Antenna-on-Chip for Millimeter Wave Applications Using CMOS Process Technology
Abstract
1. Introduction
2. Structure, Mechanism, and Design
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Zhang, F.; Ji, Y.; Fan, W. Virtual Antenna Array with Directional Antennas for Millimeter-Wave Channel Characterization. IEEE Trans. Antennas Propag. 2022, 70, 6992–7003. [Google Scholar] [CrossRef]
- Sun, Y.-X.; Leung, K.W.; Lu, K. Compact dual microwave/millimeter-wave planar shared-aperture antenna for vehicle-to-vehicle/5G communications. IEEE Trans. Veh. Technol. 2021, 70, 5071–5076. [Google Scholar] [CrossRef]
- Yaduvanshi, R.S. Terahertz Dielectric Resonator Antennas for High Speed Communication and Sensing: From Theory to Design and Implementation; IET: Stevenage, UK, 2021; Volume 103. [Google Scholar]
- Sun, G.-H.; Wong, H. A planar millimeter-wave antenna array with a pillbox-distributed network. IEEE Trans. Antennas Propag. 2020, 68, 3664–3672. [Google Scholar] [CrossRef]
- Tong, X.; Jiang, Z.H.; Yu, C.; Wu, F.; Xu, X.; Hong, W. Low-Profile, Broadband, Dual-Linearly Polarized, and Wide-Angle Millimeter-Wave Antenna Arrays for Ka-Band 5G Applications. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 2038–2042. [Google Scholar] [CrossRef]
- Le Zhang, Q.; Chen, B.J.; Chan, K.F.; Chan, C.H. High-gain millimeter-wave antennas based on spoof surface plasmon polaritons. IEEE Trans. Antennas Propag. 2020, 68, 4320–4331. [Google Scholar] [CrossRef]
- Yu, Y.; Jiang, Z.H.; Zhang, J.-D.; Wu, W. Broadband Millimeter-Wave Endfire Circularly Polarized Array With a Low-Profile Feeding Structure. IEEE Trans. Antennas Propag. 2022, 70, 7270–7275. [Google Scholar] [CrossRef]
- Chung, M.-A.; Lin, C.-W.; Lo, W.-J. Near Field Sensing Applications with Tunable Beam Millimeter Wave Antenna Sensors in an All-in-One Chip Design. Electronics 2022, 11, 2231. [Google Scholar] [CrossRef]
- Burasa, P.; Djerafi, T.; Wu, K. A 28 GHz and 60 GHz dual-band on-chip antenna for 5G-compatible IoT-served sensors in standard CMOS process. IEEE Trans. Antennas Propag. 2020, 69, 2940–2945. [Google Scholar] [CrossRef]
- Liu, Q.; van den Biggelaar, A.; Johannsen, U.; van Beurden, M.C.; Smolders, A.B. On-chip metal tiling for improving grounded mm-Wave antenna-on-chip performance in standard low-cost packaging. IEEE Trans. Antennas Propag. 2019, 68, 2638–2645. [Google Scholar] [CrossRef]
- Althuwayb, A.A.; Alibakhshikenari, M.; Virdee, B.S.; Benetatos, H.; Falcone, F.; Limiti, E. Antenna on chip (AoC) design using metasurface and SIW technologies for THz wireless applications. Electronics 2021, 10, 1120. [Google Scholar] [CrossRef]
- Karim, R.; Iftikhar, A.; Ramzan, R. Performance-Issues-Mitigation-Techniques for On-Chip-Antennas–Recent Developments in RF, MM-Wave, and THz Bands with Future Directions. IEEE Access 2020, 8, 219577–219610. [Google Scholar] [CrossRef]
- Gutierrez, F.; Agarwal, S.; Parrish, K.; Rappaport, T.S. On-chip integrated antenna structures in CMOS for 60 GHz WPAN systems. IEEE J. Sel. Areas Commun. 2009, 27, 1367–1378. [Google Scholar] [CrossRef]
- Zhu, H.; Li, X.; Feng, W.; Xiao, J.; Zhang, J. 235 GHz on-chip antenna with miniaturised AMC loading in 65 nm CMOS. IET Microw. Antennas Propag. 2018, 12, 727–733. [Google Scholar] [CrossRef]
- Hedayati, M.K.; Abdipour, A.; Shirazi, R.S.; Ammann, M.J.; John, M.; Cetintepe, C.; Staszewski, R.B. Challenges in on-chip antenna design and integration with RF receiver front-end circuitry in nanoscale CMOS for 5G communication systems. IEEE Access 2019, 7, 43190–43204. [Google Scholar] [CrossRef]
