Implicit Quiescent Solitons in Optical Metamaterials with Nonlinear Chromatic Dispersion and an Array of Self-Phase Modulation Structures with Generalized Temporal Evolution by Lie Symmetry
Abstract
1. Introduction
Governing Model
2. Mathematical Preliminaries
- Equation (3) concludes that
3. Application to an Array of SPM Structures
3.1. Kerr Law
3.2. Power Law
3.3. Parabolic (Cubic–Quintic) Law
3.4. Dual Power Law
3.5. Polynomial (Cubic–Quintic–Septic) Law
3.6. Triple Power Law
3.7. Cubic–Quintic–Septic–Nonic Law
3.8. Quadrupled Power Law
3.9. Anti-Cubic Law
3.10. Generalized Anti-Cubic Law
3.11. Quadratic–Cubic Law
3.12. Generalized Quadratic–Cubic Law
3.13. Quadratic–Cubic–Quartic Law
3.14. Generalized Quadratic–Cubic–Quartic Law
3.15. Parabolic Nonlocal Law
3.16. Saturating Law
3.17. Exponential Law
3.18. Logarithmic Law
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hasegawa, A.; Tappert, F. Transmission of quiescent nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 1973, 23, 142–144. [Google Scholar] [CrossRef]
- Schamel, H. Quiescent solitary, snoidal and sinusidal ion acoustic waves. Plasma Phys. 1972, 14, 905–924. [Google Scholar] [CrossRef]
- Adem, A.R.; Biswas, A.; Yildirim, Y. Implicit quiescent optical solitons for perturbed Fokas–Lenells equation with nonlinear chromatic dispersion and a couple of self–phase modulation structures by Lie symmetry. Semicond. Phys. Quantum Electron. Optoelectron. 2025, 28, 47–52. [Google Scholar] [CrossRef]
- Strunin, D.V.; Malomed, B.A. Symmetry-breaking transitions in quiescent and moving solitons in fractional couplers. Phys. Rev. E 2023, 107, 064203. [Google Scholar] [CrossRef] [PubMed]
- Ekici, M. Stationary optical solitons with complex Ginzburg–Landau equation having nonlinear chromatic dispersion and Kudryashov’s refractive index structures. Phys. Lett. A 2022, 440, 128146. [Google Scholar] [CrossRef]
- Yalçı, A.M.; Ekici, M. Stationary optical solitons with complex Ginzburg–Landau equation having nonlinear chromatic dispersion. Opt. Quantum Electron. 2022, 54, 167. [Google Scholar] [CrossRef]
- Mihalache, D.; Mazilu, D.; Malomed, B.A.; Torner, L. Asymmetric spatio–temporal optical solitons in media with quadratic nonlinearity. Opt. Commun. 1998, 152, 365–370. [Google Scholar] [CrossRef]
- Mihalache, D.; Mazilu, D.; Crasovan, L.-C.; Torner, L.; Malomed, B.A.; Lederer, F. Three–dimensional walking spatiotemporal solitons in quadratic media. Phys. Rev. E 2000, 62, 7340–7347. [Google Scholar] [CrossRef]
- Han, T.; Li, Z.; Li, C.; Zhao, L. Bifurcations, stationary optical solitons and exact solutions for complex Ginzburg–Landau equation with nonlinear chromatic dispersion in non–Kerr law media. J. Opt. 2023, 52, 831–844. [Google Scholar] [CrossRef]
- Arnous, A.H.; Biswas, A.; Yildirim, Y.; Moraru, L.; Moldovanu, S.; Iticescu, C.; Khan, S.; Alshehri, H.M. Quiescent optical solitons with quadratic–cubic and generalized quadratic–cubic nonlinearities. Telecom 2023, 4, 31–42. [Google Scholar] [CrossRef]
- Ekici, M. Kinky breathers, W–shaped and multi–peak soliton interactions for Kudryashov’s quintuple power–law coupled with dual form of non–local refractive index structure. Chaos Solitons Fractals 2022, 159, 112172. [Google Scholar] [CrossRef]
- Ekici, M. Optical solitons with Kudryashov’s quintuple power–law coupled with dual form of non–local law of refractive index with extended Jacobi’s elliptic function. Opt. Quantum Electron. 2022, 54, 279. [Google Scholar] [CrossRef]
