A Compact Four-Element Multiple-Input Multiple-Output Array with an Integrated Frequency Selective Surface for Millimeter-Wave Applications
Abstract
1. Introduction
2. Optimization Strategies for a Single Antenna
3. Two-Element Array System
4. Four-Element MIMO Configuration
5. Unit Cell Optimization
FSS to Antenna Separation Justification
6. Experimental Analysis of Proposed MIMO Antenna
7. MIMO Performance Parameters
7.1. Envelope Correlation Coefficient
7.2. Diversity Gain
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rafique, U.; Khan, S.; Ahmed, M.M.; Kiani, S.H.; Abbas, S.M.; Saeed, S.I.; Alibakhshikenari, M.; Dalarsson, M. Uni-planar MIMO antenna for sub-6 GHz 5G mobile phone applications. Appl. Sci. 2022, 12, 3746. [Google Scholar] [CrossRef]
- Cheng, X.; Hu, Y.; Varga, L. 5G network deployment and the associated energy consumption in the UK: A complex systems’ exploration. Technol. Forecast. Soc. Chang. 2022, 180, 121672. [Google Scholar] [CrossRef]
- Kamal, M.A.; Raza, H.W.; Alam, M.M.; Su’ud, M.M.; Sajak, A.b.A.B. Resource allocation schemes for 5G network: A systematic review. Sensors 2021, 21, 6588. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Acharya, R.; Jakhar, S.; Mishra, T. Fifth generation (5G) wireless technology “Revolution in telecommunication”. In Proceedings of the 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 20–21 April 2018; IEEE: New York, NY, USA, 2018; pp. 1867–1872. [Google Scholar]
- Sufyan, A.; Shah, S.A.A.; Khan, K.B.; Shah, I.A.; Ullah, A.; Siddiquu, T.A.; Yoo, H. Self-Decoupled 8-Element Dual Polarized MIMO Antenna for B5G Handsets With Sub-6 GHz and mmWave Integration. IEEE Access 2024, 12, 167324–167332. [Google Scholar] [CrossRef]
- Kiani, S.H.; Alharbi, A.G.; Khan, S.; Marey, M.; Mostafa, H.; Khan, M.A. Wideband three loop element antenna array for future 5G mmWave devices. IEEE Access 2022, 10, 22472–22479. [Google Scholar] [CrossRef]
- Luo, Y.; Shen, Y.; Cai, X.; Qian, F.; Xu, S.; Cui, H.; Yang, G. Substrate integrated coaxial line design for mmWave antenna with multilayer configuration. Int. J. RF Microw. Comput.-Aided Eng. 2022, 32, e23090. [Google Scholar] [CrossRef]
- Hong, W. Solving the 5G mobile antenna puzzle: Assessing future directions for the 5G mobile antenna paradigm shift. IEEE Microw. Mag. 2017, 18, 86–102. [Google Scholar] [CrossRef]
- Desai, A.; Upadhyaya, T.; Patel, R. Compact wideband transparent antenna for 5G communication systems. Microw. Opt. Technol. Lett. 2019, 61, 781–786. [Google Scholar] [CrossRef]
- Shen, X.; Liu, Y.; Zhao, L.; Huang, G.L.; Shi, X.; Huang, Q. A miniaturized microstrip antenna array at 5G millimeter-wave band. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1671–1675. [Google Scholar] [CrossRef]
- Jilani, S.F.; Alomainy, A. Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks. IET Microw. Antennas Propag. 2018, 12, 672–677. [Google Scholar] [CrossRef]
- Madni, A.; Bilal, R.M.H.; Khan, W.T. A compact metamaterial based high isolation MIMO antenna for 5.8 GHz WLAN applications. In Proceedings of the 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, CO, USA, 10–15 July 2022; IEEE: New York, NY, USA, 2022; pp. 245–246. [Google Scholar]
- Sokunbi, O.; Attia, H. Highly reduced mutual coupling between wideband patch antenna array using multiresonance EBG structure and defective ground surface. Microw. Opt. Technol. Lett. 2020, 62, 1628–1637. [Google Scholar] [CrossRef]
