Toward SDM-Based Submarine Optical Networks: A Review of Their Evolution and Upcoming Trends
Abstract
:1. Introduction
2. Submarine Optical Networks Basics and Demonstrations Technologies on Submarine Cable Systems
2.1. The Past Evolution of Submarine Transmission Systems
- ➢
- 1884: The first submarine cable supporting phone data (from San Francisco to Oakland).
- ➢
- 1954: The first submarine (high-voltage direct current) cable connected the island of Gotland to mainland Sweden.
- ➢
- 1956: The first deployment of repeaters (in the 1940s) boosted the TAT-1, which was the first telephone cable crossing Atlantic.
- ➢
- 1964: The first transpacific submarine coaxial telephone cable linking Japan, Hawaii, and the US mainland.
- ➢
- 1986: The first submerged international fiber-optic cable that connected Belgium to the United Kingdom.
- ➢
- 1988: The first submerged transoceanic fiber-optic cable, (named TAT-8), that connected the USA to the United Kingdom and France.
2.2. Important Milestones at Submarine Systems Evolution
2.3. Submarine Systems’ Performance Metrics
- ➢
- In submarine networks the service performance can be determined by information describing the health status of basic network components (BUs, intermediate repeaters). This information is obtained by coherent transponders which are placed at the ends of a submarine cable. Their terrestrial counterparts are by far more easy to monitor. Terrestrial networks can process more data with regard to each unit’s contribution to the whole system’s performance.
- ➢
- Total output power (TOP) constraint is another key difference between terrestrial and submarine systems as it changes the way that total SNR is calculated. The TOP constraint in submarine amplifiers results in signal depletion whereas amplifier noise is accumulated because the total channel power (S+N) remains fixed with distance.
2.4. SDM Transmission Technologies in Long Haul Transoceanic Systems
2.4.1. Features of SDM-Based Submarine Cable Systems
- ➢
- A relatively high count of FPs (in the same cable) in order to increase the transported capacity.
- ➢
- The deployment of lower effective area fibers in order to optimize cost through the use of a smaller number of regenerators.
- ➢
- The implementation of the novel “pump farming” repeaters’ technology. Pump farming means that a set of pump lasers isused to amplify a set of FPs. Reliability, redundancy, and better power management are the main advantages. In particular, reliability can be a cost-reduction factor as submarine cables’ failures and repairs (bringing downtime in provided services) are very costly.
- ➢
- SDM aims to achieve higher capacities by using the same amount of used power through a more efficient power management. The key concept is to reduce the optical power provided to each FP as a way to decrease the nonlinearities as implementing high count of FPs in the same cable.
2.4.2. Multiple Spatial Channels in SDM: MCF (Multi-Core Fibers)-MMF (Multi-Mode Fibers)-Bundles of Single-Mode Fibers (Bu-SMFs)
- ➢
- Multiplying the number of conventional fibers (thus implementing a parallelism that consists of single-core/single-mode fibers), considering the existence of at least one element that performs spatial integration, e.g., an amplifier with sharing pumps, a switching node, or terminal equipment.
- ➢
- Multiplying the number of cores in MCF fibers.
- ➢
- Multiplying the number of modes in MMF fibers.
2.5. Basic Segments (“Plants”) of a Submarine System
2.6. Cable-Installing Ships
3. Recently Announced Submarine Cable Systems
3.1. A Detailed Overview of SDM-Based Technology Cable Systems
- ➢
- pushing the limits of theoretical design capacity;
- ➢
- minimizing nonlinear effects to reduce needed equipment, cost, and complexity;
- ➢
- designing an efficient optical and electrical network based on repeater pump farming, low Aeff submarine fibers, and higher fiber counts; and
- ➢
- working in the optimum spectral efficiency of submarine line terminal equipment (SLTE): 2–3 b/s/Hz and lower chromatic dispersion compensation.
- ➢
- a high fiber count submarine repeater which broke through the fiber count limitation of existing products and can support up to 16 fiber pairs which can double the capacity;
- ➢
- an industry-leading 39.5 nm ultrawide bandwidth, which covers C-band and extended C-band, to maximize the capacity of one fiber pair; and
- ➢
- a significantly reduced cost/bit.
3.2. Attainable Capacity of Submarine Cable Systems
3.3. Experimental Demonstrations That Show a Glimpse to Possible Future Evolution
4. Submarine Amplifiers
4.1. Overview and History Evolution of Submarine Amplifiers
4.2. Differences between Terrestrials and Submarine Amplifiers
4.3. Multiband Amplification Technology
4.4. Pump Farming (SDM) Technology
- ➢
- 4 Pumps/2 Fiber Pairs, 4 Pumps/4 Fiber Pairs;
- ➢
- 8 Pumps/4 Fiber Pairs, 8 Pumps/8 Fiber Pairs; and
- ➢
- 16 Pumps/8 Fiber Pairs, 16 Pumps/16 Fiber Pairs.
4.5. Core Pumping (EDFA) Combined with SDM Technology
4.6. SDM Technology-Cladding Pumping EDFA (MC-EDFA)
4.7. Pump Recycling (SDM) Technology
4.8. Hybrid Core and Cladding Pump-Sharing EDFA (SDM) Technology
4.9. SDM Technology-Multi-Mode EDFA (MM-EDFA)
4.10. Experimental Demonstrations of Submarine SDM-Based Amplifiers at Transoceanic Distances
5. Internal Architectures of Submarine Cable Systems and BUs
6. Submarine Power Feeding
7. Economic Aspects of Submarine Networks
8. Submarine Networks Security
9. Can We Predict the Future in Submarine Networking?
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- History of the Atlantic Cable & Undersea Communications. Available online: https://atlantic-cable.com/Cables/CableTimeLine/ (accessed on 5 March 2022).
- Available online: https://www.submarinecablemap.com/ (accessed on 5 March 2022).
- Available online: https://www.submarinenetworks.com/ (accessed on 7 March 2022).
- Available online: https://subtelforum.com/ (accessed on 7 March 2022).