- Ekici, M. Stationary optical solitons with Kudryashov’s quintuple power law nonlinearity by extended Jacobi’s elliptic function expansion. J. Nonlinear Opt. Phys. Mater. 2023, 32, 2350008. [Google Scholar] [CrossRef]
- Jawad, A.J.M.; Abu–AlShaeer, M.J. Highly dispersive optical solitons with cubic law and cubic–quintic–septic law nonlinearities by two methods. Al-Rafidain J. Eng. Sci. 2023, 1, 1–8. [Google Scholar] [CrossRef]
- Sonmezoglu, A. Stationary optical solitons having Kudryashov’s quintuple power law nonlinearity by extended G′/G–expansion. Optik 2022, 253, 168521. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Antonova, E.V. Solitary waves of equation for propagation pulse with power nonlinearities. Optik 2020, 217, 164881. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Highly dispersive optical solitons of equation with various polynomial nonlinearity law. Chaos Solitons Fractals 2020, 140, 110202. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Model of propagation pulses in an optical fiber with a new law of refractive indices. Optik 2021, 248, 168160. [Google Scholar] [CrossRef]
- Koparan, M. The nonlinear Schrödinger equation derived from the third order Korteweg–de Vries equation using multiple scales method. Contemp. Math. 2024, 5, 5087–5097. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Stationary solitons of the generalized nonlinear Schrödinger equation with nonlinear dispersion and arbitrary refracttive index. Appl. Math. Lett. 2022, 128, 107888. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Stationary solitons of the model with nonlinear chromatic dispersion and arbitrary refractive index. Optik 2024, 259, 168888. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Nifontov, D.R. From conservation laws of generalized Schrödinger equations to exact solutions. J. Opt. 2025, 54, 3505–3512. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Kudryashov, N.A. Nonlinear Schrödinger equations with delay: Closed-form and generalized separable solutions. Contemp. Math. 2024, 5, 5783–5794. [Google Scholar] [CrossRef]
- Yan, Z. Envelope compactons and solitary patterns. Phys. Lett. A 2006, 355, 212–215. [Google Scholar] [CrossRef]
- Yan, Z. New exact solution structures and nonlinear dispersion in the coupled nonlinear wave systems. Phys. Lett. A 2007, 361, 194–200. [Google Scholar] [CrossRef]
- Kaur, L.; Wazwaz, A.-M. Gaussons for generalized nonlinear Schrödinger equation equipped with logarithmic nonlinearity and variable coefficients, depicting the propagation of optical pulses. J. Opt. 2025. [Google Scholar] [CrossRef]
- Nifontov, D.R.; Kudryashov, N.A.; Lavrova, S.F. Conservation laws and exact solutions of the generalized Fokas–Lenells equation. J. Opt. 2025. [Google Scholar] [CrossRef]
- Li, C. Exact solution of the resonant nonlinear Schrödinger equation with high dispersion and cubic–quintic–septic nonlinearity and with multiplicative white noise. J. Opt. 2025. [Google Scholar] [CrossRef]
- Mendez–Zuniga, I.M.; Belyaeva, T.L.; Agüero, M.A.; Serkin, V.N. Multisoliton bound states in the fourth–order concatenation model of the nonlinear Schrödinger equation hierarchy. Trans. Opt. Photonics 2025, 1, 22–33. [Google Scholar]
- Jihad, N.; Almuhsan, M.A.A. Evaluation of impairment mitigations for optical fiber communications using dispersion compensation techniques. Al-Rafidain J. Eng. Sci. 2023, 1, 81–92. [Google Scholar] [CrossRef]
