Helical Molecular Cages with sp-Conjugated Linkages
Abstract
1. Introduction
2. Materials and Methods
2.1. General
2.2. Multistep Synthesis of Cage 5
2.2.1. Synthesis of Precursor 3
2.2.2. Synthesis of Cage 5
2.3. Characterization Methods
2.3.1. X-Ray Crystallographic Measurement
2.3.2. Variable-Temperature-NMR (VT-NMR) Measurement
2.3.3. Optical Absorption Measurement
2.3.4. Photoluminescence (PL) Measurement
2.3.5. Mass Spectrum Analysis
2.4. Theoretical Calculations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| VT-NMR | Variable-temperature NMR |
| MALDI-FT-ICR | Matrix-assisted laser desorption ionization-Fourier transform-Ion cyclotron resonance |
| TD-DFT | Time-dependent density functional theory |
| CIF | Crystallographic information file |
References
- Charbonnière, L.J.; Williams, A.F.; Frey, U.; Merbach, A.E.; Kamalaprija, P.; Schaad, O. A Comparison of the Lability of Mononu-clear Octahedral and Dinuclear Triple-Helical Complexes of Cobalt (II). J. Am. Chem. Soc. 1997, 119, 2488–2496. [Google Scholar] [CrossRef]
- Míguez-Lago, S.; Gliemann, B.D.; Kivala, M.; Cid, M.M. A Chiral Molecular Cage Comprising Diethynylallenes and N-Heterotriangulenes for Enantioselective Recognition. Chem. Eur. J. 2021, 27, 13352–13357. [Google Scholar] [CrossRef] [PubMed]
- Beaudoin, D.; Rominger, F.; Mastalerz, M. Chiral Self-Sorting of [2 + 3] Salicylimine Cage Compounds. Angew. Chem. Int. Ed. 2017, 56, 1244–1248. [Google Scholar] [CrossRef]
- Qiu, F.; Chen, X.; Wang, W.; Su, K.; Yuan, D. Highly stable sp2 carbon-conjugated porous organic cages. CCS Chem. 2024, 6, 149–156. [Google Scholar] [CrossRef]
- Li, J.; Hii, S.S.; Zhu, X.; Yang, Y.; Wang, Y. sp2 carbon conjugated covalent organic cage with efficient photocatalysis. Chin. Chem. Lett. 2025, 37, 111151. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, G.; Chen, B.; Qu, H.; Jiao, T.; Li, Y.; Ge, C.; Zhang, C.; Liang, L.; Zeng, X.; et al. Self-Assembly of a Purely Covalent Cage with Homochirality by Imine Formation in Water. Angew. Chem. Int. Ed. 2021, 60, 18815–18820. [Google Scholar] [CrossRef]
- Ren, F.; Day, K.J.; Hartley, C.S. Two-and Three-Tiered Stacked Architectures by Covalent Assembly. Angew. Chem. Int. Ed. 2016, 55, 8620–8623. [Google Scholar] [CrossRef]
- Li, G.; Mao, L.L.; Gao, J.N.; Shi, X.; Huo, Z.Y.; Yang, J.; Zhou, W.; Li, H.; Yang, H.B.; Tung, C.H.; et al. A Helical Tubular Dyad of [9]Cycloparaphenylene: Synthesis, Chiroptical Properties and Post-Functionalization. Angew. Chem. Int. Ed. 2025, 137, e202419435. [Google Scholar] [CrossRef]
- Guo, S.D.; Jiao, T.; Guo, D.S.; Cai, K. Chiral covalent organic cages: Construction and chiral functions. Smart Mol. 2025, 3, e20240038. [Google Scholar] [CrossRef] [PubMed]
- Mondal, B.; Acharyya, K.; Howlader, P.; Mukherjee, P.S. Molecular cage impregnated palladium nanoparticles: Efficient, additive-free heterogeneous catalysts for cyanation of aryl halides. J. Am. Chem. Soc. 2016, 138, 1709–1716. [Google Scholar] [CrossRef]
- Xue, W.; Benchimol, E.; Walther, A.; Ouyang, N.; Holstein, J.J.; Ronson, T.K.; Openy, J.; Zhou, Y.; Wu, K.; Chowdhury, R.; et al. Interplay of Stereochemistry and Charge Governs Guest Binding in Flexible ZnII4L4 Cages. J. Am. Chem. Soc. 2024, 146, 32730–32737. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Wu, K.; Zhang, J.-H.; Su, C.-Y. Chiral metal–organic cages/containers (MOCs): From structural and stereochemical design to applications. Coord. Chem. Rev. 2019, 378, 333–349. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Wang, Y.-Y.; Yan, Q. Highly Conductive Chiral Organic Cages and Their Helical Assemblies Enable Efficient Spin Filtering. J. Am. Chem. Soc. 2025, 147, 8751–8759. [Google Scholar] [CrossRef]
- Vanderkooy, A.; Gupta, A.K.; Földes, T.; Lindblad, S.; Orthaber, A.; Pápai, I.; Erdélyi, M. Halogen bonding helicates encompassing iodonium cations. Angew. Chem. Int. Ed. 2019, 131, 9110–9114. [Google Scholar] [CrossRef]
- Blatchly, R.A.; Tew, G.N. Theoretical Study of Helix Formation in Substituted Phenylene Ethynylene Oligomers. J. Org. Chem. 2003, 68, 8780–8785. [Google Scholar] [CrossRef]
- Hafezi, N.; Holcroft, J.M.; Hartlieb, K.J.; Dale, E.J.; Vermeulen, N.A.; Stern, C.L.; Sarjeant, A.A.; Stoddart, J.F. Modulating the Binding of Polycyclic Aromatic Hydrocarbons Insidea Hexacationic Cage by Anion-π Interactions. Angew. Chem. Int. Ed. 2015, 54, 456–461. [Google Scholar] [CrossRef]