- List of International Submarine Communications Cables. Available online: https://en.wikipedia.org/wiki/List_of_international_submarine_communications_cables (accessed on 4 February 2022).
- Shariati, B.; Klonidis, D.; Marom, D.M.; Comellas, J.; Velasco, L.; Tomkos, I. Spectrally and Spatially Flexible Optical Networks: Recent Developments and Findings. In Proceedings of the 2018 20th International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 1–5 July 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Ciena. New Metrics Use Cases and Considerations. Simplifying Open Submarine Cable Link Engineering. 2021. Available online: https://www.ciena.com/insights/articles/simplifying-open-submarine-cable-link-engineering-blog.html (accessed on 7 March 2022).
- SDM1 BY ASN. Available online: https://web.asn.com/SDM1.html (accessed on 7 March 2022).
- Papapavlou, C.; Paximadis, K.; Tzimas, G. Progress and Demonstrations on Space Division Multiplexing. In Proceedings of the 2020 11th International Conference on Information Intelligence, Systems and Applications, Piraeus, Greece, 15–17 July 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Makovejs, S.; Hedgpeth, J. Fiber Technology for Subsea Networks Today vs. Tomorrow. Submarine Telecoms Magazine, Issue 117. 26 March 2021. [Google Scholar]
- Markow, A. Summary of Undersea Fiber Optic Network Technology and Systems. Available online: https://studylib.net/doc/8381708/summary-of-undersea-fiber-optic-network-technology/ (accessed on 4 February 2022).
- High Fiber Count Solution: Bring Larger Capacity to the World. 2021. Available online: https://www.hmntechnologies.com/enjsrdB.jhtml (accessed on 8 February 2022).
- Papapavlou, C.; Paximadis, K.; Tzimas, G. Design and Analysis of a new SDM submarine optical network for Greece. In Proceedings of the 12th International Conference on Information Intelligence, Systems and Applications (IISA2021), Piraeus, Greece, 15–17 July 2021. [Google Scholar]
- Nakamura, K.; Inoue, T.; Matsuo, Y.; Inada, Y.; Mateo, E. 60+ Gbaud real-time transmission over a 17.680 km line designed for GEN1-SDM submarine networks. In Proceedings of the 2020 Opto-Electronics and Communications Conference (OECC), Chiba, Japan, 2–8 October 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Zhang, H.; Turukhin, A.; Sinkin, O.V.; Patterson, W.; Batshon, H.G.; Sun, Y.; Davidson, C.R.; Mazurczyk, M.; Mohs, G.; Foursa, D.G.; et al. Power-efficient 100 Gb/s transmission over transoceanic distance using 8-dimensional coded modulation. In Proceedings of the 2015 European Conference on Optical Communication (ECOC), Valencia, Spain, 27 September–1 October 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Mertz, P.; Grubb, S.; Rahn, J.; Sande, W.; Stephens, M.; O’Connor, J.; Mitchell, M.; Voll, S. Record Ultra-High Full-Fill Capacity Trans-Atlantic Submarine Deployment Ushering in the SDM Era. In Proceedings of the 2020 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 8–12 March 2020; pp. 1–3. [Google Scholar]
- Takeshita, H.; Sato, M.; Inada, Y. Past, Current and Future Technologies for Optical Submarine Cable. In Proceedings of the IEEE/ACM Workshop on Photonics—Optics Technology Oriented Networking, Information and Computing Systems (PHOTONICS), Denver, CO, USA, 18 November 2019. [Google Scholar]
- Takahashi, H.; Soma, D.; Tsuritani, T. Promising Technologies for Future Submarine Cable Systems. In Proceedings of the 2020 Opto-Electronics and Communications Conference (OECC), Taipei, Taiwan, 4–8 October 2020. [Google Scholar]
- Garett, L. Design of Global Submarine Networks. J. Opt. Comm. Netw. 2018, 10, A185–A195. [Google Scholar] [CrossRef]
- TE SubCom and Nistica Announce Availability of Undersea Qualified Wavelength Selective Switch Modules. Available online: https://www.subcableworld.com/newsfeed/technology/te-subcom-and-nistica-announce-availability-of-undersea-qualified-wavelength-selective-switch-modules (accessed on 10 February 2022).
- Papapavlou, C.; Paximadis, K.; Tzimas, G. Analyzing ROADM cost in SDM networks. In Proceedings of the 11th Int. Conf. on Information Intelligence, Systems and Applications (IISA 2020), Piraeus, Greece, 15–17 July 2020. [Google Scholar]
- Pilipetskii, A.; Sinkin, O.; Turukhin, A.; Bolshtyansky, M.; Foursa, D. The Role of SDM in Future Transoceanic transmission Systems (invited). In Proceedings of the European Conference on Optical Communication (ECOC), Gothenberg, Sweden, 17–21 September 2017. [Google Scholar] [CrossRef]
- Pecci, P.; Jovanovski, L.; Barezzani, M.; Kamalov, V.; Marcerou, J.; Cantono, M.; Gumier, M.; Courtois, O.; Vusirikala, V. Pump Farming as Enabling Factor to Increase Subsea Cable; SubOptic: Nozay, France, 2019. [Google Scholar]
