Density Functional Theory Study on Mechanism and Selectivity of Nickel-Catalyzed Hydroboration of Vinylarenes
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Reaction Mechanism and Free-Energy Profiles
3.2. Selectivity Issues
3.2.1. Enantioselectivity
3.2.2. Regioselectivity
4. Conclusions
- (1)
- The catalytic cycle comprises several sequential elementary steps, namely hydronickelation, anion exchange, transmetalation, and reductive elimination. The kinetic analysis identified hydronickelation as the rate-determining step, with an activation barrier of 19.8 kcal/mol. Notably, the transmetalation process follows a stepwise mechanism characterized by two distinct transition states corresponding to B–B bond cleavage.
- (2)
- The enantioselectivity originates during the hydronickelation of styrene. The free-energy difference of 2.8 kcal/mol between the transition states yielding (R)-3 and (S)-3 accounts for the observed 94% ee. The RDG analyses attributed this selectivity to nonbonding interactions in the transition state ensemble.
- (3)
- The observed Markovnikov selectivity appears to be governed by a steric factor, by which the proton transfer process on the anti-Markovnikov pathway is hindered by repulsive interactions with adjacent phenyl groups. This study provides a theoretical basis for the future design of novel chiral ligands and the enhancement of enantioselectivity for nickel-catalyzed hydroboration.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Simonetti, S.O.; Pellegrinet, S.C. Asymmetric organocatalytic C-C bond forming reactions with organoboron compounds: A mechanistic survey. Eur. J. Org. Chem. 2019, 2019, 2956–2970. [Google Scholar] [CrossRef]
- Tian, J.; Li, R.; Tian, G.; Wang, X. Enantioselective C3-allylation of pyridines via tandem borane and palladium catalysis. Angew. Chem. Int. Ed. 2023, 62, e202307697. [Google Scholar] [CrossRef]
- Jiang, N.; Chen, D.; Liu, C. Recent advances in the chemistry of α-oxylboronate reagents. Org. Chem. Front. 2023, 10, 3684–3700. [Google Scholar] [CrossRef]
- Hirva, P.; Turhanen, P.; Timonen, J.M. Synthesis and theoretical studies of aromatic azaborines. Organics 2022, 3, 196–209. [Google Scholar] [CrossRef]
- Xu, G.; Han, H.; Cao, L.; Hong, S.; Hai, L.; Cui, X. Research progress of transition metal-catalyzed synthesis of 1,3-conjugated dienyl boron compounds. Chin. J. Org. Chem. 2024, 44, 1480–1493. [Google Scholar] [CrossRef]
- Feng, Y.L.; Zhang, B.; Xu, Y.; Jin, S.; Mazzarella, D.; Cao, Z. The reactivity of alkenyl boron reagents in catalytic reactions: Recent advances and perspectives. Org. Chem. Front. 2024, 11, 7249–7277. [Google Scholar] [CrossRef]
- D’Andrea, L.; Steinmann, C. Pd EnCat™ 30 recycling in suzuki cross-coupling reactions. Organics 2024, 5, 443–449. [Google Scholar] [CrossRef]
- Kanno, S.; Kakiuchi, F.; Kochi, T. Palladium-catalyzed hydroboration/cyclization of 1,n-dienes. J. Org. Chem. 2023, 88, 2621–2630. [Google Scholar] [CrossRef]
- Yang, M.; Yu, Y.; Ma, W.; Feng, Y.; Zhang, G.; Wu, Y.; Zhou, F.; Yang, Y.; Liu, D. Palladium-catalyzed hydroboration reaction of unactivated alkynes with bis(pinacolato) diboron in water. RSC Adv. 2022, 12, 9815–9820. [Google Scholar] [CrossRef]
- Buchbinder, N.W.; Nguyen, L.H.; Beck, O.N.; Bage, A.D.; Slebodnick, C.; Santos, W.L. Chemo-, regio-, and stereoselective cis-hydroboration of 1,3-enynes: Copper-catalyzed access to (Z,Z)- and (Z,E)-2-boryl-1,3-dienes. Org. Lett. 2024, 26, 6136–6141. [Google Scholar] [CrossRef]
