Antenna-on-Chip for Millimeter Wave Applications Using CMOS Process Technology
Abstract
:1. Introduction
2. Structure, Mechanism, and Design
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Zhang, F.; Ji, Y.; Fan, W. Virtual Antenna Array with Directional Antennas for Millimeter-Wave Channel Characterization. IEEE Trans. Antennas Propag. 2022, 70, 6992–7003. [Google Scholar] [CrossRef]
- Sun, Y.-X.; Leung, K.W.; Lu, K. Compact dual microwave/millimeter-wave planar shared-aperture antenna for vehicle-to-vehicle/5G communications. IEEE Trans. Veh. Technol. 2021, 70, 5071–5076. [Google Scholar] [CrossRef]
- Yaduvanshi, R.S. Terahertz Dielectric Resonator Antennas for High Speed Communication and Sensing: From Theory to Design and Implementation; IET: Stevenage, UK, 2021; Volume 103. [Google Scholar]
- Sun, G.-H.; Wong, H. A planar millimeter-wave antenna array with a pillbox-distributed network. IEEE Trans. Antennas Propag. 2020, 68, 3664–3672. [Google Scholar] [CrossRef]
- Tong, X.; Jiang, Z.H.; Yu, C.; Wu, F.; Xu, X.; Hong, W. Low-Profile, Broadband, Dual-Linearly Polarized, and Wide-Angle Millimeter-Wave Antenna Arrays for Ka-Band 5G Applications. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 2038–2042. [Google Scholar] [CrossRef]
- Le Zhang, Q.; Chen, B.J.; Chan, K.F.; Chan, C.H. High-gain millimeter-wave antennas based on spoof surface plasmon polaritons. IEEE Trans. Antennas Propag. 2020, 68, 4320–4331. [Google Scholar] [CrossRef]
- Yu, Y.; Jiang, Z.H.; Zhang, J.-D.; Wu, W. Broadband Millimeter-Wave Endfire Circularly Polarized Array With a Low-Profile Feeding Structure. IEEE Trans. Antennas Propag. 2022, 70, 7270–7275. [Google Scholar] [CrossRef]
- Chung, M.-A.; Lin, C.-W.; Lo, W.-J. Near Field Sensing Applications with Tunable Beam Millimeter Wave Antenna Sensors in an All-in-One Chip Design. Electronics 2022, 11, 2231. [Google Scholar] [CrossRef]
- Burasa, P.; Djerafi, T.; Wu, K. A 28 GHz and 60 GHz dual-band on-chip antenna for 5G-compatible IoT-served sensors in standard CMOS process. IEEE Trans. Antennas Propag. 2020, 69, 2940–2945. [Google Scholar] [CrossRef]
- Liu, Q.; van den Biggelaar, A.; Johannsen, U.; van Beurden, M.C.; Smolders, A.B. On-chip metal tiling for improving grounded mm-Wave antenna-on-chip performance in standard low-cost packaging. IEEE Trans. Antennas Propag. 2019, 68, 2638–2645. [Google Scholar] [CrossRef]
- Althuwayb, A.A.; Alibakhshikenari, M.; Virdee, B.S.; Benetatos, H.; Falcone, F.; Limiti, E. Antenna on chip (AoC) design using metasurface and SIW technologies for THz wireless applications. Electronics 2021, 10, 1120. [Google Scholar] [CrossRef]
- Karim, R.; Iftikhar, A.; Ramzan, R. Performance-Issues-Mitigation-Techniques for On-Chip-Antennas–Recent Developments in RF, MM-Wave, and THz Bands with Future Directions. IEEE Access 2020, 8, 219577–219610. [Google Scholar] [CrossRef]
- Gutierrez, F.; Agarwal, S.; Parrish, K.; Rappaport, T.S. On-chip integrated antenna structures in CMOS for 60 GHz WPAN systems. IEEE J. Sel. Areas Commun. 2009, 27, 1367–1378. [Google Scholar] [CrossRef]
- Zhu, H.; Li, X.; Feng, W.; Xiao, J.; Zhang, J. 235 GHz on-chip antenna with miniaturised AMC loading in 65 nm CMOS. IET Microw. Antennas Propag. 2018, 12, 727–733. [Google Scholar] [CrossRef]
- Hedayati, M.K.; Abdipour, A.; Shirazi, R.S.; Ammann, M.J.; John, M.; Cetintepe, C.; Staszewski, R.B. Challenges in on-chip antenna design and integration with RF receiver front-end circuitry in nanoscale CMOS for 5G communication systems. IEEE Access 2019, 7, 43190–43204. [Google Scholar] [CrossRef]