- Kong, S.; Shum, K.M.; Yang, C.; Gao, L.; Chan, C.H. Wide impedance-bandwidth and gain-bandwidth terahertz on-chip antenna with chip-integrated dielectric resonator. IEEE Trans. Antennas Propag. 2021, 69, 4269–4278. [Google Scholar] [CrossRef]
- Gaha, H.I.; Balti, M. Novel Bi-UWB on-Chip Antenna for Wireless NoC. Micromachines 2022, 13, 231. [Google Scholar] [CrossRef]
- Mustacchio, C.; Boccia, L.; Arnieri, E.; Amendola, G. A gain levelling technique for on-chip antennas based on split-ring resonators. IEEE Access 2021, 9, 90750–90756. [Google Scholar] [CrossRef]
- Zhu, C.; Duan, Z.; Ma, Q. 94-GHz CMOS on-Chip Antenna Based on Stacked Dielectric Resonators and Substrate Integrated Waveguide Multi-Feed Network. In Proceedings of the 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Chengdu, China, 29 August–3 September 2021; pp. 1–3. [Google Scholar]
- Burasa, P.; Djerafi, T.; Constantin, N.G.; Wu, K. On-chip dual-band rectangular slot antenna for single-chip millimeter-wave identification tag in standard CMOS technology. IEEE Trans. Antennas Propag. 2017, 65, 3858–3868. [Google Scholar] [CrossRef]
- Khan, M.S.; Tahir, F.A.; Meredov, A.; Shamim, A.; Cheema, H.M. A W-band EBG-backed double-rhomboid bowtie-slot on-chip antenna. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1046–1050. [Google Scholar] [CrossRef]
- Sultan, K.S.; Abdallah, E.A.; El Hennawy, H. A multiple-input-multiple-output on-chip Quasi-Yagi-Uda antenna for multigigabit communications: Preliminary study. Eng. Rep. 2020, 2, e12133. [Google Scholar] [CrossRef]
- Shamim, M.S.; Mansoor, N.; Narde, R.S.; Kothandapani, V.; Ganguly, A.; Venkataraman, J. A wireless interconnection framework for seamless inter and intra-chip communication in multichip systems. IEEE Trans. Comput. 2016, 66, 389–402. [Google Scholar] [CrossRef]
Parameter | Value (μm) | Parameter | Value (μm) |
---|---|---|---|
L | 1200 | W | 1200 |
L1 | 50 | W1 | 450 |
L2 | 400 | W2 | 15 |
L3 | 350 | W3 | 90 |
L4 | 140 | W4 | 20 |
L5 | 110 | W5 | 250 |
Parameter | Value (μm) | Parameter | Value (μm) |
---|---|---|---|
L5 | 10 | W6 | 70 |
L6 | 90 | W7 | 10 |
L7 | 10 | W8 | 40 |
L8 | 70 |
Value (μm) | Bandwidth (GHz) |
---|---|
200 | 44.5 GHz~80.5 GHz |
350 | 30 GHz~41 GHz |
450 | 30 GHz~39 GHz |
References | Process | Frequency (GHz) | * FBW | Gain (dBi) | Size (mm2) |
---|---|---|---|---|---|
[8] | 0.18 μm CMOS | 28 | 84.7% | N/A | 1.16 × 0.76 |
[9] | 65 nm CMOS | 28 60 | 5.3% 5.9% | −10 0 | 0.25 × 0.3 |
[15] | 28 nm CMOS | 33 | 32% | −1.8 | 0.69 × 0.85 |
[17] | N/A | 77 140 | 21.28% 35.21% | −3.24 −5.78 | 0.9 × 0.9 |
[18] | SiGe | 81.5 | 12.2% | 1.61 | 1.29 × 1.5 |
[19] | 65 nm CMOS | 94 | 25.5% | 0.42 | N/A |
[20] | 65 nm CMOS | 24 | 19% | −1 | 2.5 × 2.5 |
[21] | 0.13 μm CMOS | 84 | 11.76% | −0.58 | 1 × 1 |
[22] | 0.18 μm CMOS | 60 | 30.5% | 0.35 | 0.63 × 0.46 |
[23] | N/A | 60 | 17.6% | −20 | 0.5 × 0.15 |
Proposed | 0.18 μm CMOS | 60 | 104.6% | −2.64 | 1.2 × 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, M.-A.; Chen, Y.-H.; Meiy, I.-P. Antenna-on-Chip for Millimeter Wave Applications Using CMOS Process Technology. Telecom 2023, 4, 146-164. https://doi.org/10.3390/telecom4010010
Chung M-A, Chen Y-H, Meiy I-P. Antenna-on-Chip for Millimeter Wave Applications Using CMOS Process Technology. Telecom. 2023; 4(1):146-164. https://doi.org/10.3390/telecom4010010
Chicago/Turabian StyleChung, Ming-An, Yu-Hsun Chen, and Ing-Peng Meiy. 2023. "Antenna-on-Chip for Millimeter Wave Applications Using CMOS Process Technology" Telecom 4, no. 1: 146-164. https://doi.org/10.3390/telecom4010010
APA StyleChung, M.-A., Chen, Y.-H., & Meiy, I.-P. (2023). Antenna-on-Chip for Millimeter Wave Applications Using CMOS Process Technology. Telecom, 4(1), 146-164. https://doi.org/10.3390/telecom4010010