Design of Sustainable Copper-Based Hybrid Catalyst Using Aqueous Extract of Curcuma longa L. for One-Pot Synthesis of 1,2,3-Triazole
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Plant Extracts
2.3. Synthesis of CuO/Cu2O NPs Using Curcuma longa Extract
2.4. Characterization of CuO/Cu2O
2.5. General Procedure for Synthesis of 1,2,3-Triazoles
3. Results
3.1. CuO/Cu2O NP Synthesis
3.2. UV-Vis Spectroscopy Analysis
3.3. FTIR Analysis
3.4. Scanning Electron Microscopy (SEM) Analysis
3.5. X-Ray Diffraction (XRD) Analysis
3.6. Energy-Dispersive X-Ray (EDX) Analysis
3.7. Transmission Electron Microscopy (TEM) Analysis
3.8. Catalytic Activity: CuO/Cu2O-Catalyzed One-Pot Synthesis of 1,2,3-Triazoles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mutlu, H.; Pektas, B.; Becer, C.R.; Kocaarslan, A. Green and Sustainable Chemistry Approaches on Azide-Based Click Reactions in Polymer Science. Macromol. Rapid Commun. 2025, 46, e00171. [Google Scholar] [CrossRef] [PubMed]
- Samai, S.; Atta, S.; Singh, M.S. Metal-catalyzed Azide-alkyne Cycloaddition-click Chemistry: An Update (2016–2025). Tetrahedron 2025, 191, 135061. [Google Scholar] [CrossRef]
- Haldón, E.; Nicasio, C.M.; Pérez, P.J. Copper-catalysed azide-alkyne cycloadditions (CuAAC): An update. Org. Biomol. Chem. 2015, 13, 9528–9550. [Google Scholar] [CrossRef] [PubMed]
- Campbell-Verduyn, L.S.; Mirfeizi, L.; Dierckx, R.A.; Elsinga, P.H.; Feringa, B.L. Phosphoramidite accelerated copper (I)-catalyzed [3 + 2] cycloadditions of azides and alkynes. Chem. Commun. 2009, 2139–2141. [Google Scholar] [CrossRef]
- Meng, X.; Xu, X.; Gao, T.; Chen, B. Zn/C-Catalyzed cycloaddition of azides and aryl alkynes. Eur. J. Org. Chem. 2010, 28, 5409–5414. [Google Scholar] [CrossRef]
- Suárez, J.R.; Trastoy, B.; Pérez-Ojeda, M.E.; Marín-Barrios, R.; Chiara, J.L. Nonafluorobutanesulfonyl Azide: A Shelf-Stable Diazo Transfer Reagent for the Synthesis of Azides from Primary Amines. Adv. Synth. Catal. 2010, 352, 2515–2520. [Google Scholar] [CrossRef]
- Garg, A.; Khupse, N.; Bordoloi, A.; Sarma, D. Ag–NHC anchored on silica: An efficient ultra-low loading catalyst for regioselective 1, 2, 3-triazole synthesis. New J. Chem. 2019, 43, 19331–19337. [Google Scholar] [CrossRef]
- Raj, J.P.; Gangaprasad, D.; Vajjiravel, M.; Karthikeyan, K.; Elangovan, J. CuO-Nanoparticles Catalyzed Synthesis of 1, 4-Disubstituted-1, 2, 3-Triazoles from Bromoalkenes. J. Chem. Sci. 2018, 130, 44. [Google Scholar] [CrossRef]
- Deraedt, C.; Pinaud, N.; Astruc, D. Recyclable catalytic dendrimer nanoreactor for part-per-million CuI catalysis of “click” chemistry in water. J. Am. Chem. Soc. 2014, 136, 12092–12098. [Google Scholar] [CrossRef]
- Willig, J.C.M.; Granetto, G.; Reginato, D.; Dutra, F.R.; Poruczinski, E.F.; Oliveira, I.M.; Stefani, H.A.; Campos, S.D.; Campos, E.A.; Manarin, F.; et al. A comparative study between Cu(INA)2-MOF and [Cu(INA)2(H2O)4] complex for a click reaction and the Biginelli reaction under solvent-free conditions. RSC Adv. 2020, 10, 3407–3415. [Google Scholar] [CrossRef]
- Neto, J.S.S.; Zeni, G. A decade of advances in the reaction of nitrogen sources and alkynes for the synthesis of triazoles. Coord. Chem. Rev. 2020, 409, 213217. [Google Scholar] [CrossRef]