- Takeshita, H.; Matsumoto, K.; Hasegawa, H.; Sato, K.I.; de Gabory, E.L.T. Improved Optical Amplification Efficiency by using Turbo Cladding Pumping Scheme for Multicore Fiver Optical networks. IEICE Trans. Commun. 2019, 102, 1579–1589. [Google Scholar] [CrossRef]
- Nooruzzaman, M.; Morioka, T. Multicore Fibers for High-Capacity Submarine Transmission Systems. J. Opt. Commun. Netw. 2018, 10, A175–A184. [Google Scholar] [CrossRef]
- Cai, J.-X.; Bathson, H.G.; Mazurczyk, M.V.; Sinkin, O.G.; Wang, D.; Paskov, M.; Patterson, W.W.; Davidson, C.R.; Corbett, P.C.; Wolter, G.M.; et al. 70.46 Tb/s Over 7600 km and 71.65 Tb/s Over 6970 km Transmission in C + L Band Using Coded Modulation With Hybrid Constellation Shaping and Nonlinearity Compensation. J. Lightwave Technol. 2018, 36, 114–121. [Google Scholar] [CrossRef]
- Mazurczyk, M.; Foursa, D.G.; Batshon, H.G.; Zhang, H.; Davidson, C.R.; Cai, J.-X.; Pilipetskii, A.; Mohs, G.; Bergano, N.S. 30 Tb/s Transmission over 6630 km Using 16QAM Signals at 6.1 bits/s/Hz Spectral Efficiency. In European Conference and Exhibition on Optical Communication, OSA Technical Digest (Online); Optica Publishing Group: Washington, DC, USA, 2012; Paper Th.3.C.2. [Google Scholar]
- Turukhin, A.; Sinkin, O.V.; Batshon, H.G.; Zhang, H.; Sun, Y.; Mazurczyk, M.; Davidson, C.R.; Cai, J.-X.; Bolshtyansky, M.A.; Foursa, D.G.; et al. 105.1 Tbps power-efficient transmission over 14.350 km using a 12-core fiber. In Proceedings of the 2016 Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA, USA, 20–24 March 2016; pp. 1–3. [Google Scholar]
- Cai, J.-X.; Vedala, G.; Hu, Y.; Sinkin, O.V.; Bolshtyansky, M.A.; Foursa, D.G.; Pilipetski, A.N. 9 Tb/s Transmission using 29 mW Optical Pump Power per EDFA with 1.24 Tb/s/W Optical Power Efficiency over 15,050 km. J. Lightwave Technol. 2022, 40, 1650–1657. [Google Scholar] [CrossRef]
- HMN Tech Launches 32FP Petabit-Level Repeater Prototype. 2021. Available online: https://subtelforum.com/hmn-tech-launches-32fp-petabit-level-repeater-prototype (accessed on 10 February 2022).
- Ionescu, M.; Lavery, D.; Edwards, A.; Sillekens, E.; Semrau, D.; Galdino, L.; Killey, R.I.; Pelouch, W.; Barnes, S.; Bayvel, P. 74.38 Tb/s Transmission Over 6300 km Single Mode Fiber Enabled by C + L Amplification and Geometrically Shaped PDM-64QAM. J. Lightwave Technol. 2020, 38, 531–537. [Google Scholar] [CrossRef]
- Wakayama, Y.; Soma, D.; Beppu, S.; Sumita, S.; Igarashi, K.; Tsuritani, T. 266.1-Tbit/s Repeated Transmission over 90.4-km 6-Mode Fiber Using Dual C + L-Band 6-Mode EDFA. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; pp. 1–3. [Google Scholar]
- Ionescu, M.; Ghazisaeidi, A.; Renaudier, J. Machine Learning Assisted Hybrid EDFA-Raman Amplifier Design for C + L Bands. In Proceedings of the 2020 European Conference on Optical Communications (ECOC), Brusseles, Belgium, 6–11 December 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Da Ros, F.; de Moura, U.C.; Luis, R.S.; Rademacher, G.; Puttman, B.J.; Rosa, A.M.; Carena, A.; Awaji, Y.; Furukawa, A.; Zibar, D. Optimization of a Hybrid EDFA-Raman C + L Band Amplifier through Neural-Network Models. In Proceedings of the 2021 Optical Fiber Communications Conference and Exhibition (OFC), Washington, DC, USA, 6–11 June 2021; pp. 1–3. [Google Scholar]
- Zhang, H.; Davidson, C.R.; Batshon, H.G.; Mazurczyk, M.; Bolshtyansky, M.; Foursa, D.G.; Pilipetskii, A. DP-16QAM based coded modulation transmission in C + L band system at transoceanic distance. In Proceedings of the 2016 Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA, USA, 20–22 March 2016; pp. 1–3. [Google Scholar]
- Yu, Y.; Jin, L.; Xiao, Z.; Yu, Z.; Lu, Y.; Liu, L. 100.5 Tb/s MLC-CS-256QAM Transmission over 600-km Single Mode Fiber with C + L Band EDFA. In Proceedings of the 2018 Asia Communications and Photonics Conference (ACP), Hangzou, China, 26–29 October 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Abedin, K.S.; Taunay, T.F.; Fishteyn, M.; Yan, M.F.; Zhu, B.; Fini, J.M.; Monberg, E.M.; Dimarcello, F.V.; Wisk, P.W. Amplification and noise properties of an erbium-doped multicore fiber amplifier. Opt. Express 2011, 19, 16715–16721. [Google Scholar] [CrossRef]
- Igarashi, K.; Tsuritani, T.; Morita, I.; Tsuchida, Y.; Maeda, K.; Tadakuma, M.; Saito, T.; Watanabe, K.; Imamura, K.; Sugikazi, R.; et al. 1.03-Exabit/s × km Super-Nyquist-WDM transmission over 7326-km seven-core fiber. Opt. Express 2014, 22, 1220–1228. [Google Scholar] [CrossRef]
- Mimura, Y.; Tsuchida, Y.; Maeda, K.; Miyabe, R.; Aiso, K.; Matsuura, H.; Sugizaki, R. Batch Multicore Amplification with Cladding-Pumped Multicore EDF. In European Conference and Exhibition on Optical Communication, OSA Technical Digest (Online); Optical Society of America: Washington, DC, USA, 2012. [Google Scholar]