- Kong, S.; Shum, K.M.; Yang, C.; Gao, L.; Chan, C.H. Wide impedance-bandwidth and gain-bandwidth terahertz on-chip antenna with chip-integrated dielectric resonator. IEEE Trans. Antennas Propag. 2021, 69, 4269–4278. [Google Scholar] [CrossRef]
- Gaha, H.I.; Balti, M. Novel Bi-UWB on-Chip Antenna for Wireless NoC. Micromachines 2022, 13, 231. [Google Scholar] [CrossRef]
- Mustacchio, C.; Boccia, L.; Arnieri, E.; Amendola, G. A gain levelling technique for on-chip antennas based on split-ring resonators. IEEE Access 2021, 9, 90750–90756. [Google Scholar] [CrossRef]
- Zhu, C.; Duan, Z.; Ma, Q. 94-GHz CMOS on-Chip Antenna Based on Stacked Dielectric Resonators and Substrate Integrated Waveguide Multi-Feed Network. In Proceedings of the 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Chengdu, China, 29 August–3 September 2021; pp. 1–3. [Google Scholar]
- Burasa, P.; Djerafi, T.; Constantin, N.G.; Wu, K. On-chip dual-band rectangular slot antenna for single-chip millimeter-wave identification tag in standard CMOS technology. IEEE Trans. Antennas Propag. 2017, 65, 3858–3868. [Google Scholar] [CrossRef]
- Khan, M.S.; Tahir, F.A.; Meredov, A.; Shamim, A.; Cheema, H.M. A W-band EBG-backed double-rhomboid bowtie-slot on-chip antenna. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1046–1050. [Google Scholar] [CrossRef]
- Sultan, K.S.; Abdallah, E.A.; El Hennawy, H. A multiple-input-multiple-output on-chip Quasi-Yagi-Uda antenna for multigigabit communications: Preliminary study. Eng. Rep. 2020, 2, e12133. [Google Scholar] [CrossRef] [Green Version]
- Shamim, M.S.; Mansoor, N.; Narde, R.S.; Kothandapani, V.; Ganguly, A.; Venkataraman, J. A wireless interconnection framework for seamless inter and intra-chip communication in multichip systems. IEEE Trans. Comput. 2016, 66, 389–402. [Google Scholar] [CrossRef]
Parameter | Value (μm) | Parameter | Value (μm) |
---|---|---|---|
L | 1200 | W | 1200 |
L1 | 50 | W1 | 450 |
L2 | 400 | W2 | 15 |
L3 | 350 | W3 | 90 |
L4 | 140 | W4 | 20 |
L5 | 110 | W5 | 250 |
Parameter | Value (μm) | Parameter | Value (μm) |
---|---|---|---|
L5 | 10 | W6 | 70 |
L6 | 90 | W7 | 10 |
L7 | 10 | W8 | 40 |
L8 | 70 |
Value (μm) | Bandwidth (GHz) |
---|---|
200 | 44.5 GHz~80.5 GHz |
350 | 30 GHz~41 GHz |
450 | 30 GHz~39 GHz |
References | Process | Frequency (GHz) | * FBW | Gain (dBi) | Size (mm2) |
---|---|---|---|---|---|
[8] | 0.18 μm CMOS | 28 | 84.7% | N/A | 1.16 × 0.76 |
[9] | 65 nm CMOS | 28 60 | 5.3% 5.9% | −10 0 | 0.25 × 0.3 |
[15] | 28 nm CMOS | 33 | 32% | −1.8 | 0.69 × 0.85 |
[17] | N/A | 77 140 | 21.28% 35.21% | −3.24 −5.78 | 0.9 × 0.9 |
[18] | SiGe | 81.5 | 12.2% | 1.61 | 1.29 × 1.5 |
[19] | 65 nm CMOS | 94 | 25.5% | 0.42 | N/A |
[20] | 65 nm CMOS | 24 | 19% | −1 | 2.5 × 2.5 |
[21] | 0.13 μm CMOS | 84 | 11.76% | −0.58 | 1 × 1 |
[22] | 0.18 μm CMOS | 60 | 30.5% | 0.35 | 0.63 × 0.46 |
[23] | N/A | 60 | 17.6% | −20 | 0.5 × 0.15 |
Proposed | 0.18 μm CMOS | 60 | 104.6% | −2.64 | 1.2 × 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, M.-A.; Chen, Y.-H.; Meiy, I.-P. Antenna-on-Chip for Millimeter Wave Applications Using CMOS Process Technology. Telecom 2023, 4, 146-164. https://doi.org/10.3390/telecom4010010
Chung M-A, Chen Y-H, Meiy I-P. Antenna-on-Chip for Millimeter Wave Applications Using CMOS Process Technology. Telecom. 2023; 4(1):146-164. https://doi.org/10.3390/telecom4010010
Chicago/Turabian StyleChung, Ming-An, Yu-Hsun Chen, and Ing-Peng Meiy. 2023. "Antenna-on-Chip for Millimeter Wave Applications Using CMOS Process Technology" Telecom 4, no. 1: 146-164. https://doi.org/10.3390/telecom4010010
APA StyleChung, M. -A., Chen, Y. -H., & Meiy, I. -P. (2023). Antenna-on-Chip for Millimeter Wave Applications Using CMOS Process Technology. Telecom, 4(1), 146-164. https://doi.org/10.3390/telecom4010010