- Gogoi, P.; Deori, K.; Sarma, D. Regioselective Synthesis of 1,4-disubstituted 1,2,3-triazoles: Advances in Click Chemistry and Multicomponent Reaction Engineering. Synlett 2025, 36, 2111–2127. [Google Scholar] [CrossRef]
- Vala, D.P.; Miller Dunne, A.; Atmasidha, A. Click-Chemistry Mediated Synthesis of OTBN-1,2,3-Triazole Derivatives Exhibiting STK33 Inhibition with Diverse Anti-Cancer Activities. Bioorg. Chem. 2024, 149, 107485. [Google Scholar] [CrossRef] [PubMed]
- Nural, Y.; Ozdemir, S.; Yalcin, M.S. New Bis-and Tetrakis-1,2,3-Triazole Derivatives: Synthesis, DNA Cleavage, Molecular Docking, Antimicrobial, Antioxidant Activity and Acid Dissociation Constants. Bioorg. Med. Chem. Lett. 2022, 55, 128453. [Google Scholar] [CrossRef]
- Ankali, K.N.; Rangaswamy, J.; Shalavadi, M.; Naik, N.; Krishnamurthy, G.N. Synthesis and Molecular Docking of Novel 1,3-Thiazole Derived 1,2,3-Triazoles and In Vivo Biological Evaluation for Their Anti- Anxiety and Anti-Inflammatory Activity. J. Mol. Struct. 2021, 1236, 130357. [Google Scholar] [CrossRef]
- Costa Souza, R.M.; Montenegro Pimentel, L.M.; Ferreira, L.K.M. Biological Activity of 1,2,3-Triazole-2-Amino-1,4-Naphthoquinone Derivatives and Their Evaluation as therapeutic Strategy for Malaria Control. Eur. J. Med. Chem. 2023, 255, 15400. [Google Scholar] [CrossRef] [PubMed]
- Ghanbarlou, M.; Karimian, S.; Doraghi, F. 4-Phenylthiazol-1,2,3-Triazole Derivatives as New Potential α-Glucosidase and α-Amylase Inhibitors. J. Mol. Struct. 2025, 1334, 141919. [Google Scholar] [CrossRef]
- Cao, X.; Wang, W.; Wang, S.; Bao, L. Asymmetric synthesis of novel triazole derivatives and their in vitro antiviral activity and mechanism of action. Eur. J. Med. Chem. 2017, 139, 718–725. [Google Scholar] [CrossRef]
- Gawande, M.B.; Goswami, A.; Felpin, F.X.; Asefa, T.; Huang, X.; Silva, R.; Varma, R.S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev. 2016, 116, 3722–3811. [Google Scholar] [CrossRef]
- Khezri, R.; Vahdat, S.M. Reactions and catalytic applications of metal and metal oxide nanoparticles in organic and inorganic chemistry. Inorg. Chim. Acta 2025, 588, 122842. [Google Scholar] [CrossRef]
- Shinde, S.; Parjane, S.; Turakane, H.; Basnet, P.; Oza, R.; Abhale, Y.; Pansambal, S.; Khoo, K.S.; Rahdar, A.; Ghotekar, S. Bio-inspired synthesis and characterizations of groundnut shells-mediated Cu/CuO/Cu2O nanoparticles for anticancer, antioxidant, and DNA damage activities. J. Sol-Gel Sci. Technol. 2023, 106, 737–747. [Google Scholar] [CrossRef]
- Cuong, H.N.; Pansambal, S.; Ghotekar, S.; Oza, R.; Hai, N.T.T.; Viet, N.M.; Nguyen, V.-H. New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. Environ. Res. 2022, 203, 111858. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Chandrasekaran, R. Biogenic nanoparticles: A comprehensive perspective in synthesis, characterization, application and its challenges. J. Genet. Eng. Biotechnol. 2020, 18, 67. [Google Scholar] [CrossRef]
- Amor, M.L.B.; Zeghdi, S.; Laouini, S.E.; Bouafla, A.; Meneceur, S. pH reaction effect on biosynthesis of CuO/Cu2O nanoparticles by Moringa oleifera leaves extracts for antioxidant activities. Inorg. Nano-Met. Chem. 2023, 53, 437–447. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Ghorbannezhad, F.; Issaabadi, Z.; Sajadi, S.M. Recent Developments in the Biosynthesis of Cu-Based Recyclable Nanocatalysts Using Plant Extracts and their Application in the Chemical Reactions. Chem. Res. 2019, 19, 601–643. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Wang, L.; Mu, Y. Biosynthesis of Ag/Cu nanocomposite mediated by Curcuma longa: Evaluation of its antibacterial properties against oral pathogens. Open Chem. 2024, 22, 20240059. [Google Scholar] [CrossRef]