- Tsuchida, Y.; Maeda, K.; Watanabe, K.; Takeshima, K.; Sasa, T.; Saito, T.; Takasaka, S.; Kawaguchi, Y.; Tsuritani, T.; Sugisaki, R. Cladding Pumped Seven-Core EDFA Using an Absorption-Enhanced Erbium Doped Fiber. In Proceedings of the 42nd European Conference on Optical Communications, Düsseldorf, Germany, 18–22 September 2016 . paper M.2.A.2. [Google Scholar]
- Rahman, T.; Spinnler, B.; Calabro, S.; de Man, E.; Pulverer, K.; Castro, C.; Mizuno, T.; Miyamoto, T.; Takenaga, K.; Jain, S.; et al. 108 Tb/s Transmission over 120 km of 7-Core Multicore Fiber with Integrated Cladding Pumped Multicore Amplifiers. In Proceedings of the 2018 European Conference on Optical Communication (ECOC), Rome, Italy, 23–27 September 2018; pp. 1–3. [Google Scholar] [CrossRef] [Green Version]
- Soma, D.; Beppu, S.; Maeda, K.; Takasaka, S.; Sugisaki, R.; Takahashi, H.; Tsuritani, T. Long haul MCF Transmission using Full C + L-band 19-core Cladding pumped EDFA. In Proceedings of the 44th European Conference on Optical Communications, Rome, Italy, 23–27 September 2018. paper Mo3G.2. [Google Scholar]
- Puttnam, B.J.; Sugizaki, R.; Rademacher, G.; Luis, R.S.; Eriksson, T.A.; Klaus, W.; Awaji, Y.; Wada, N.; Maeda, K.; Takasaka, S. High Data-Rate and Long Distance MCF Transmission With 19-Core C + L band Cladding-Pumped EDFA. J. Lightwave Technol. 2019, 38, 123–130. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nakamura, M.; Hamaoka, F.; Shibahara, K.; Mizuno, T.; Sano, A.; Kawakami, H.; Isoda, A.; Nagatani, M.; Yamazaki, H.; et al. 1Pb/s (32 SDM/46 WDM/768 Gb/s) C-band Dense SDM Transmission over 205.6-km of Single-mode Heterogeneous Multi-core Fiber using 96-Gbaud PDM-16QAM Channels. In Proceedings of the Optical Fiber Conference(OFC), Los Angeles, CA, USA, 22–26 March 2017; pp. 1–3, Th5B. [Google Scholar]
- Jain, S.; Castro, C.; Jung, Y.; Hayes, J.; Sandoghchi, R.; Mizuno, T.; Sasaki, Y.; Amma, Y.; Miyamoto, Y.; Bohn, M.; et al. 32-core erbium/ytterbium-doped multicore fiber amplifier for next generation space-division multiplexed transmission system. Opt. Express 2017, 25, 32887–32896. [Google Scholar] [CrossRef]
- Takasaka, S.; Maeda, K.; Kawasaki, K.; Yoshioka, K.; Sugisaki, R.; Tsukamoto, M. Cladding Pump Recycling in 7-core EDFA. In Proceedings of the 44th European Conference on Optical Communications, Rome, Italy, 23–27 September 2018 . paper We1E.5. [Google Scholar]
- Wada, M.; Sakamoto, T.; Yamamoto, T.; Aozasa, S.; Nozoe, S.; Sagae, Y.; Tsujikawa, K.; Nakajima, K. Full C-band Low Mode Dependent and Flat Gain Amplifier using Cladding Pumped Randomly Coupled 12-core EDF. In Proceedings of the European Conference on Optical Communication 2017, Gothenburg, Sweden, 17–21 September 2017. Post deadline paper Th.PDP.A.5. [Google Scholar]
- Takeshita, H.; Matsumoto, K.; Yanagimachi, S.; de Gabory, E.L.T. Improvement of the Pump Recycling Ratio of Turbo Cladding Pumped MC-EDFA with Paired Spatial Pump Combiner and Splitter; OFC: Washington, DC, USA, 2019. [Google Scholar]
- Ono, H.; Miyamoto, Y.; Mizuno, T.; Yamada, M. Gain Control in Multi-Core Erbium-Doped Fiber Amplifier With Cladding and Core Hybrid Pumping. J. Lightwave Technol. 2019, 37, 3365–3372. [Google Scholar] [CrossRef]
- Yamada, M.; Ono, H.; Hosokawa, T.; Ichii, K. Gain control in multi-core erbium/ytterbium-doped fiber amplifier with hybrid pumping. In Proceedings of the OptoElectron. Communications Conference, Niigata, Japan, 3–7 July 2016. Paper WC1-2. [Google Scholar]
- Abedin, K.S. Recent Developments of Multicore Multimode Fiber Amplifiers for SDM Systems. In Proceedings of the 2016 21st OptoElectronics and Communications Conference (OECC), Niigata, Japan, 3–7 July 2016. [Google Scholar]
- De Gabory, E.l.; Matsumoto, K.; Fujita, S.; Nakamura, S.; Yanagimachi, S.; Abe, J. Transmission of 256Gb/s PM-16QAM Signal through Hybrid Cladding and Core Pumping Scheme MC-EDFA Controlled for Reduced Power Consumption. In Optical Fiber Communication Conference, OSA Technical Digest (Online); Optical Society of America: Washington, DC, USA, 2017; paper Th1C.1. [Google Scholar]
- Zhu, J.; Yang, Y.; Zuo, M.; He, Q.; Ge, D.; Chen, Z.; He, Y.; Li, J. Few-Mode Gain-Flattening Filter Using LPFG in Weakly-Coupled Double-Cladding FMF. J. Lightwave Technol. 2021, 39, 4439–4446. [Google Scholar] [CrossRef]
- Sleiffer, V.V.; Jung, Y.; Veljanovski, V.; Van Uden, R.R.; Kuschnerov, M.; Chen, H.H.; Inan, B.B.; Grüner-Nielsen, L.; Sun, Y.; Richardson, D.; et al. 737 Tb/s (96 × 3 × 256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA. Opt. Express 2012, 20, B428–B438. [Google Scholar] [CrossRef] [Green Version]
- Ip, E.; Li, M.-J.; Bennet, K.; Korolev, A.; Koreshkov, K.; Wood, W.; Montero, C.; Linares, J. Experimental characterization of a ring-profile few-mode erbium-doped fiber amplifier enabling gain equalization. In Proceedings of the 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Anaheim, CA, USA, 17–21 March 2013; pp. 1–3. [Google Scholar] [CrossRef]