- Dale, E.J.; Vermeulen, N.A.; Thomas, A.A.; Barnes, J.C.; Juríček, M.; Blackburn, A.K.; Strutt, N.L.; Sarjeant, A.A.; Stern, C.L.; Denmark, S.E.; et al. Excage. J. Am. Chem. Soc. 2014, 136, 10669–10682. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Y.; Song, B.; Wang, H.-J.; Zhou, J.; Sun, Y.; Jones, L.O.; Liu, W.; Zhang, L.; Zhang, X.; et al. A contorted nanographene shelter. Nat. Commun. 2021, 12, 5191. [Google Scholar] [CrossRef]
- Tuo, D.; Ao, Y.; Wang, Q.; Wang, D. Naphthalene-pillaredbenzene triimide cage: An efficient receptor for polyhedral anions anda general tool for probing theoretically-existing anion-π bindingmotifs. CCS Chem. 2022, 4, 2806–2815. [Google Scholar] [CrossRef]
- Zhu, D.; Sun, B.; Tong, L.; Wu, Y.; Cetin, M.M.; Li, H. A π-Electron Rich Cage via the Friedel-Crafts Reaction. Org. Lett. 2022, 24, 8980–8985. [Google Scholar] [CrossRef] [PubMed]
- Montà-González, G.; Sancenón, F.; Martínez-Máñez, R.; Martí-Centelles, V. Purely covalent molecular cages and containers for guest encapsulation. Chem. Rev. 2022, 122, 13636–13708. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, C.-F. Synthesis and Structure of a Triptycene-Based Nanosized Molecular Cage. J. Org. Chem. 2007, 72, 9339–9341. [Google Scholar] [CrossRef] [PubMed]
- Toyota, S.; Yamamori, T.; Makino, T. Effects of aryl and arylethynyl substituents at the 1-position on rotational barrier around C(sp)−C (sp3) bonds and bending deformation of acetylenic carbons in bis(9-triptycyl)ethynes. Tetrahedron 2001, 57, 3521–3528. [Google Scholar] [CrossRef]
- Nobusue, S.; Mukai, Y.; Fukumoto, Y.; Umeda, R.; Tahara, K.; Sonoda, M.; Tobe, Y. Molecular propellers that consist of dehydrobenzo[14]annulene blades. Chem. Eur. J. 2012, 18, 12814–12824. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Nobusue, S.; Xie, C.; Patel, K.; Kojima, T.; Sakaguchi, H. Aryl Shift Rearrangement in Scholl-Type Reaction Toward Nanographene. Chem. Eur. J. 2025, 31, e202501221. [Google Scholar] [CrossRef]
- Huynh, C.; Linstrumelle, G. A Short Route to Dehydro [12] Annulenes. Tetrahedron 1988, 44, 6337–6344. [Google Scholar] [CrossRef]
- John, J.A.; Tour, J.M. Synthesis of Polyphenylenes and Polynaphthalenes by Thermolysis of Enediynes and Dialkynylbenzenes. J. Am. Chem. Soc. 1994, 116, 5011–5012. [Google Scholar] [CrossRef]
- Jacquemin, D.; Perpète, E.A.; Ciofini, I.; Adamo, C.; Valero, R.; Zhao, Y.; Truhlar, D.G. On the Performances of the M06 Family of Density Functionals for Electronic Excitation Energies. J. Chem. Theory Comput. 2010, 6, 2071–2085. [Google Scholar] [CrossRef]
- Walker, M.; Harvey, A.J.A.; Dessent, C.E.H. Performance of M06, M06-2X, and M06-HF Density Functionals for conformationally Flexible Anionic Clusters: M06 Functionals Perform Better than B3LYP for a Model System with Dispersion and Ionic Hydrogen-Bonding Interactions. J. Phys. Chem. A 2013, 117, 12590–12600. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Q.-P.; Guo, F.; Ma, H.; Liang, Z.-H.; Yi, C.-H.; Zhang, C.; Chen, C.-F. Self-Similar Chiral Organic Molecular Cages. Nat. Commun. 2024, 15, 670. [Google Scholar] [CrossRef] [PubMed]
- Míguez-Lago, S.; Llamas-Saiz, A.L.; Magdalena Cid, M.; Alonso-Gómez, J.L. A Covalent Organic Helical Cage with Remarkable Chiroptical Amplification. Chem. Eur. J. 2015, 21, 18085–18088. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Ikai, T. Chiral HPLC for efficient resolution of enantiomers. Chem. Soc. Rev. 2008, 37, 2593–2608. [Google Scholar] [CrossRef]
- Ikai, T.; Okamoto, Y. Structure Control of Polysaccharide Derivatives for Efficient Separation of Enantiomers by Chromatography. Chem. Rev. 2009, 109, 6077–6101. [Google Scholar] [CrossRef] [PubMed]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wu, W.; Kojima, T.; Sakaguchi, H. Helical Molecular Cages with sp-Conjugated Linkages. Organics 2026, 7, 2. https://doi.org/10.3390/org7010002
Wu W, Kojima T, Sakaguchi H. Helical Molecular Cages with sp-Conjugated Linkages. Organics. 2026; 7(1):2. https://doi.org/10.3390/org7010002
Chicago/Turabian StyleWu, Wei, Takahiro Kojima, and Hiroshi Sakaguchi. 2026. "Helical Molecular Cages with sp-Conjugated Linkages" Organics 7, no. 1: 2. https://doi.org/10.3390/org7010002
APA StyleWu, W., Kojima, T., & Sakaguchi, H. (2026). Helical Molecular Cages with sp-Conjugated Linkages. Organics, 7(1), 2. https://doi.org/10.3390/org7010002