- Sikandar; Sharma, A.; Rai, J.K.; Katiyar, H. Design of a High Gain MIMO Dielectric Resonator Antenna for 5G mm-Wave Applications. In Proceedings of the 2023 International Conference on IoT, Communication and Automation Technology (ICICAT), Gorakhpur, India, 23–24 June 2023; IEEE: New York, NY, USA, 2023; pp. 1–5. [Google Scholar]
- Pan, Y.M.; Qin, X.; Sun, Y.X.; Zheng, S.Y. A simple decoupling method for 5G millimeter-wave MIMO dielectric resonator antennas. IEEE Trans. Antennas Propag. 2019, 67, 2224–2234. [Google Scholar] [CrossRef]
- Gao, D.; Cao, Z.X.; Fu, S.D.; Quan, X.; Chen, P. A novel slot-array defected ground structure for decoupling microstrip antenna array. IEEE Trans. Antennas Propag. 2020, 68, 7027–7038. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, J.Y.; Li, M.J.; Sun, D.; Guo, L.X. A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 747–751. [Google Scholar] [CrossRef]
- Jang, T.H.; Kim, H.Y.; Kang, D.M.; Kim, S.H.; Park, C.S. 60 GHz low-profile, wideband dual-polarized U-slot coupled patch antenna with high isolation. IEEE Trans. Antennas Propag. 2019, 67, 4453–4462. [Google Scholar] [CrossRef]
- Sokunbi, O.; Attia, H.; Hamza, A.; Shamim, A.; Yu, Y.; Kishk, A.A. New self-isolated wideband MIMO antenna system for 5G mm-wave applications using slot characteristics. IEEE Open J. Antennas Propag. 2023, 4, 81–90. [Google Scholar] [CrossRef]
- Tian, H.W.; Zhang, X.G.; Jiang, W.X.; Li, X.; Liu, Y.K.; Qiu, C.W.; Cui, T.J. Programmable controlling of multiple spatial harmonics via a nonlinearly phased grating metasurface. Adv. Funct. Mater. 2022, 32, 2203120. [Google Scholar] [CrossRef]
- Bao, L.; Fu, X.; Wu, R.Y.; Ma, Q.; Cui, T.J. Full-space manipulations of electromagnetic wavefronts at two frequencies by encoding both amplitude and phase of metasurface. Adv. Mater. Technol. 2021, 6, 2001032. [Google Scholar] [CrossRef]
- Singh, M.; Parihar, M.S. Gain improvement of Vivaldi MIMO antenna with pattern diversity using bi-axial anisotropic metasurface for millimeter-wave band application. IEEE Antennas Wirel. Propag. Lett. 2022, 22, 621–625. [Google Scholar] [CrossRef]
- Sehrai, D.A.; Abdullah, M.; Altaf, A.; Kiani, S.H.; Muhammad, F.; Tufail, M.; Irfan, M.; Glowacz, A.; Rahman, S. A novel high gain wideband MIMO antenna for 5G millimeter wave applications. Electronics 2020, 9, 1031. [Google Scholar] [CrossRef]
- Tariq, S.; Naqvi, S.I.; Hussain, N.; Amin, Y. A metasurface-based MIMO antenna for 5G millimeter-wave applications. IEEE Access 2021, 9, 51805–51817. [Google Scholar] [CrossRef]
- Munir, M.E.; Kiani, S.H.; Savci, H.S.; Marey, M.; Khan, J.; Mostafa, H.; Parchin, N.O. A four element mm-wave MIMO antenna system with wide-band and high isolation characteristics for 5G applications. Micromachines 2023, 14, 776. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.A.; Allam, A.; Gaafar, A.; Elhennawy, H.M.; Sree, M.F.A. Compact UWB MIMO antenna for 5G millimeter-wave applications. Sensors 2023, 23, 2702. [Google Scholar] [CrossRef]
- Gupta, A.; Kumari, M.; Sharma, M.; Alsharif, M.H.; Uthansakul, P.; Uthansakul, M.; Bansal, S. 8-port MIMO antenna at 27 GHz for n261 band and exploring for body centric communication. PLoS ONE 2024, 19, e0305524. [Google Scholar] [CrossRef]
- Al-Gburi, A.J.A.; Ibrahim, I.B.M.; Zeain, M.Y.; Zakaria, Z. Compact size and high gain of CPW-fed UWB strawberry artistic shaped printed monopole antennas using FSS single layer reflector. IEEE Access 2020, 8, 92697–92707. [Google Scholar] [CrossRef]
- Din, I.U.; Ullah, W.; Abbasi, N.A.; Ullah, S.; Shihzad, W.; Khan, B.; Jayakody, D.N.K. A novel compact ultra-wideband frequency-selective surface-based antenna for gain enhancement applications. J. Electromagn. Eng. Sci. 2023, 23, 188–201. [Google Scholar] [CrossRef]
