CI 95% | p | |
---|---|---|---|---|---|---|---|
Preschool (n = 69) | CA | 43.485 | 14.476 | ||||
BA | 39.772 | 15.409 | 3.712 | 1.290 | 6.130 | 0.199 | |
Female | CA | 39.331 | 15.182 | ||||
BA | 35.131 | 16.896 | 4.200 | 0.780 | 7.620 | 0.164 | |
Male | CA | 46.496 | 13.333 | ||||
BA | 46.390 | 24.881 | 0.106 | −4.830 | 5.05 | 0.935 | |
Scholar (n = 102) | CA | 95.684 | 23.906 | ||||
BA | 92.161 | 35.572 | 3.522 | 1.050 | 5.990 | 0.888 | |
Female | CA | 92.001 | 26.086 | ||||
BA | 87.891 | 37.203 | 4.110 | −8.250 | 16.47 | 0.945 | |
Male | CA | 100.168 | 20.338 | ||||
BA | 96.190 | 33.876 | 3.978 | −12.55 | 4.59 | 0.926 | |
Teenager (n = 43) | CA | 148.883 | 23.665 | ||||
BA | 149.242 | 29.943 | −0.360 | −0.770 | −0.954 | 0.299 | |
Female | CA | 144.170 | 23.810 | ||||
BA | 144.549 | 24.231 | −0.380 | −4.840 | 5.500 | 0.256 | |
Male | CA | 151.53 | 20.176 | ||||
BA | 151.86 | 18.179 | −0.330 | −1.03 | 1.78 | 0.222 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín Pérez, S.E.; Martín Pérez, I.M.; Molina Suárez, R.; Vega González, J.M.; García Hernández, A.M. The Validation of the Tanner–Whitehouse 3 Method for Radiological Bone Assessments in a Pediatric Population from the Canary Islands. Osteology 2025, 5, 6. https://doi.org/10.3390/osteology5010006
Martín Pérez SE, Martín Pérez IM, Molina Suárez R, Vega González JM, García Hernández AM. The Validation of the Tanner–Whitehouse 3 Method for Radiological Bone Assessments in a Pediatric Population from the Canary Islands. Osteology. 2025; 5(1):6. https://doi.org/10.3390/osteology5010006
Chicago/Turabian StyleMartín Pérez, Sebastián Eustaquio, Isidro Miguel Martín Pérez, Ruth Molina Suárez, Jesús María Vega González, and Alfonso Miguel García Hernández. 2025. "The Validation of the Tanner–Whitehouse 3 Method for Radiological Bone Assessments in a Pediatric Population from the Canary Islands" Osteology 5, no. 1: 6. https://doi.org/10.3390/osteology5010006
APA StyleMartín Pérez, S. E., Martín Pérez, I. M., Molina Suárez, R., Vega González, J. M., & García Hernández, A. M. (2025). The Validation of the Tanner–Whitehouse 3 Method for Radiological Bone Assessments in a Pediatric Population from the Canary Islands. Osteology, 5(1), 6. https://doi.org/10.3390/osteology5010006