- Ono, H.; Hosokawa, T.; Ichii, K.; Matsuo, S.; Nasu, H.; Yamada, M. 2-LP mode few-mode fiber amplifier employing ring-core erbium-doped fiber. Opt. Express 2015, 23, 27405–27418. [Google Scholar] [CrossRef]
- Bai, N.; Ip, E.; Luo, Y.; Peng, G.-D.; Wang, T.; Li, G. Experimental Study on Multimode Fiber Amplifier Using Modal Reconfigurable Pump; OFC/NFOEC: Washington, DC, USA, 2012; pp. 1–3. [Google Scholar]
- Qiu, Q.; Gu, Z.M.; Shi, C.J.; Chen, Y.; Lou, Y.; He, L.; Peng, J.G.; Li, H.Q.; Xing, Y.B.; Chu, Y.G.; et al. Six-mode extended L-band EDFA with a low differential modal gain. OSA Contin. 2021, 4, 1676–1687. [Google Scholar] [CrossRef]
- Fang, Y.; Zeng, Y.; Qin, Y.; Xu, O.; Li, J.; Fu, S. Design of Ring-Core Few-Mode-EDFA With the Enhanced Saturation Input Signal Power and Low Differential Modal Gain. IEEE Photon J. 2021, 13, 1–6. [Google Scholar] [CrossRef]
- Bergano, N.S. Bit error rate measurements of 14,000 km 5 Gbit/s fiber-amplifier transmission system using circulating loop. Electron. Lett. 1991, 27, 1889–1890. [Google Scholar] [CrossRef]
- Bergano, N.S. A 9000 km 5 Gb/s and 21,000 km 2.4 Gb/s Feasibility Demonstration of Transoceanic EDFA Systems Using a Circulating Loop. In Optical Fiber Communication Conference; OSA: Washington, DC, USA, 1991. [Google Scholar]
- Bergano, N.S. Undersea Amplified Lightwave Systems Design. In Optical Fiber Telecommunications, 3rd ed.; OSA: Washington DC, USA, 1997; Volume A. [Google Scholar]
- Bolshtyansky, M.A. Progress in Submarine Amplifiers. In Optical Fiber Communication Conference; OSA: Washington, DC, USA, 2019. [Google Scholar]
- Sinkin, O.V.; Turukhin, A.V.; Patterson, W.W.; Bolshtyansky, M.A.; Foursa, D.G.; Pilipetskii, A.N. Maximum Optical Power Efficiency in SDM-Based Optical Communication Systems. IEEE Photon Technol. Lett. 2017, 29, 1075–1077. [Google Scholar] [CrossRef]
- Takeshima, K.; Tsuritani, T.; Tsuchida, Y.; Maeda, K.; Saito, T.; Watanabe, K.; Sasa, T.; Imamura, K.; Sugizaki, R.; Igarashi, K.; et al. 51.1-Tbit/s MCF Transmission Over 2520 km Using Cladding-Pumped Seven-Core EDFAs. J. Lightwave Technol. 2015, 34, 761–767. [Google Scholar] [CrossRef]
- Turukhin, A.; Paskov, M.; Mazurczyk, M.V.; Patterson, W.W.; Batshon, H.G.; Sinkin, O.V.; Bolshtyansky, M.A.; Nyman, B.; Foursa, D.G.; Pilipetskii, A.N. Demonstration of Potential 130.8 Tb/s Capacity in Power-Efficient SDM Transmission over 12,700 km Using Hybrid Micro-Assembly Based Amplifier Platform. In Optical Fiber Communication Conference; OSA: Washington, DC, USA, 2019. [Google Scholar]
- Kobayashi, T.; Hiraga, K.; Yamada, M.; Kawakami, H.; Matsuo, S.; Masuda, H.; Takara, H.; Sano, A.; Saitoh, K.; Takenaga, K.; et al. 2 × 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation. In Proceedings of the 39th European Conference and Exhibition on Optical Communication (ECOC 2013), London, UK, 22–26 September 2013; pp. 1–3. [Google Scholar] [CrossRef]
- Ji, P.N.; Aida, R.; Wang, T. Submarine Reconfigurable Optical Add/Drop Multiplexer with Passive Branching Unit. US Patent 2015 0043920 A1, 12 February 2015. [Google Scholar]
- Nooruzzaman, M.; Alloune, N.; Tremblay, C.; Littlewood, P.; Belanger, M.P. Resource Savings in Submarine Networks Using Agility of Filterless Architectures. IEEE Commun. Lett. 2016, 21, 512–515. [Google Scholar] [CrossRef]
- Kovsh, D. Subsea Communications, IEEE, PTC Talk. 2020. Available online: https://comfutures2020.ieee-comfutures.org/wp-content/uploads/sites/101/2020/02/ComFutures2020-Ses1-SubseaCom-Kovsh.pdf (accessed on 8 February 2022).
- Desbruslais, S. Maximizing the Capacity of Ultra-Long haul Submarine Systems. In Proceedings of the 20th European Conference on Networks and Optical Communications—(NOC), London, UK, 30 June–2 July 2015. [Google Scholar] [CrossRef]
- Turukhin, A.V.; Sinkin, O.V.; Batshon, H.G.; Mazurczyk, M.; Bolshtyansky, M.A.; Foursa, D.G.; Pilipetskii, A.N. High-Capacity SDM Transmission over Transoceanic Distances (invited). In Optical Fiber Communication Conference; OSA: Washington, DC, USA, 2018. [Google Scholar]
- Liang, X.; Downie, J.D.; Hurley, J.E. Repeater Power Conversion Efficiency in Submarine Optical Communication Systems. IEEE Photon J. 2021, 13, 1–10. [Google Scholar] [CrossRef]
- Srinivas, H.; Downie, J.D.; Hurley, J.; Liang, X.; Himmelreich, J.; Perin, J.K.; Mello, D.A.A.; Kahn, J.M. Modeling and Experimental Measurement of Power Efficiency for Power-Limited SDM Submarine Transmission Systems. J. Lightwave Technol. 2021, 39, 2376–2386. [Google Scholar] [CrossRef]
- HMNTECH Website. 18 kV Power Feeding Solution Leads SDM System Revolution. 2021. Available online: https://www.hmntechnologies.com/enPressReleases/37856.jhtml (accessed on 10 February 2022).