- Sattar, Z.A.; Mohammed, A.M.; Khalaf, Y.H. Green synthesis of Curcuma longa-mediated Palladium nanoparticles as antioxidant, antimicrobial, and anticancer agents. Results Chem. 2024, 9, 101675. [Google Scholar] [CrossRef]
- Gangal, A.; Sethiya, N.K.; Duseja, M.; Shukla, R.K.; Bisht, D.; Rana, V.S. Green nanotechnology: Nanoparticle synthesis using Curcuma amada, Curcuma caesia, Curcuma longa, and Curcuma zedoaria. Green Chem. Lett. Rev. 2025, 18, 2449122. [Google Scholar] [CrossRef]
- Orhan, R. Green synthesis of CuO nanoparticles using Curcuma longa L. extract: Composite dielectric and mechanical properties. Mater. Test. 2025, 67, 1230–1241. [Google Scholar] [CrossRef]
- Elattar, K.M.; Ghoniem, A.A.; Al-Otibi, F.O.; Fakhouri, A.S.; Helmy, Y.A.; Saber, W.I.; Elsayed, A. Eco-friendly synthesis of Ag/CeO2 and CuO/CeO2 nanocomposites using Curcuma longa extract and assessment of their antioxidant, antifungal, and cytotoxic activities. RSC Adv. 2025, 15, 12100–12116. [Google Scholar] [CrossRef]
- Alinezhad, H.; Pakzad, K. C-S cross-coupling reaction using novel and green synthesized CuO nanoparticles assisted by Euphorbia maculata extract. Appl. Organomet. Chem. 2019, 33, e5144. [Google Scholar] [CrossRef]
- Halder, M.; Islam, M.M.; Ansari, Z.; Ahammed, S.; Sen, K.; Islam, S.M. Biogenic nano-CuO-catalyzed facile C-N cross-coupling reactions: Scope and mechanism. ACS Sustain. Chem. Eng. 2017, 5, 648–657. [Google Scholar] [CrossRef]
- Ghashang, M.; Kargar, M.; Shafiee, M.; Mansoor, S.; Fazlinia, A.; Esfandiari, H. CuO nano-structures prepared in rosmarinus officinalis leaves extract medium: Efficient catalysts for the aqueous media preparation of dihydropyrano [3, 2-c] chromene derivatives. Recent Pat. Nanotechnol. 2015, 9, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Veisi, H.; Hemmati, S.; Javaheri, H. N-Arylation of indole and aniline by a green synthesized CuO nanoparticles mediated by Thymbra spicata leaves extract as a recyclable and heterogeneous nanocatalyst. Tetrahedron Lett. 2017, 58, 3155–3159. [Google Scholar] [CrossRef]
- Shende, S.; Ingle, A.P.; Gade, A.; Rai, M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J. Microbiol. Biotechnol. 2015, 31, 865–873. [Google Scholar] [CrossRef]
- Veisi, H.; Karmakar, B.; Tamoradi, T.; Hemmati, S.; Hekmati, M.; Hamelian, M. Biosynthesis of CuO nanoparticles using aqueous extract of herbal tea (Stachys lavandulifolia) flowers and evaluation of its catalytic activity. Sci. Rep. 2021, 11, 1983. [Google Scholar] [CrossRef]
- Maldonado, A.N.; Guadarrama, S.B.; Gomez, H.E.; López, L.F.; Acosta, K.R.; Nuñez, G.A.; Nava, R.D.C. Green synthesis of copper nanoparticles using different plant extracts and their antibacterial activity. J. Environ. Chem. Eng. 2022, 10, 107130. [Google Scholar] [CrossRef]
- Patra, D.; El Kurdi, R. Curcumin as a novel reducing and stabilizing agent for the green synthesis of metallic nanoparticles. Green Chem. Lett. Rev. 2021, 14, 474–487. [Google Scholar] [CrossRef]
