Assessment of Electromagnetic Exposure to a Child and a Pregnant Woman Inside an Elevator in Mobile Frequencies
Abstract
1. Introduction
2. Specific Absorption Rate (SAR)
3. Bioheat Equation and Boundary Conditions
4. Models and Method
5. Results
5.1. Specific Absorption Rate over 10 g (SAR10g) and Temperature Variations
5.1.1. Cell Phone Transmission Frequency of 1000 MHz (SAR10g &Tmax)
5.1.2. Cell Phone Transmission Frequency of 1800 MHz (SAR10g &Tmax)
5.2. Whole Body Specific Absorption Rate—SARwb
5.2.1. Cell Phone Transmission Frequency of 1000 MHz (SARwb)
5.2.2. Cell Phone Transmission Frequency of 1800 MHz (SARwb)
5.3. SAR10g Surface Images
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hossain, M.I.; Faruque, M.R.I.; Islam, M.T. Analysis on the effect of the distances and inclination angles between human head and mobile phone on SAR. Prog. Biophys. Mol. Biol. 2015, 119, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Takei, R.; Nagaoka, T.; Saito, K.; Watanabe, S.; Takahashi, M. SAR variation due to exposure from a smartphone held at various positions near the torso. IEEE Trans. Electromagn. Compat. 2017, 59, 747–753. [Google Scholar] [CrossRef]
- Li, Y.; Lu, M. Study on SAR distribution of electromagnetic exposure of 5G mobile antenna in human brain. J. Appl. Sci. Eng. 2020, 23, 279–287. [Google Scholar]
- Wang, H.H. Analysis of electromagnetic energy absorption in the human body for mobile terminals. IEEE Open J. Antennas Propag. 2020, 1, 113–117. [Google Scholar] [CrossRef]
- Ben Hamadi, H.; Ghnimi, S.; Latrach, L.; Benech, P.; Gharsallah, A. New design of multi-band PIFA antenna with reduced SAR for mobile and wireless applications. Wirel. Pers. Commun. 2020, 115, 1211–1226. [Google Scholar] [CrossRef]
- Karim, M.E.; Hossain, B.M.A. SAR analysis of human head model using common antennas of 4G LTE mobile communications. In Proceedings of the Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT), Erode, India, 15–17 September 2021. [Google Scholar]
- Bonato, M.; Dossi, L.; Gallucci, S.; Benini, M.; Tognola, G.; Parazzini, M. Assessment of human exposure levels due to mobile phone antennas in 5G networks. Int. J. Environ. Res. Public Health 2022, 19, 1546. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, T.; Faruque, M.R.I.; Islam, M.T. Specific absorption rate reduction for sub-6 frequency range using polarization dependent metamaterial with high effective medium ratio. Sci. Rep. 2022, 12, 1803. [Google Scholar] [CrossRef] [PubMed]
- Takasaka, C.; Saito, K.; Takahashi, M.; Nagaoka, T.; Wake, K. Specific absorption rate (SAR) calculations in the abdomen of the human body caused by smartphone at various tilt angles: A consideration of the 1950 MHz band. IEICE Trans. Commun. 2022, E105-B, 295–301. [Google Scholar] [CrossRef]
- Zhang, H.H.; Gong, L.F.; Wang, J.; Sha, W.E.I.; Li, L.; Wang, J.X.; Wang, C. Specific absorption rate assessment of fifth generation mobile phones with specific anthropomorphic mannequin model and high-resolution anatomical head model. Int. J. RF Microw. Comput.-Aided Eng. 2022, 32, e23158. [Google Scholar] [CrossRef]
- Yi, M.; Chi, Y.; Wu, B.; Zhao, Y.; Su, T.; Qi, Y. Safety assessment of electromagnetic radiation from mobile phone antennas to the human head. Int. J. Energy 2023, 2, 23–26. [Google Scholar] [CrossRef]
- Turgut, A.; Engiz, B.K. Analyzing the SAR in human head tissues under different exposure scenarios. Appl. Sci. 2023, 13, 6971. [Google Scholar] [CrossRef]
- Lee, A.K.; Hong, S.E.; Kwon, J.H.; Choi, H.D. SAR comparison of SAM phantom and anatomical head models for a typical bar-type phone model. IEEE Trans. Electromagn. Compat. 2015, 57, 1281–1284. [Google Scholar] [CrossRef]
- Vieira, V.F.; Pessoa, L.M.; Carvalho, M.I. Evaluation of SAR induced by a planar inverted-F antenna based on a realistic human model. In Proceedings of the Joint Conference of EMBEC and NBC, Tampere, Finland, 11–15 June 2017. [Google Scholar]