- Dar, R.; Winzer, P.J.; Chraplyvy, A.R.; Zsigmond, S.; Huang, K.Y.; Fevrier, H.; Grubb, S. Submarine Cable Cost Reduction Through Massive SDM. In Proceedings of the 2017 European Conference on Optical Communication (ECOC), Gothenburg, Sweden, 17–21 September 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Dar, R.; Winzer, P.J.; Chraplyvy, A.R.; Zsigmond, S.; Huang, K.-Y.; Fevrier, H.; Grubb, S. Cost-Optimized Submarine Cables Using Massive Spatial Parallelism. J. Lightwave Technol. 2018, 36, 3855–3865. [Google Scholar] [CrossRef]
- Thouras, J.; Pincemin, E.; Amar, D.; Gravey, P.; Morvan, M.; Moulinard, M.-L. Economic Impact of Multicore Erbium-Ytterbium doped Fiber Amplifier in Long haul Optical Transport Networks. In Proceedings of the 2018 Photonics in Switching and Computing (PSC), Limassol, Cyprus, 19–21 September 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Asano, Y.; Jinno., M. Cost Comparison of Hierarchical Optical Cross-Connect Architectures for Spatial Channel Networks (SCNs). In Proceedings of the Asia Communications and Photonics Conference(ACP), Hangzhou, China, 26–29 October 2018. [Google Scholar]
- Downie, J.D. Maximum Capacities in Submarine Cables with Fixed Power Constraint for C-Band, C + L-Band, and Multicore Fiber Systems. J. Lightwave Technol. 2018, 36, 4025–4032. [Google Scholar] [CrossRef]
- Downie, J.D.; Liang, X.; Makovejs, S. On the Potential Application Space of Multicore Fibers in Submarine Cables. In Proceedings of the 45th European Conference on Optical Communication, Dublin, Ireland, 22–26 September 2019 . paper M.1.D.4. [Google Scholar]
- Bolshtyansky, M.A.; Sinkin, O.V.; Paskov, M.; Hu, Y.; Cantono, M.; Jovanovski, L.; Pilipetskii, A.N.; Mohs, G.; Kamalov, V.; Vusirikala, V. Single-Mode Fiber SDM Submarine Systems. J. Lightwave Technol. 2019, 38, 1296–1304. [Google Scholar] [CrossRef]
- Paximadis, K.; Papapavlou, C. Towards an all-New Submarine Optical Network for the Mediterranean Sea: Trends, Design and Economics. In Proceedings of the 2021 12th International Conference on Network of the Future (NoF), Coimbra, Portugal, 6–8 October 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Papapavlou, C.; Paximadis, K. ROADM Configuration, Management and Cost Analysis in the Future Era of SDM Networking. In Proceedings of the 2020 11th International Conference on Network of the Future (NoF), Bordeaux, France, 12–14 October 2020; pp. 168–175. [Google Scholar] [CrossRef]
- Downie, J.D.; Liang, X.; Makovejs, S. Modeling the Techno-Economics of Multicore Optical Fibers in Subsea Transmission Systems. J. Lightwave Technol. 2021, 40, 1569–1578. [Google Scholar] [CrossRef]
- Mauldin, A. Submarine Cable and Capacity Pricing Trends in Asia-Pacific; TeleGeography APRICOT: London, UK, 2018. [Google Scholar]
- Mariano, R. Jules Verne and the 20.000 Leagues of Subsea Cables: A True Tale about Submarine Cables. Available online: https://www.youtube.com/watch?v=JW9bCeknNjo&ab_channel=LACNICRIR (accessed on 7 March 2022).
- Papapavlou, C.; Paximadis, K.; Tzimas, G.; Savelona, I. Optical Frequency Hopping Techniques for Secure Fiber-Optic networks. In Proceedings of the 2021 12th International Conference on Information Intelligence, Systems & Applications (IISA), Chania Crete, Greece, 12–14 July 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Savva, G.; Manousakis, K.; Rak, J.; Tomkos, I.; Ellinas, G. High-Power Jamming Attack Mitigation Techniques in Spectrally-Spatially Flexible Optical Networks. IEEE Access 2021, 9, 28558–28572. [Google Scholar] [CrossRef]
Year | Cable System | Key Technology | Capacity/Channels | Length |
---|---|---|---|---|
1956–1978 | TAT-1 | First transatlantic * telephone cable, electronic repeaters, hotline | 36 (initial), 48 final telephone channels | 1942 km |
1978–1994 | TAT-7 | Employs coaxial cable technology | 4000 (initial), 10,500 final telephone channels | 8910 km |
1988–2002 | TAT-8 | First * fiber-optic transatlantic cable | 295.6 Mbit/s traffic or 40,000 phone circuits | 6705 km |
1991 | TAT-9 | First system to switch traffic on demand between five landing points | 560 Mbit/s traffic or 80,000 voice circuits | 9305 km |
1996–2008 | TAT-12/13 | EDFA technology implemented | 2 × 5 Gb/s | 12,307 km |
2001 | TAT-14 | Employs 4 fiber-pair (2 FPs active + 2 FPs backup) WDM technology with direct detection | 3.2 Tb/s | 15,428 km |
2008 | TPE | Employs 10 G DWDM technology | 5.12 Tb/s | 17,968 km |
2013 | PC-1 | Employs 100 G coherent technology | 8.4 Tb/s | 21,000 km |
2018 | PLCN | First submarine cable employs C + L band optical technology | 144 Tb/s | 12,971 km |