- Jabeen, S.; Siddiqui, V.U.; Bala, S.; Mishra, N.; Mishra, A.; Lawrence, R.; Bansal, P.; Khan, A.R.; Khan, T. Biogenic synthesis of copper oxide nanoparticles from aloe vera: Antibacterial activity, molecular docking, and photocatalytic dye degradation. ACS Omega 2024, 9, 30190–30204. [Google Scholar] [CrossRef]
- Djamila, B.; Eddine, L.S.; Abderrhmane, B.; Nassiba, A.; Barhoum, A. In vitro antioxidant activities of copper mixed oxide (CuO/Cu2O) nanoparticles produced from the leaves of Phoenix dactylifera L. Biomass Convers. Biorefin. 2024, 14, 6567–6580. [Google Scholar]
- Karimzadeh, M.; Niknam, K.; Manouchehri, N.; Tarokh, D. A green route for the cross-coupling of azide anions with aryl halides under both base and ligand-free conditions: Exceptional performance of a Cu2O–CuO–Cu–C nanocomposite. RSC Adv. 2018, 8, 25755–25764. [Google Scholar] [CrossRef]
- Nethravathi, P.C.; Udayabhanu; Kumar, M.A.P.; Suresh, D.; Lingaraju, K.; Rajanaika, H.; Nagabhushana, H.; Sharma, S.C. Tinospora cordifolia mediated facile green synthesis of cupric oxide nanoparticles and their photocatalytic, antioxidant and antibacterial properties. Mater. Sci. Semicond. Process. 2015, 33, 81–88. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, S.; Xiong, H.; Alwahibi, M.; Niu, X. Biosynthesis of copperoxide nanoparticles using Abies spectabilis plant extract and analyzing its antinociceptive and anti-inflammatory potency in various mice models. Arab. J. Chem. 2020, 13, 6995–7006. [Google Scholar] [CrossRef]
- Tahvilian, R.; Zangeneh, M.M.; Falahi, H.; Sadrjavadi, K.; Jalalvand, A.R.; Zangeneh, A. Green synthesis and chemical characterization of copper nanoparticles using Allium saralicum leaves and assessment of their cytotoxicity, antioxidant, antimicrobial, and cutaneous wound healing properties. Appl. Organomet. Chem. 2019, 33, e5234. [Google Scholar] [CrossRef]
- JCPDS Card No. 48-1548; Copper(II) Oxide (CuO), Monoclinic. International Centre for Diffraction Data (ICDD): Newtown Square, PA, USA, 2001.
- JCPDS Card No. 00-005-0667; Copper(I) Oxide (Cu2O), Cubic. International Centre for Diffraction Data (ICDD): Newtown Square, PA, USA, 1999.
- Rahmah, M.I.; Garallah, E.T. Preparation of copper oxides/polyvinyl alcohol nanocoatings with antibacterial activity. Chem. Data Collect. 2022, 39, 100869. [Google Scholar] [CrossRef]
- Manimehala, U.; Asha, S.; Tomy, M.; Anu, M.A.; Sumitha, M.S.; Kumar, P.; Xavier, T.S.; Binoy, J. Green synthesis of copper oxide nanoparticles from Camellia sinensis extract: Effects of calcination temperatures on antimicrobial activity. Biochem. Biophys. Res. Commun. 2025, 769, 151963. [Google Scholar] [CrossRef]
- Shkir, M.; Khan, F.S.; Alshahrani, T. Biosynthesis of CuO Nanoparticles Using Caralluma adscendens Leaf Extract for Developed Antibacterial and Photocatalytic Dye Degradation Properties. Mater. Chem. Phys. 2025, 344, 131118. [Google Scholar] [CrossRef]
- Maleki, A.; Panahzadeh, M.; Eivazzadeh-keihan, R. Agar: A natural and environmentally-friendly support composed of copper oxide nanoparticles for the green synthesis of 1, 2, 3–triazoles. Green Chem. Lett. Rev. 2019, 12, 395–406. [Google Scholar] [CrossRef]
- Mohamed, Y.M.A.; Abdel-Hafez, S.H.; Elsayed, H.; Taha, M.; Attia, Y. Efficient one-pot synthesis of 1,4-disubstituted-1,2,3-triazoles catalysed by NiO/Cu2O/CuO nanocomposites under microwave irradiation. Chem. Pap. 2024, 78, 7865–7876. [Google Scholar] [CrossRef]