- Rani, M.U.; Baba, V.S.S.N.S.; Gundala, S. Analysis of SAR in human blood, bones and muscles due to mobile waves at 900 MHz, 1800 MHz and 2400 MHz. Int. J. Appl. Eng. Res. 2018, 13, 2125–2129. [Google Scholar]
- Chowdhury, A.; Paul, N.; Islam, S.S.; Hossain, M.I. Comparison of electromagnetic absorption in human head for dipole and microstrip patch antenna. In Proceedings of the International Conference on Innovations in Science, Engineering and Technology (ICISET), Chittagong, Bangladesh, 27–28 October 2018. [Google Scholar]
- Mumin, A.R.O.; Alias, R.; Abdullah, J.; Dahlan, S.H.; Ali, J. Assessment of electromagnetic absorption towards human head using specific absorption rate. Bull. Electr. Eng. Inform. 2018, 7, 657–664. [Google Scholar]
- Mahmud, S. Analysis of mobile phone radiation effect on human body using specific absorption rate. Asian J. Appl. Sci. Eng. 2022, 11, 7–19. [Google Scholar] [CrossRef]
- Lee, A.K.; Hong, S.E.; Kwon, J.H.; Choi, H.D.; Cardis, E. Mobile phone types and SAR characteristics of the human brain. Phys. Med. Biol. 2017, 62, 2741–2761. [Google Scholar] [CrossRef] [PubMed]
- Elyamani, A.F.; Cueille, M.; Castagnetti, A.; Peyrard, P.; Villeneuve, R.; Amblard, R.; Garnier, N.; Serrano, B.; Dubard, J.-L. Influence of morphology and tissue distribution on SAR estimation: Application on a heterogeneous head with realistic connected glasses. In Proceedings of the International Workshop on Antenna Technology (iWAT), Bucharest, Romania, 25–28 February 2020. [Google Scholar]
- Sallomi, A.H.; Ahmed, G.A. Simulating the specific absorption rates in different human tissues at 4G frequencies for mobile phones. Bull. Electr. Eng. Inform. 2023, 12, 2860–2869. [Google Scholar] [CrossRef]
- Wessapan, T.; Rattanadecho, P. Temperature induced in human organs due to near-field and far-field electromagnetic exposure effects. Int. J. Heat Mass Transf. 2018, 119, 65–76. [Google Scholar] [CrossRef]
- Kaburcuk, F.; Elsherbeni, A. Temperature rise and SAR distribution at wide range of frequencies in a human head due to an antenna radiation. Appl. Comput. Electromagn. Soc. J. ACES 2018, 33, 367–372. [Google Scholar]
- Zhang, H.H.; Lin, Z.C.; Sha, W.E.I.; Choi, W.W.; Tam, K.W.; Donoro, D.G.; Shi, G. Electromagnetic-Thermal Analysis of Human Head Exposed to Cell Phones With the Consideration of Radiative Cooling. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1584–1587. [Google Scholar] [CrossRef]
- Cavagnaro, M.; Lin, J.C. Importance of Exposure Duration and Metrics on Correlation Between RF Energy Absorption and Temperature Increase in a Human Model. IEEE Trans. Biomed. Eng. 2019, 66, 2253–2258. [Google Scholar] [CrossRef] [PubMed]
- Laissaoui, A.; Mezouad, S.; Nekhoul, B. SAR Evalution in Human Head Exposed to RF Radiation. In Proceedings of the International Conference on Advances in Electrical Engineering (ICAEE), Constantine, Algeria, 29–31 October 2022. [Google Scholar]
- Seetharaman, R.; Tharun, M.; Gayathri, S.; Mole, S.S.S.; Anandan, K. Analysis of specific absorption rate and heat transfer in human head due to mobile phones. Mater. Today Proc. 2022, 51, 2365–2374. [Google Scholar] [CrossRef]
- Ramadan, A.; Shafey, H.; Abdelshafe, N.; Abdel-Rahman, A.K. Realistic Computational Modeling of Biothermal Effects Inside Human Head Exposed to Mobile Phone Radiation. J. Eng. Sci. 2023, 51, 16–36. [Google Scholar] [CrossRef]
- Siriwitpreecha, A.; Rattanadecho, P.; Wessapan, T. The influence of wave propagation mode on specific absorption rate and heat transfer in human body exposed to electromagnetic wave. Int. J. Heat Mass Transf. 2013, 65, 423–434. [Google Scholar] [CrossRef]