- Zheng, W.; Tan, B.B.; Ge, S.; Lu, Y. Enantioselective copper-catalyzed ring-opening diboration of arylidenecyclopropanes to access chiral skipped 1,4- and 1,3-diboronates. J. Am. Chem. Soc. 2024, 146, 5366–5374. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Chen, K.Z.; Li, A.Z.; Li, B.J. Remote stereocenter through amide-directed, rhodium-catalyzed enantioselective hydroboration of unactivated internal alkenes. J. Am. Chem. Soc. 2022, 144, 13071–13078. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Park, S. Rhodium-catalyzed double hydroboration of quinolines. ACS Catal. 2023, 13, 7067–7078. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Z.; Zhao, W. Rhodium-catalyzed remote borylation of alkynes and vinylboronates. Angew. Chem. Int. Ed. 2023, 62, e202215455. [Google Scholar]
- Zhang, B.; Xu, X.; Tao, L.; Lin, Z.; Zhao, W. Rhodium-catalyzed regiodivergent synthesis of alkylboronates via deoxygenative hydroboration of aryl ketones: Mechanism and origin of selectivities. ACS Catal. 2021, 11, 9495–9505. [Google Scholar] [CrossRef]
- Tan, Y.; Li, S.; Song, L.; Zhang, X.; Wu, Y.; Sun, J. Ruthenium-catalyzed geminal hydroborative cyclization of enynes. Angew. Chem. Int. Ed. 2022, 61, e202204319. [Google Scholar] [CrossRef]
- Pradhan, S.; Thiyagarajan, S.; Gunanathan, C. Ruthenium(ii)-catalysed 1,2-selective hydroboration of aldazines. Org. Biomol. Chem. 2021, 19, 7147–7151. [Google Scholar] [CrossRef]
- Choy, P.Y.; Tse, M.H.; Kwong, F.Y. Recent expedition in PD- and RH-catalyzed C(AR)-B bond formations and their applications in modern organic syntheses. Chem. Asian J. 2023, 18, e202300649. [Google Scholar] [CrossRef]
- Ananikov, V.P. Nickel: The “Spirited horse” of transition metal catalysis. ACS Catal. 2015, 5, 1964–1971. [Google Scholar] [CrossRef]
- De, S.K. Applications of nickel(II) compounds in organic synthesis. Curr. Org. Synth. 2021, 18, 517–534. [Google Scholar] [CrossRef]
- Magallón, C.; Griego, L.; Hu, C.H.; Company, A.; Ribas, X.; Mirica, L.M. Organometallic Ni(ii), Ni(iii), and Ni(iv) complexes relevant to carbon-carbon and carbon-oxygen bond formation reactions. Inorg. Chem. Front. 2022, 9, 1016–1022. [Google Scholar] [CrossRef]
- Saunders, T.M.; Shepard, S.B.; Hale, D.J.; Robertson, K.N.; Turculet, L. Highly selective Nickel-catalyzed isomerization-hydroboration of alkenes affords terminal functionalization at remote C-H position. Chem. Eur. J. 2023, 29, e202301946. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Long, J.; Li, Y.; Wang, W.; Pang, H.; Yin, G. Nickel-catalyzed regioselective arylboration of conjugated dienes. Eur. J. Org. Chem. 2021, 2021, 1424–1428. [Google Scholar] [CrossRef]
- Tran, H.N.; Stanley, L.M. Nickel-catalyzed enantioselective hydroboration of vinylarenes. Org. Lett. 2021, 24, 395–399. [Google Scholar] [CrossRef]
- Mi, J.; Huo, S.; Meng, L.; Li, X. Mechanism and regioselectivity of [Cu-Fe] heterobimetallic-catalyzed hydroboration of pyridines: DFT investigation. Mol. Catal. 2021, 511, 111722. [Google Scholar] [CrossRef]
- Zhang, L.; Li, S.; Wen, Y.; Ma, X.; Zhang, J.; Zhou, J.; Meng, X. DFT study on copper-catalyzed hydroboration of 1,3-diynes: Mechanism, selectivity, and comparison with ruthenium. Asian J. Org. Chem. 2025, 14, e202400430. [Google Scholar] [CrossRef]
- Wen, Y.; Gu, Y.; Fei, X.; Kang, J.; Li, G.; Zhang, L. Computational study on the reaction mechanism of phosphine-catalyzed hydroboration of propiolonitriles: With cyano group or not? Tetrahedron 2024, 155, 133933. [Google Scholar] [CrossRef]
- Cheng, Q.; Dang, Y. Mechanistic studies of nickel-catalyzed hydroarylation of styrenes. Org. Lett. 2020, 22, 8998–9003. [Google Scholar] [CrossRef]
- Wang, F.; Meng, Q. Theoretical insight into Ni(0)-catalyzed hydroarylation of alkenes and arylboronic acids. J. Org. Chem. 2020, 85, 13264–13271. [Google Scholar] [CrossRef]