2021 | Dunant | First submarine cable employs 12 FPs introduces first-generation SDM technology, pump lasers, pump-sharing technology | 250 Tb/s | 6600 km |
2021 | H2HE | The world’s first 16-fiber-pair repeated submarine cable system. A milestone in technological innovation | 300 Tb/s | 675 km |
2022 | Peace | WSS ROADM BU, 200 G technology, SDM repeater | 90 Tb/s | 15,000 km |
2022 | Equiano | First submarine cable employs optical switching at the fiber-pair level (instead of wavelength-level switching) | 200 Tb/s | 15,000 km |
2023 | Confluence-1 | First submarine cable employs 24 fiber-pair SDM technology and it will be the largest to be recently installed | >500 Tb/s | 2571 km |
2023 | Ellalink | First submarine system to incorporate state-of-the-art ICE6 800 G coherent technology | 100 Tb/s | 6200 km |
2023 | Firmina | To be the world’s longest undersea cable capable of maintaining operations with single-end feed power by using 18-kV power technology | N.A | 2500 km |
2023–2024 | 2Africa | 2Africa aims to be one of the largest submarine cable systems (46 landing stations, 45,000 km) | 180 Tb/s | 45,000 km |
2025 | Arctic. Connect | To be the first transarctic cable system with new innovative cable type and will connect three continents (85% of total world population) | 200 Tb/s | 14,000 km |
2024–2025 | Apricot | To incorporate 400 G technology, all new submersible ROADM, flexible bandwidth management based on SDM-based design. | 190 Tb/s | 12,000 km |
2025 | SEA-ME-WE-6 | Utilizes SDM cable, supporting up to 24 FPs and incorporates enhanced branching units (eBUs) providing flexible electrical power and optical fiber routing with shore-based telemetry control | 126 Tb/s | 19,200 km |
PROS | CONS | |
---|---|---|
Lower capacity per FP, as FP becomes consequently the new granularity | Higher quantity of FP used | |
C-Band | FP switching used to drop a whole FP in a branch | Bigger cable needed to contain all the FPs |
Easier to sell FP | - | |
Easier to swap FP | - | |
- | Less efficient as MUX/DMUX should be used (~1 dB losses) | |
- | Attenuation is slightly higher in L band (beyond 1600 nm) | |
(C + L) Band | Limits the number of FP in the cable | Interband effects between C and L bands |
No need to develop big cable to contain all the FPs | Spectrum sharing needed to sell/swap a portion of a FP | |
- | Higher cost for BU with WSS to manage spectrum sharing | |
- | L band amplifier needed |
Submarine Cable System | RFS | Cable Length (Km) | Capacity (Tb/s) | Technology | Fiber Pairs (FPs) | SDM Nature/Info |
---|---|---|---|---|---|---|
Dunant | 2021 | 6400 | 250 | SDM 1 ASN | 12 | Pump Sharing Repeater/(12 FPs) |
Malbec | 2021 | 2600 | 108 | SDM | 8 | Fiber Count ≥ * 8FPs (8 FPs) |
Hainan to Hong Kong Express (H2HE) | 2021 | 675 | 307 | SDM 1 HMN | 16 | High Fiber Count (16 FPs) |
Peace | 2022 | 15,000 | 90 | SDM 1 ASN | † 16 | SDM Repeater/(16 FPs) |
Equiano | 2022 | 12,000 | 200 | SDM | 12 | Fiber Count ≥ * 8FPs (12 FPs) |
Grace Hopper | 2022 | 7191 | 352 | SDM | 16 | High Fiber Count (16 FPs) |
Amitie | 2022 | 6792 | 320 | SDM | 16 | High Fiber Count (16 FPs) |
2Africa | 2023 | 45,000 | 180 | SDM 1 ASN | 16 | Fiber Count ≥ * 8FPs/(12FPs) |
ECHO | 2023 | 17,184 | 144 | SDM | 12 | Fiber Count ≥ * 8FPs (12 FPs) |
IAX | 2023 | 5791 | 200 | SDM | † 12 | Fiber Count ≥ * 8FPs (12 FPs) |
Confluence-1 | 2023 | 2571 | ≥500 † | SDM | 24 | Ultrahigh Fiber Count (24 FPs) |
Firmina | 2023 | 2500 | N.A | SDM | 12 | Fiber Count ≥ * 8FPs (12 FPs) |
Bifrost | 2024 | 15,000 | 180 | SDM 1 ASN | 12 | Fiber Count ≥ * 8FPs (12 FPs) |
Apricot | 2024 | 12,000 | 190 | SDM | † 16–20 | Fiber Count ≥ (12 FPs), † (16–20 FPs) |
IEX | 2024 | 9775 | 200 | SDM | † 16 | High Fiber Count (16 FPs) |
Medusa | 2024 | 8760 | 480 | SDM | 24 | Ultrahigh Fiber Count (24 FPs) |
Blue Raman | 2024 | 7500 | 400 † | SDM | 16 | High Fiber Count (16 FPs) |
Caribbean Express (CX) | 2024 | 3472 | 280 | SDM | 18 | Very High Fiber Count (18 FPs) |
Hawaiki Nui | 2025 | 22,000 | 240 | SDM | 12 | Fiber Count ≥ * 8FPs (12 FPs) |
Sea-We-Me 6 | 2025 | 19,200 | 126 | SDM | 10 | Fiber Count ≥ * 8FPs (10 FPs) |
Subsea Component | SDM Cable | Traditional Cable |
---|---|---|
Submarine Cable | High Count of FPs (12, 16 FPs and more in future) | Limited number of FPs (6 FPs and maximum 8 FPs) |
Fiber Effective Area (Aeff) | Low effective area, Aeff 110–80 μm2, att. 0.155 dB/km | High effective area, Aeff 150–125 μm2, att. 0.15 dB/km |
Repeater | Low power repeaters: (+14 to 20 dBm) | Very high power repeaters: (>+20 dBm) |
Repeater Type | Repeater pump farming | Each fiber has own laser pumps |
Branching Unit ROADMs | Fiber pair switching in (BUs) | No fiber pair switching in (BUs) |