- Joukar, A.; Nammakie, E.; Niroomand-Oscuii, H. A comparative study of thermal effects of 3 types of laser in eye: 3D simulation with bioheat equation. J. Therm. Biol. 2015, 49, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Wessapan, T.; Rattanadecho, P. Temperature induced in the testicular and related tissues due to electromagnetic fields exposure at 900 MHz and 1800 MHz. Int. J. Heat Mass Transf. 2016, 102, 1130–1140. [Google Scholar] [CrossRef]
- Stankovic, V.; Jovanovic, D.; Krstic, D.; Markovic, V.; Cvetkovic, N. Temperature distribution and Specific Absorption Rate inside a child’s head. Int. J. Heat Mass Transf. 2017, 104, 559–565. [Google Scholar] [CrossRef]
- Lwin, Z.M.; Yokota, M. Numerical analysis of SAR and temperature distribution in two dimensional human head model based on FDTD parameters and the polarization of electromagnetic wave. AEU-Int. J. Electron. Commun. 2019, 104, 91–98. [Google Scholar] [CrossRef]
- Bhargava, D.; Rattanadecho, P.; Wessapan, T. The effect of metal objects on the SAR and temperature increase in the human head exposed to dipole antenna (numerical analysis). Case Stud. Therm. Eng. 2020, 22, 100789. [Google Scholar] [CrossRef]
- Gandhi, O.P.; Morgan, L.L.; de Salles, A.A.; Han, Y.-Y.; Herberman, R.B.; Davis, D.L. Exposure limits: The underestimation of absorbed cell phone radiation, especially in children. Electromagn. Biol. Med. 2012, 31, 34–51. [Google Scholar] [CrossRef] [PubMed]
- Deepika, B.; Ramya, V.; Yamuna, T.; Kalpana, R. A numerical analysis of temperature distribution in human eye when exposed to electromagnetic radiation. In Proceedings of the IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 10–11 July 2015. [Google Scholar]
- Lee, A.-K.; Park, J.S.; Hong, S.-E.; Taki, M.; Wake, K.; Wiart, J.; Choi, H.D. Brain SAR of average male Korean child to adult models for mobile phone exposure assessment. Phys. Med. Biol. 2019, 64, 045004. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Mu, S.; Hai, Z. Research on the Influence of Electromagnetic Radiation in the Automobile on the SAR Value of Human Body. In Proceedings of the International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT 2020), Shanghai Institute of Technology, Shanghai, China, 18–20 September 2020. [Google Scholar]
- Birks, L.E.; Van Wel, L.; Liorni, I.; Pierotti, L.; Guxens, M.; Huss, A.; Foerster, M.; Capstick, M.; Eeftens, M.; El Marroun, H.; et al. Radiofrequency electromagnetic fields from mobile communication: Description of modeled dose in brain regions and the body in European children and adolescents. Environ. Res. 2021, 193, 110505. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, G.A.; Sallomi, A.H. SAR Calculation in a Child Seven-Layer Head Model at 2.1 and 2.6 GHz. Wasit J. Comput. Math. Sci. 2023, 2, 62–71. [Google Scholar] [CrossRef]
- Hadjem, A.; Conil, E.; Gati, A.; Wong, M.-F.; Wiart, J. Analysis of power absorbed by children’s head as a result of new usages of mobile phone. IEEE Trans. Electromagn. Compat. 2010, 52, 812–819. [Google Scholar] [CrossRef]
- Fernández, C.; de Salles, A.A.; Sears, M.E.; Morris, R.D.; Davis, D.L. Absorption of wireless radiation in the child versus adult brain and eye from cell phone conversation or virtual reality. Environ. Res. 2018, 167, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, D.; Leeprechanon, N.; Rattanadecho, P.; Wessapan, T. Specific absorption rate and temperature elevation in the human head due to overexposure to mobile phone radiation with different usage patterns. Int. J. Heat Mass Transf. 2019, 130, 1178–1188. [Google Scholar] [CrossRef]
- Sudan, M.; Birks, L.E.; Aurrekoetxea, J.J.; Ferrero, A.; Gallastegi, M.; Guxens, M.; Ha, M.; Lim, H.; Olsen, J.; González-Safont, L.; et al. Maternal cell phone use during pregnancy and child cognition at age 5 years in 3 birth cohorts. Environ. Int. 2018, 120, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Boileau, N.; Margueritte, F.; Gauthier, T.; Boukeffa, N.; Preux, P.-M.; Labrunie, A.; Aubard, Y. Mobile phone use during pregnancy: Which association with fetal growth? J. Gynecol. Obstet. Hum. Reprod. 2020, 49, 101852. [Google Scholar] [CrossRef] [PubMed]