- Pathak, C.; Borah, G. Cu2O/CuO@mont K 10 promoted one-pot synthesis of 1,2,3-triazoles through azide-alkyne cycloaddition reaction. Chem. Pap. 2022, 76, 4749–4761. [Google Scholar] [CrossRef]








| CuO Peak No. | K | λ (Å) | 2θ Position (°) | FWHM β (°) | D (nm) |
|---|---|---|---|---|---|
| 1 | 0.89 | 1.5406 | 32.51 | 0.57 | 14.36 |
| 2 | 0.89 | 1.5406 | 35.54 | 0.48 | 17.19 |
| 3 | 0.89 | 1.5406 | 38.71 | 0.52 | 16.01 |
| 4 | 0.89 | 1.5406 | 48.70 | 0.53 | 16.27 |
| 5 | 0.89 | 1.5406 | 53.45 | 0.56 | 15.71 |
| 6 | 0.89 | 1.5406 | 58.2 | 0.57 | 15.77 |
| 7 | 0.89 | 1.5406 | 66.19 | 0.98 | 9.57 |
| 8 | 0.89 | 1.5406 | 68.03 | 0.38 | 24.94 |
| Average Crystallite Size | 15.88 | ||||
| Cu2O Peak No. | K | λ (Å) | 2θ Position (°) | FWHM β (°) | D (nm) |
|---|---|---|---|---|---|
| 1 | 0.89 | 1.5406 | 30.97 | 0.57 | 18.12 |
| 2 | 0.89 | 1.5406 | 36.39 | 0.48 | 16.54 |
| 3 | 0.89 | 1.5406 | 42.23 | 0.52 | 17.19 |
| 4 | 0.89 | 1.5406 | 61.55 | 0.53 | 14.99 |
| Average Crystallite Size | 16.71 | ||||
![]() | |||||
| Entry | Catalyst | Solvent | T (°C) | Time | Yield (%) b |
| 1 | - | H2O | r.t. | 12 h | nd |
| 2 | CuO/Cu2O | H2O | r.t. | 3 h | 16 |
| 3 | CuO/Cu2O | H2O | 80 | 3 h | 58 |
| 4 | CuO/Cu2O | H2O | r.t. | 12 h | 96 |
| 5 c | CuO/Cu2O | H2O | r.t. | 12 h | 80 |
| 6 | CuO/Cu2O | ACN | 80 | 3 h | Trace |
| 7 | CuO/Cu2O | ACN | r.t. | 12 h | Trace |
| 8 | CuO/Cu2O | t-BuOH/H2O | r.t. | 12 h | 46 |
| 9 | CuO | H2O | r.t. | 12 h | 70 |
| 10 | Cu2O | H2O | r.t. | 12 h | 86 |
| Entry | Catalyst | Solvent | T (°C) | Time (h) | Yield (%) |
|---|---|---|---|---|---|
| 1 | Cu2O/CuO | EtOH/H2O | r.t. | 24 | 26 |
| 2 | Cu2O/CuO | EtOH/H2O | 80 | 24 | 53 |
| 3 | Cu2O/CuO | EtOH/H2O | 80 MW | 10 min | 80 |
| 4 | NiO/Cu2O/CuO | EtOH/H2O | r.t. | 24 | 34 |
| 5 | NiO/Cu2O/CuO | EtOH/H2O | 80 | 24 | 62 |
| 6 | NiO/Cu2O/CuO | EtOH/H2O | 80 MW | 10 | 94 |
| 7 | Cu2O/CuO@mont K 10 | H2O | r.t. | 1 | 95 |
| 8 | CuO/Cu2O | H2O | r.t. | 12 | 96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Pinto, F.; Frederico, I.B.; Olguin, C.F.A.; Peiter, G.; Willig, J.C.M.; Stefani, H.A.; Bottoselle, G.V.; Manarin, F. Design of Sustainable Copper-Based Hybrid Catalyst Using Aqueous Extract of Curcuma longa L. for One-Pot Synthesis of 1,2,3-Triazole. Organics 2026, 7, 6. https://doi.org/10.3390/org7010006
Pinto F, Frederico IB, Olguin CFA, Peiter G, Willig JCM, Stefani HA, Bottoselle GV, Manarin F. Design of Sustainable Copper-Based Hybrid Catalyst Using Aqueous Extract of Curcuma longa L. for One-Pot Synthesis of 1,2,3-Triazole. Organics. 2026; 7(1):6. https://doi.org/10.3390/org7010006
Chicago/Turabian StylePinto, Felipe, Isadora Barbosa Frederico, Conceição F. A. Olguin, Gabrielle Peiter, Julia C. M. Willig, Helio A. Stefani, Giancarlo V. Bottoselle, and Flavia Manarin. 2026. "Design of Sustainable Copper-Based Hybrid Catalyst Using Aqueous Extract of Curcuma longa L. for One-Pot Synthesis of 1,2,3-Triazole" Organics 7, no. 1: 6. https://doi.org/10.3390/org7010006
APA StylePinto, F., Frederico, I. B., Olguin, C. F. A., Peiter, G., Willig, J. C. M., Stefani, H. A., Bottoselle, G. V., & Manarin, F. (2026). Design of Sustainable Copper-Based Hybrid Catalyst Using Aqueous Extract of Curcuma longa L. for One-Pot Synthesis of 1,2,3-Triazole. Organics, 7(1), 6. https://doi.org/10.3390/org7010006


