An IoT-Based Encapsulated Design System for Rapid Model Identification of Plant Development
Abstract
:1. Introduction
- An encapsulated design (apparatus) for accelerated experiments of plant growth in an isolated environment with autonomous permutations of artificial climatic conditions.
- Cloud-based software support for remote autonomous real-time data monitoring, acquisition, and archiving, suitable for AI data processing and modeling.
- A methodology of plant-growth observation with rapid performance of experiments for the collection of relevant measurements and plant development model identification.
2. Rapid Plant Modeling System
- To develop the IoT-based apparatus for rapid collection of plant growth data, storage, and processing.
- To conduct experiments across 5000 climate scenarios over a period of 2 years.
- To obtain a relevant dataset of 6 mil. entries for the chosen wheat crop.
- To apply machine learning algorithms to three different growth stages to obtain various use-case models of wheat crop development.
- To structure the dataset and the models to be exploited for prediction of crop maturation, grain moisture, and optimization of pest treatments.
- Temperature [C]: [4, 4.5, 5, …, 39.5, 40],
- Humidity [%]: [10, 15, 20, …, 95, 100],
- PPFD [mol/m]: [0, 25, 50, …, 1725, 1750],
- Nutrients [pH]: [4, 4.5, 5, …, 9.5, 10].
3. Encapsulated Design Plant Growth Devices
3.1. Climate Parameter Regulation
3.1.1. Air Temperature
3.1.2. CO Concentration
3.1.3. Lighting
3.1.4. Soil Moisture and Air Humidity
3.1.5. Nutrients
3.2. Measured Identifiers
4. Software Architecture
4.1. Device Software Layer
4.2. Computer Cloud Layer
4.3. Central Data Server
- Linux-based embedded controllers in devices.
- Computer cloud exploiting the Microsoft Azure platform.
- Central server: Linux Ubuntu.
- Central database: PostgreSQL.
- APIs to communicate with the NoSQL database.
- APIs implemented in Python.
- Microclimate control implemented in C (embedded IoT devices).
4.4. System Capability for Rapid Data Collection
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Chettri, L.; Bera, R. A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems. IEEE Internet Things J. 2020, 7, 16–32. [Google Scholar] [CrossRef]
- Farooq, M.S.; Riaz, S.; Abid, A.; Abid, K.; Naeem, M.A. A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. IEEE Access 2019, 7, 156237–156271. [Google Scholar] [CrossRef]
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.N. An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Jha, K.; Doshi, A.; Patel, P.; Shah, M. A comprehensive review on automation in agriculture using artificial intelligence. Artif. Intell. Agric. 2019, 2, 1–12. [Google Scholar] [CrossRef]
- Roopaei, M.; Rad, P.; Choo, K. Cloud of Things in Smart Agriculture: Intelligent Irrigation Monitoring by Thermal Imaging. IEEE Cloud Comput. 2017, 4, 10–15. [Google Scholar] [CrossRef]
- Zhao, S.; Peng, Y.; Liu, J.; Wu, S. Tomato Leaf Disease Diagnosis Based on Improved Convolution Neural Network by Attention Module. Agriculture 2021, 11, 651. [Google Scholar] [CrossRef]
- Bhatia, A.; Chug, A.; Singh, A.P. Statistical analysis of machine learning techniques for predicting powdery mildew disease in tomato plants. Int. J. Intell. Eng. Inf. 2021, 9, 24–58. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.K.; Prajneshu. Artificial Neural Network Methodology for modeling and Forecasting Maize Crop Yield. Agric. Econ. Res. Rev. 2008, 21, 5–10. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big Data in Smart Farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Ahmad, U.; Alvino, A.; Marino, S. A Review of Crop Water Stress Assessment Using Remote Sensing. Remote Sens. 2021, 13, 4155. [Google Scholar] [CrossRef]