- Bektas, H.; Dasdag, S.; Bektas, M.S. Comparison of effects of 2.4 GHz Wi-Fi and mobile phone exposure on human placenta and cord blood. Biotechnol. Biotechnol. Equip. 2020, 34, 154–162. [Google Scholar] [CrossRef]
- Sandeep, S.; Vard, A.; Guxens, M.; Bloch, I.; Wiart, J. RF-EMF Exposure Assessment of Fetus During the First Trimester of Pregnancy. IEEE Access 2024, 12, 75311–75322. [Google Scholar] [CrossRef]
- Psenakova, Z.; Beňová, M.; Lauková, T. Investigation of Specific absorption rate (SAR) near model of fetus in uterus. In Proceedings of the IEEE International Conference ELEKTRO, Taormina, Italy, 25–28 May 2020. [Google Scholar]
- Bektas, H.; Dasdag, S.; Bektas, M.S. Evaluation of 900 and 1800 MHz Radiofrequency Radiation Emitted from Mobile Phones on Pregnant Women. J. Int. Dent. Med. Res. 2021, 14, 1675–1683. [Google Scholar]
- Karatsi, I.; Bakogianni, S.; Koulouridis, S. Temperature variations for adults and child human models inside elevator cabin. In Proceedings of the IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, PR, USA, 26 June–1 July 2016. [Google Scholar]
- Salah, I.Y.; Khalil, Y.A. High Resolution Numerical Modelling of In-Vehicle Mobile Cars. Int. J. Electromagn. Appl. 2015, 5, 66–72. [Google Scholar]
- Gombarska, D.; Smetana, M.; Janousek, L. High-Frequency Electromagnetic Field Measurement Inside Personal Vehicle Within Urban Environment. In Proceedings of the 12th International Conference on Measurement (MEASUREMENT), Smolenice, Slovakia, 27–29 May 2019. [Google Scholar]
- Psenakova, Z.; Benova, M.; Mydlova, J. Investigation of SAR (Specific Absorption Rate) in Different Head Models Placed in Shielded Space. In Proceedings of the IEEE 20th International Conference on Computational Problems of Electrical Engineering (CPEE), Lviv-Slavske, Ukraine, 15–18 September 2019. [Google Scholar]
- Benova, M.; Mydlova, J.; Psenakova, Z.; Smondrk, M. SAR evaluation in human head models with cochlear implant near PIFA antenna inside a railway vehicle. In Information Technology in Biomedicine, 1st ed.; Springer: Cham, Switzerland, 2020; pp. 289–300. ISBN 9783030496654/9783030496661. [Google Scholar]
- Karatsi, I.; Bakogianni, S.; Koulouridis, S. SAR and Thermal Distribution of Pregnant Woman and Child Inside Elevator Cabin. Int. J. Microw. Wirel. Technol. 2022, 15, 213–226. [Google Scholar] [CrossRef]
- Schmid & Partner Engineering AG. Available online: http://www.speag.com/speag (accessed on 10 July 2025).
- Sonawane, A.D.; Bormane, D.S. A Specific Absorption Rate in Human Head due to Mobile Phone Radiations: Review. In Proceedings of the International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 2–4 July 2020. [Google Scholar]
- Pinto, Y.C.; Ghanmi, A.; Hadjem, A.; Conil, E.; Namur, T.; Person, C.; Wiart, J. Numerical Mobile phone models validated by SAR measurements. In Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, Italy, 10–15 April 2011. [Google Scholar]
- IEEE/IEC 62209-1528-2020; IEC/IEEE International Standard—Measurement Procedure for the Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-Held and Body-Mounted Wireless Communication Devices–Part 1528: Human Models, Instrumentation, and Procedures (Frequency Range of 4 MHz to 10 GHz). International Electrotechnical Commission: Geneva, Switzerland, 2020.
- IEC EN62209-2:2010; Human Exposure to Radio Frequency Fields from Hand-Held and Body-Mounted Wireless Communication Devices. Human Models, Instrumentation, and Procedures. Part 2: Procedure to Determine the Specific Absorption Rate (SAR) for Wireless Communication Devices Used in Close Proximity to the Human Body (Frequency Range of 30 MHz to 6 GHz). International Electrotechnical Commission: Geneva, Switzerland, 2010; ISBN 978-2-88910-642-4.