- Savotchenko, S.E. Nonlinear surface waves propagating along an interface between the Kerr nonlinear and hyperbolic graded–index crystals. J. Opt. 2025, 54, 2363–2371. [Google Scholar] [CrossRef]
- Kasapeteva, Z. Energy exchange between the polarization components of an optical pulse under the influence of degenerate four–photon parametric processes. Trans. Opt. Photonics 2025, 1, 58–66. [Google Scholar]
- Yan, Z. Envelope compact and solitary pattern structures for the GNLS(m, n, p, q) equations. Phys. Lett. A 2006, 357, 196–203. [Google Scholar] [CrossRef]
- Salih, M.S.; Murad, M.A.S. Soliton solutions to the extended (3+1)–dimensional nonlinear conformable Schrödinger equation via two analytic algorithms. J. Opt. 2025. [Google Scholar] [CrossRef]
- Huang, X.; Guo, X.; Huang, X.; Peng, F.; Li, X.; Wei, Z.; Wang, Q. Highly birefringence-guided microfiber resonator for ultra-high repetition rate ultrashort pulse. Laser Photonics Rev. 2024, 18, 2400166. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Alngar, M.E.M. Application of newly proposed sub–ODE method to locate chirped optical solitons to Triki–Biswas equation. Optik 2020, 207, 164360. [Google Scholar] [CrossRef]
- Adem, A.R.; Biswas, A.; Yildirim, Y.; Alshomrani, A.S. Implicit quiescent optical soliton perturbation with nonlinear chromatic dispersion and linear temporal evolution having a plethora of self–phase modulation structures by Lie symmetry. Nonlinear Opt. Quantum Opt. 2025, 62, 19–46. [Google Scholar]
- Adem, A.R.; Biswas, A.; Yildirim, Y. Implicit quiescent solitons in optical metamaterials with an array of self–phase modulation structures by Lie symmetry. Theor. Math. Phys. 2025, 224, 1509–1526. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Alngar, M.E.M.; El–Horbaty, M.M.; Biswas, A.; Kara, A.H.; Ekici, M.; Asma, M.; Alzahrani, A.K.; Belic, M.R. Solitons and conservation laws in magneto–optic waveguides having parabolic–nonlocal law of refractive index. Phys. Lett. A 2020, 384, 126814. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Adem, A.R.; González-Gaxiola, O.; Arnous, A.H.; Calucag, L.S.; Biswas, A. Implicit Quiescent Solitons in Optical Metamaterials with Nonlinear Chromatic Dispersion and an Array of Self-Phase Modulation Structures with Generalized Temporal Evolution by Lie Symmetry. Telecom 2026, 7, 6. https://doi.org/10.3390/telecom7010006
Adem AR, González-Gaxiola O, Arnous AH, Calucag LS, Biswas A. Implicit Quiescent Solitons in Optical Metamaterials with Nonlinear Chromatic Dispersion and an Array of Self-Phase Modulation Structures with Generalized Temporal Evolution by Lie Symmetry. Telecom. 2026; 7(1):6. https://doi.org/10.3390/telecom7010006
Chicago/Turabian StyleAdem, Abdullahi Rashid, Oswaldo González-Gaxiola, Ahmed H. Arnous, Lina S. Calucag, and Anjan Biswas. 2026. "Implicit Quiescent Solitons in Optical Metamaterials with Nonlinear Chromatic Dispersion and an Array of Self-Phase Modulation Structures with Generalized Temporal Evolution by Lie Symmetry" Telecom 7, no. 1: 6. https://doi.org/10.3390/telecom7010006
APA StyleAdem, A. R., González-Gaxiola, O., Arnous, A. H., Calucag, L. S., & Biswas, A. (2026). Implicit Quiescent Solitons in Optical Metamaterials with Nonlinear Chromatic Dispersion and an Array of Self-Phase Modulation Structures with Generalized Temporal Evolution by Lie Symmetry. Telecom, 7(1), 6. https://doi.org/10.3390/telecom7010006