- Sharma, D.; Tiwari, R.N.; Singh, D.K.; Matekovits, L. A pocket-integrated miniature, dual-band, and high gain textile MIMO antenna for 5G and WiFi wearable applications. Sci. Rep. 2025, 15, 5061. [Google Scholar] [CrossRef]
- Salim, N.; Singh, M.J.; Dibs, H.; Abed, A.T.; Islam, M.T.; Islam, M.S. Comparative performance analysis of two novel design MIMO antennas for 5G and Wi-Fi 6 applications. Results Eng. 2025, 25, 103808. [Google Scholar] [CrossRef]
- Xia, H.; Fan, H.; Liu, Z.; Miao, H.; Song, Z. Design of a 5G MIMO mobile intelligent terminal antenna with metasurface loading. Sensors 2025, 25, 2927. [Google Scholar] [CrossRef] [PubMed]
Parameter | Dimension Size (mm) | Parameter | Dimension Size (mm) |
---|---|---|---|
10 | 8 | ||
5 | 1.7 | ||
1 | 5 | ||
2 | 1 | ||
5 | 8 | ||
10 | 16 | ||
10 | 16 | ||
20 | 26 | ||
20 | 26 | ||
25 | 29 |
Ref. | Antenna Size | Bandwidth | 5G Band | Isolation | Gain | Eff. | ECC | Fabrication Complexity |
---|---|---|---|---|---|---|---|---|
[23] | 80 × 80 mm2 | 23–40 GHz (54%) | 28 GHz | >20 dB | 12 dB | 70% | 0.0014 | Large size, no decoupling |
[24] | 30 × 43 mm2 | 24–27 GHz (12%) | 26 GHz | >25 dB | 10.27 dB (+2.1 dB w/MS) | N.G. | 10−6 | Needs metasurface layer |
[25] | 48 × 12 mm2 | 23–41 GHz (56%) | 28 & 37 GHz | >20 dB | 8–10 dB | 82% | 0.00015 | DGS required |
[17] | 20 × 20 mm2 | 26–30 GHz (∼14%) | 28 GHz | 24 dB | N.G. | N.G. | 0.013 | Needs metal strips |
[15] | 21 × 11 mm2 | 27.5–28.35 GHz (∼3%) | Narrow 28 GHz | >20 dB | ∼6 dB | N.G. | <0.005 | Requires vias |
Proposed | 25 × 29 mm2 | 22–46 GHz (∼73%) | 28 & 37 GHz + mmWave | >20 dB | 7.5 dB (+1.5 dB FSS) | 93% | <0.005 | Single-layer, easy fabrication |
Ref. | Size | Antenna Type | Frequency | Abs.BW (GHZ) | FBW % | Decoupling Method | Isolation | Efficiency | ECC |
---|---|---|---|---|---|---|---|---|---|
[16] | not given (N.G) | Printed patch | 5–10 | 5 | 66.7 | Dielectric block (DB) | 20.6 | 97 | N.G |
[17] | DRA | 26–30 | 4 | 14.3 | Metal strips | 24 | N.G | 0.013 | |
[23] | Printed patch | 20–40 | 20 | 66.7 | N/A | 20 | 70 | 0.0014 | |
[24] | Printed patch | 24–27 | 3 | 11.8 | Metasurface | 45 | N.G | ||
[25] | Printed patch | 23–41 | 18 | 56.3 | DGS | 20 | 82 | 0.00015 | |
[26] | Printed patch | 25–50 | 25 | 66.7 | Orientation and DGS | N.G | 80 | 0.005 | |
Proposed | Printed patch | 22–46 | 24 | 70.6 | Metasurface and DGS | 20 | 93 | 0.0005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Din, I.U.; Khan, D.; Ullah, A.; Ouameur, M.A.; Razampoosh, B. A Compact Four-Element Multiple-Input Multiple-Output Array with an Integrated Frequency Selective Surface for Millimeter-Wave Applications. Telecom 2025, 6, 73. https://doi.org/10.3390/telecom6040073
Din IU, Khan D, Ullah A, Ouameur MA, Razampoosh B. A Compact Four-Element Multiple-Input Multiple-Output Array with an Integrated Frequency Selective Surface for Millimeter-Wave Applications. Telecom. 2025; 6(4):73. https://doi.org/10.3390/telecom6040073
Chicago/Turabian StyleDin, Iftikhar Ud, Daud Khan, Arif Ullah, Messaoud Ahmed Ouameur, and Bahram Razampoosh. 2025. "A Compact Four-Element Multiple-Input Multiple-Output Array with an Integrated Frequency Selective Surface for Millimeter-Wave Applications" Telecom 6, no. 4: 73. https://doi.org/10.3390/telecom6040073
APA StyleDin, I. U., Khan, D., Ullah, A., Ouameur, M. A., & Razampoosh, B. (2025). A Compact Four-Element Multiple-Input Multiple-Output Array with an Integrated Frequency Selective Surface for Millimeter-Wave Applications. Telecom, 6(4), 73. https://doi.org/10.3390/telecom6040073