- IEEE C95.1-2019/Cor 2-2020; IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz–Corrigenda 2, 2019–2020. Institute of Electrical and Electronics Engineers: Piscataway Township; NJ, USA, 2020.
- International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz). In ICNIRP Guidelines; The International Commission on Non-Ionizing Radiation Protection: Munich, Germany, 2020. [Google Scholar]
- Pennes, H.H. Analysis of tissue and arterial blood temperatures in resting forearm. J. Appl. Physiol. 1948, 1, 93–122. [Google Scholar] [CrossRef] [PubMed]
- Christ, A.; Guldimann, R.; Buhlmann, B.; Zefferer, M.; Bakker, J.F.; Van Rhoon, G.C.; Kuster, N. Exposure of the human body to professional and domestic induction cooktops compared to the basic restrictions. Bioelectromagnetics 2012, 33, 695–705. [Google Scholar] [CrossRef] [PubMed]
- Fiocchi, S.; Parazzini, M.; Liorni, I.; Samaras, T.; Ravazzani, P. Temperature Increase in the Fetus Exposed to UHF RFID Readers. IEEE Trans. Biomed. Eng. 2014, 61, 2011–2019. [Google Scholar] [CrossRef] [PubMed]
- Bakker, J.F.; Paulides, M.M.; Neufeld, E.; Christ, A.; Kuster, N.; Van Rhoon, G.C. Children and adults exposed to electromagnetic fields at the ICNIRP reference levels: Theoretical assessment of the induced peak temperature increase. Phys. Med. Biol. 2011, 56, 4967–4989. [Google Scholar] [CrossRef] [PubMed]
- Gosselin, M.-C.; Neufeld, E.; Moser, H.; Huber, E.; Farcito, S.; Gerber, L.; Jedensjö, M.; Hilber, I.; Di Gennaro, F.; Lloyd, B.; et al. Development of a New Generation of High-Resolution Anatomical Models for Medical Device Evaluation: The Virtual Population 3.0. Phys. Med. Biol. 2014, 59, 5287. [Google Scholar] [CrossRef] [PubMed]
- Government Gazette of the Hellenic Republic. Issue A, No. 79 (9 April 2012). Law No. 4067, New Building Regulation. Available online: http://www.publicrevenue.gr/elib/view?d=/gr/act/2012/4067/main/art/27/ (accessed on 10 July 2025).
- Hellenic Accreditation System. ESYD KO-ANEL/01/06/14-11-2017 2/161. Edition 01; Revision 06; Issue Date 26 May 2004; Revision Date 14 November 2017. Available online: http://esydops.gr/pweb/s/20/files/kanonismoi/kritiriaOdigies/ko_anel_14_11_2017.pdf (accessed on 10 July 2025).
- IEEE standard 1528; IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. Institute of Electrical and Electronics Engineers: Piscataway Township, NJ, USA, 2013.
- Karatsi, I.; Koulouridis, S. Dosimetry Study of Anatomical Pregnant Woman & Fetus Models Inside Three Different Elevator Cabins. In Proceedings of the 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 13–17 April 2015. [Google Scholar]
- World Health Organization (WHO). Environmental Health Criteria 137: Electromagnetic Fields (300 kHz to 300 GHz); World Health Organization (WHO): Geneva, Switzerland, 1993. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karatsi, I.; Bakogianni, S.; Koulouridis, S. Assessment of Electromagnetic Exposure to a Child and a Pregnant Woman Inside an Elevator in Mobile Frequencies. Telecom 2025, 6, 52. https://doi.org/10.3390/telecom6030052
Karatsi I, Bakogianni S, Koulouridis S. Assessment of Electromagnetic Exposure to a Child and a Pregnant Woman Inside an Elevator in Mobile Frequencies. Telecom. 2025; 6(3):52. https://doi.org/10.3390/telecom6030052
Chicago/Turabian StyleKaratsi, Ioanna, Sofia Bakogianni, and Stavros Koulouridis. 2025. "Assessment of Electromagnetic Exposure to a Child and a Pregnant Woman Inside an Elevator in Mobile Frequencies" Telecom 6, no. 3: 52. https://doi.org/10.3390/telecom6030052
APA StyleKaratsi, I., Bakogianni, S., & Koulouridis, S. (2025). Assessment of Electromagnetic Exposure to a Child and a Pregnant Woman Inside an Elevator in Mobile Frequencies. Telecom, 6(3), 52. https://doi.org/10.3390/telecom6030052