- Lazarević, B.; Šatović, Z.; Nimac, A.; Vidak, M.; Gunjača, J.; Politeo, O.; Carović-Stanko, K. Application of Phenotyping Methods in Detection of Drought and Salinity Stress in Basil (Ocimum basilicum L.). Front. Plant Sci. 2021, 12, 174. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Tran, D.; Dutoit, F.; Najdenovska, E.; Wallbridge, N.; Plummer, C.; Mazza, M.; Raileanu, L.E.; Camps, C. Electrophysiological assessment of plant status outside a Faraday cage using supervised machine learning. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Oletić, D.; Rosner, S.; Zovko, M.; Bilas, V. Time-frequency features of grapevine’s xylem acoustic emissions for detection of drought stress. Comput. Electron. Agric. 2020, 178, 105797. [Google Scholar] [CrossRef]
- Lešić, V.; Novak, H.; Ratković, M.; Zovko, M.; Lemić, D.; Skendžić, S.; Tabak, J.; Polić, M.; Orsag, M. Rapid Plant Development modeling System for Predictive Agriculture Based on Artificial Intelligence. In Proceedings of the 16th International Conference on Telecommunications (ConTEL), Zagreb, Croatia, 30 June–2 July 2021; pp. 173–180. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Doucette, W.; Dettenmaier, E.; Bugbee, B.; Mackay, D. Mass Transport from Soil to Plants. In Handbook of Chemical Mass Transport in the Environment; CRC Press: Boca Raton, FL, USA, 2010; pp. 389–411. [Google Scholar] [CrossRef]
- Snowden, M.C.; Cope, K.R.; Bugbee, B. Sensitivity of Seven Diverse Species to Blue and Green Light: Interactions with Photon Flux. PLoS ONE 2016, 11, e0163121. [Google Scholar] [CrossRef]
- Chandra, S.; Lata, H.; Khan, I.A.; Elsohly, M.A. Photosynthetic response of Cannabis sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions. Physiol. Mol. Biol. Plants 2008, 14, 299–306. [Google Scholar] [CrossRef] [Green Version]
- MicaSense. RedEdge-MX Professional Multispectral Sensor for Agriculture. Available online: https://micasense.com/rededge-mx/ (accessed on 12 November 2021).
- Polić, M.; Ivanović, A.; Marić, B.; Arbanas, B.; Tabak, J.; Orsag, M. Structured Ecological Cultivation with Autonomous Robots in Indoor Agriculture. In Proceedings of the 16th International Conference on Telecommunications (ConTEL), Zagreb, Croatia, 30 June–2 July 2021; pp. 189–195. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Meza, C.; Rivera, J.; Alonso, L.; Moreno, J. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur. J. Agron. 2013, 46, 42–52. [Google Scholar] [CrossRef]
- Panda, S.S.; Ames, D.P.; Panigrahi, S. Application of Vegetation Indices for Agricultural Crop Yield Prediction Using Neural Network Techniques. Remote Sens. 2010, 2, 673–696. [Google Scholar] [CrossRef] [Green Version]
- Microsoft Azure IoT Reference Architecture. Available online: https://azure.microsoft.com/en-us/resources/microsoft-azure-iot-reference-architecture/ (accessed on 17 November 2021).
Measured Parameter | Unit |
---|---|
Air temperature | [C] |
Airflow | [CFM] |
Air humidity | [%] |
Photosynthetic photon flux density | [mol/m/s] |
Soil moisture | [%] |
Spectral image light intensity (3 bands) | [%] |
Calculated Vegetation Index | Expected Range |
---|---|
Stem length (in m) | 0 to 0.6 |
Plant biomass (in g/m) | 0 to 50 |
Leaf area index | 0 to 5 |
Normalized Difference Vegetation Index (NDVI) | −1 to 1 |
Green Normalized Difference Vegetation Index (GNDVI) | −1 to 1 |
Ratio Vegetation Index (RVI) | 0 to 25 |
Simple Ratio (SR) | 0 to 20 |
Photochemical Reflectance Index (PRI) | −0.5 to 0.5 |
Chlorophyll Index (CI) | 0 to 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novak, H.; Ratković, M.; Cahun, M.; Lešić, V. An IoT-Based Encapsulated Design System for Rapid Model Identification of Plant Development. Telecom 2022, 3, 70-85. https://doi.org/10.3390/telecom3010004
Novak H, Ratković M, Cahun M, Lešić V. An IoT-Based Encapsulated Design System for Rapid Model Identification of Plant Development. Telecom. 2022; 3(1):70-85. https://doi.org/10.3390/telecom3010004
Chicago/Turabian StyleNovak, Hrvoje, Marko Ratković, Mateo Cahun, and Vinko Lešić. 2022. "An IoT-Based Encapsulated Design System for Rapid Model Identification of Plant Development" Telecom 3, no. 1: 70-85. https://doi.org/10.3390/telecom3010004
APA StyleNovak, H., Ratković, M., Cahun, M., & Lešić, V. (2022). An IoT-Based Encapsulated Design System for Rapid Model Identification of Plant Development. Telecom, 3(1), 70-85. https://doi.org/10.3390/telecom3010004