- Ulm, F.; Cornaton, Y.; Djukic, J.-P.; Chetcuti, M.J.; Ritleng, V. Hydroboration of alkenes catalysed by a nickel N-heterocyclic carbene complex: Reaction and mechanistic aspects. Chem. Eur. J. 2020, 26, 8916–8925. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density functional theochemistry. III The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.N.; Frisch, M.J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. A 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange approximation. Phys. Rev. B 1988, 37, 785–789. [Google Scholar]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef]
- Fukui, K. The path of chemical reactions-the IRC approach. Acc. Chem. Res. 1981, 14, 363–368. [Google Scholar] [CrossRef]
- Hratchian, H.P.; Schlegel, H.B. Using Hessian updating to increase the efficiency of a Hessian based predictor-corrector reaction path following method. J. Chem. Theory Comput. 2005, 1, 61–69. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Huang, F.; Lu, G.; Zhao, L.; Li, H.; Wang, Z.X. The catalytic role of N-heterocyclic carbene in a metal-free conversion of carbon dioxide into methanol: A computational mechanism study. J. Am. Chem. Soc. 2010, 132, 12388–12396. [Google Scholar] [CrossRef] [PubMed]
- Plata, R.E.; Singleton, D.A. A case study of the mechanism of alcohol-mediated Morita Baylis-Hillman reactions. The importance of experimental observations. J. Am. Chem. Soc. 2015, 137, 3811–3826. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jiang, B.; Chen, Y.; Lv, J.F.; Feng, W.C. A computational study on the reaction mechanisms of nickelcatalyzed diarylation of alkenes. Eur. J. Org. Chem. 2019, 2019, 6217–6224. [Google Scholar] [CrossRef]
- Domingo, L.R. Molecular Electron Density Theory: A modern view of reactivity in organic chemistry. Molecules 2016, 21, 1319. [Google Scholar] [CrossRef]
- Sadowski, M.; Dresler, E.; Wróblewska, A.; Jasi’nski, R. A new insight into the molecular mechanism of the reaction between 2-methoxyfuran and ethyl (Z)-3-phenyl-2-nitroprop-2-enoate: An Molecular Electron Density Theory (MEDT) computational study. Molecules 2024, 29, 4876. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 2024, 161, 082503. [Google Scholar] [CrossRef]
- Legault, C.Y. CYLView, 1.0b; Universite de Sherbrooke: Quebec City, QC, Canada, 2009. [Google Scholar]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics, Version 1.9.4a55; University of Illinois Urbana-Champaign: Champaign, IL, USA, 2024. [Google Scholar]
- Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Zhou, Y.; Zhang, L.; Zhang, J.; Song, P.; Wang, X.; Wang, C. Density Functional Theory Study on Mechanism and Selectivity of Nickel-Catalyzed Hydroboration of Vinylarenes. Organics 2025, 6, 30. https://doi.org/10.3390/org6030030
Wu J, Zhou Y, Zhang L, Zhang J, Song P, Wang X, Wang C. Density Functional Theory Study on Mechanism and Selectivity of Nickel-Catalyzed Hydroboration of Vinylarenes. Organics. 2025; 6(3):30. https://doi.org/10.3390/org6030030
Chicago/Turabian StyleWu, Jingwei, Yongzhu Zhou, Lei Zhang, Jie Zhang, Pei Song, Xiaoling Wang, and Cuihong Wang. 2025. "Density Functional Theory Study on Mechanism and Selectivity of Nickel-Catalyzed Hydroboration of Vinylarenes" Organics 6, no. 3: 30. https://doi.org/10.3390/org6030030
APA StyleWu, J., Zhou, Y., Zhang, L., Zhang, J., Song, P., Wang, X., & Wang, C. (2025). Density Functional Theory Study on Mechanism and Selectivity of Nickel-Catalyzed Hydroboration of Vinylarenes. Organics, 6(3), 30. https://doi.org/10.3390/org6030030