OSNR | Low OSNR | High OSNR |
Modulation Formats | PCS (probabilistic constellation shaping) | BPSK, QPSK, 8-QAM and 16-QAM |
C + L Band Technology | Currently only C-Band | C + L Band supported up to 144 channels per FP |
PFE | Same PFE, capacity can be increased | Same PFE |
Topology | Submarine Cable System | Cable Length (Km) | Landing Points | Number of Operators |
---|---|---|---|---|
SeaMeWe-3 | 39,000 | 39 | 52 | |
FLAG Europe-Asia (FEA) | 28,000 | 17 | Global Cloud Xchange | |
AsiaAfrica Europe-1 (AAE-1) | 25,000 | 20 | 18 | |
SeaMeWe-4 | 20,000 | 16 | 16 | |
SeaMeWe-5 | 20,000 | 18 | 18 | |
Africa Coast to Europe (ACE) | 17,000 | 22 | 20 | |
** SDM Repeater | Peace | 15,000 | 14 | Peace Cable International Network Co., Ltd. |
EuropeIndia Gateway (EIG) | 15,000 | 12 | 16 | |
Southern Cross NEXT | 13,700 | 7 | Southern Cross Cable | |
Polar Express | 12,650 | 10 | Russian Government | |
BRUSA | 11,000 | 4 | Telxius | |
Africa-1 | 10,000 | 10 | Etisalat UAE | |
South Atlantic Express (SAEx) | 10,000 | 5 | SAEx International | |
Trunk&Branch | Amitie | 6792 | 5 | 3 |
TE North/TGN-Eurasia/… | 3634 | 4 | 6 | |
Malbec | 2600 | 3 | Facebook, GlobeNet | |
* SDM Technology | 2Africa | 45,000 | 29 | 8 |
* SDM Technology | Hawaiki Nui | 22,000 | 13 | Hawaiki Submarine Cable |
* SDM Technology | ECHO | 17,184 | 6 | 2 |
* SDM Technology | Bifrost | 15,000 | 5 | 3 |
* SDM Technology | Equiano | 12,000 | 7 | |
* SDM Technology | Apricot | 12,000 | 4 | 7 |
* SDM Technology | Medusa | 8760 | 16 | AFRIX Telecom |
* SDM Technology | Grace Hopper | 7191 | 3 | |
* SDM Technology | Amitie | 6792 | 3 | 5 |
* SDM Technology | Caribbean Express (CX) | 3472 | 11 | OceanNetworks (ONI) |
* SDM Technology | Confluence-1 | 2571 | 5 | Confluence Networks |
EAC-C2C | 36,500 | 16 | Telstra | |
Mesh | Trans-Pacific Express (TPE) | 17,000 | 6 | 7 |
MedNautilus Submarine System | 7000 | 7 | Telecom Italia Sparkle | |
Apollo | 13,000 | 2 | Vodafone | |
CAP-1 | 12,000 | 2 | Amazon Web Services, Facebook | |
Seabras-1 | 10,800 | 2 | Seaborn Networks, Telecom Italia Sparkle | |
Point-to-Point | MAREA | 6605 | 2 | Facebook, Microsoft, Telxius |
INDIGO-Central | 4850 | 2 | 5 | |
JGA-N | 2600 | 2 | RTI | |
BlueMed | 1000 | 2 | Telecom Italia Sparkle | |
* SDM Technology | Dunant | 6400 | 2 | |
Japan-U.S. Cable Network (JUS) | 22,682 | 6 | 24 | |
Pacific Crossing-1 (PC-1) | 22,900 | 4 | NTT | |
Ring | TPC-5 | 22,560 | 6 | 13 |
Atlantic Crossing-1 (AC-1) | 14,301 | 4 | Lumen |
Reference | C (Tb/s) | L (Km) | ↓ SE (b/s/Hz) | Technology |
---|---|---|---|---|
[26] | 71.65 | 6970 | 7.36 | non-SDM |
[26] | 70.46 | 7600 | 7.23 | non-SDM |
[16] * | 24.6 | 6664 | 6.21 | non-SDM |
[27] | 30.58 | 6630 | 6.10 | non-SDM |
[28] | 105.1 | 14,350 | 3.20 | SDM |
[15] | 8.12 | 9750 | 3.20 | SDM |
[14] | 12 | 17,680 | 2.91 | SDM |
[29] | 9.0 | 15,050 | 2.00 | SDM |
Core Pumping | Cladding Pumping | |
---|---|---|
Mode | Single-Mode | Multi-Mode |
Pump Power (W) | Low (−5) | High (−30) |
Wavelength(λ) (nm) Direction | 1480 Backward | 980 Forward |
Number of Pump LD’s | N-Cores | 1 |
Presence of Cooling subsystem | Yes | No |
Pumping Scheme | Acronym | Core Pumping | Clad Pumping | Comments |
---|---|---|---|---|
Individual Core Pumping | ICP | Yes | No | Reference |
Shared Core Pumping | SCP | Yes | No | With 3 dB coupler |
Variable Shared Core Pumping | VSCP | Yes | No | With tunable coupler |
Common Cladding Pumping | CCP | No | Yes | Need of core attenuation |
Hybrid with Individual Core Pumping | HICP | Yes | Yes | - |
Hybrid with Shared Core Pumping | HSCP | Yes | Yes | With 3 dB coupler |
Hybrid with Variable Shared Core Pumping | HVSCP | Yes | Yes | With tunable coupler |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papapavlou, C.; Paximadis, K.; Uzunidis, D.; Tomkos, I. Toward SDM-Based Submarine Optical Networks: A Review of Their Evolution and Upcoming Trends. Telecom 2022, 3, 234-280. https://doi.org/10.3390/telecom3020015
Papapavlou C, Paximadis K, Uzunidis D, Tomkos I. Toward SDM-Based Submarine Optical Networks: A Review of Their Evolution and Upcoming Trends. Telecom. 2022; 3(2):234-280. https://doi.org/10.3390/telecom3020015
Chicago/Turabian StylePapapavlou, Charalampos, Konstantinos Paximadis, Dimitrios Uzunidis, and Ioannis Tomkos. 2022. "Toward SDM-Based Submarine Optical Networks: A Review of Their Evolution and Upcoming Trends" Telecom 3, no. 2: 234-280. https://doi.org/10.3390/telecom3020015
APA StylePapapavlou, C., Paximadis, K., Uzunidis, D., & Tomkos, I. (2022). Toward SDM-Based Submarine Optical Networks: A Review of Their Evolution and Upcoming Trends. Telecom, 3(2), 234-280. https://doi.org/10.3390/telecom3020015