A Literature Review on Caching Transient Contents in Vehicular Named Data Networking
Abstract
:1. Introduction
2. Vehicular NDN
3. Transient Contents in VANETs: An Overview
3.1. Minimizing Age of Information of Safety Information
3.2. Transient Information for Non-Safety Applications and Routing Protocols
3.3. Caching
3.4. Main Insights
- Contents with a fixed predefined lifetime. In this case, contents are characterized by a fixed lifetime that is usually application-specific [41]. Traditional beaconing approaches with a fixed frequency of message generation and monitoring applications that capture parameters at regular intervals belong to this category, e.g., environmental data, like humidity and temperature periodically captured by sensors deployed in RSUs or on-board of vehicles. Timestamp and lifetime (or refresh period) information can be set by the source and advertised directly in the content packet. Therefore it is extremely simple to maintain cache consistency and evict stale data. Thanks to GPS receivers, synchronization can be easily maintained among vehicles and infrastructure elements.
- Contents with a variable lifetime. In this case, the lifetime is a-priori unknown: contents are updated by their producers randomly or on an event basis. Sometimes, the generation sampling rate is the result of policies that trade off between the timeliness of the information and other network parameters [31]. When different versions of the content are available in the network, a timestamp or a sequence number set by the source are crucial to recognize the freshest versions.
4. Transient Contents Caching in NDN
4.1. Caching Policies in IoT and Sensor Networks
4.2. Replacement Policies
5. To Cache and Replace Transient Contents in VNDN
5.1. Cache Consistency
5.2. Caching Policies
5.3. Replacement Policies
6. Insights and Research Perspectives
7. Conclusions
Funding
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AoI | Age of Information |
CAM | Cooperative Awareness Messages |
CEE | Cache Everything Everywhere |
CS | Content Store |
ETSI | European Telecommunications Standards Institute |
FIB | Forwarding Information Base |
FIFO | First In First Out |
GPS | Global Positioning System |
ICN | Information Centric Networking |
IoT | Internet of Things |
IoV | Internet of Vehicles |
ITS | Intelligent Transportation System |
LFU | Least Frequently Used |
LRU | Least Recently Used |
MAC | Medium Access Control |
NDN | Named Data Networking |
PIT | Pending Interest Table |
RSU | Road Side Unit |
SDN | Software Defined Networking |
VANET | Vehicular Ad Hoc Network |
VCC | Vehicular Cloud Computing |
V2I | Vehicle To Infrastructure |
V2V | Vehicle To Vehicle |
VNDN | Vehicular NDN |
References
- Zhang, L.; Afanasyev, A.; Burke, J.; Jacobson, V.; Claffy, K.; Crowley, P.; Papadopoulos, C.; Wang, L.; Zhang, B. Named data networking. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 66–73. [Google Scholar] [CrossRef]
- Meisel, M.; Pappas, V.; Zhang, L. Ad hoc networking via named data. In Proceedings of the Fifth ACM International Workshop on Mobility in the Evolving Internet Architecture, Chicago, IL, USA, 20–24 September 2010; pp. 3–8. [Google Scholar]
- Amadeo, M.; Campolo, C.; Molinaro, A. CRoWN: Content-Centric Networking in Vehicular Ad Hoc Networks. IEEE Commun. Lett. 2012, 16, 1380–1383. [Google Scholar] [CrossRef]
- Grassi, G.; Pesavento, D.; Pau, G.; Vuyyuru, R.; Wakikawa, R.; Zhang, L. VANET via Named Data Networking. In Proceedings of the 2014 IEEE Conference on Computer Communications Workshops, Toronto, ON, Canada, 27 April–2 May 2014; pp. 410–415. [Google Scholar]
- Yaqub, M.A.; Ahmed, S.H.; Bouk, S.H.; Kim, D. Interest forwarding in vehicular information centric networks: A survey. In Proceedings of the 31st Annual ACM Symposium on Applied Computing, Pisa, Italy, 4–8 April 2016; pp. 724–729. [Google Scholar]
- Borrego, C.; Amadeo, M.; Molinaro, A.; Mendes, P.; Sofia, R.C.; Magaia, N.; Borrell, J. Forwarding in Opportunistic Information-Centric Networks: An Optimal Stopping Approach. IEEE Commun. Mag. 2020, 58, 56–61. [Google Scholar] [CrossRef]
- Ahmed, S.H.; Bouk, S.H.; Yaqub, M.A.; Kim, D.; Song, H.; Lloret, J. CODIE: Controlled data and interest evaluation in vehicular named data networks. IEEE Trans. Veh. Technol. 2016, 65, 3954–3963. [Google Scholar] [CrossRef]
- Huang, W.; Song, T.; Yang, Y.; Zhang, Y. Cluster-based selective cooperative caching strategy in vehicular named data networking. In Proceedings of the IEEE International Conference on Hot Information-Centric Networking (HotICN), Shenzhen, China, 15–17 August 2018; pp. 7–12. [Google Scholar]
- Yao, L.; Chen, A.; Deng, J.; Wang, J.; Wu, G. A cooperative caching scheme based on mobility prediction in vehicular content centric networks. IEEE Trans. Veh. Technol. 2017, 67, 5435–5444. [Google Scholar] [CrossRef]
- Zhang, J.; Letaief, K.B. Mobile Edge Intelligence and computing for the Internet of Vehicles. Proc. IEEE 2019, 108, 246–261. [Google Scholar] [CrossRef] [Green Version]
- Bouk, S.H.; Ahmed, S.H.; Kim, D. Vehicular content centric network (VCCN) a survey and research challenges. In Proceedings of the 30th Annual ACM Symposium on Applied Computing, Salamanca, Spain, 13–17 April 2015; pp. 695–700. [Google Scholar]
- Amadeo, M.; Campolo, C.; Molinaro, A. Information-centric networking for connected vehicles: A survey and future perspectives. IEEE Commun. Mag. 2016, 54, 98–104. [Google Scholar] [CrossRef]
- Ahed, K.; Benamar, M.; Lahcen, A.A.; El Ouazzani, R. Forwarding Strategies in Vehicular Named Data Networks: A survey. J. King Saud Univ. Comput. Inf. Sci. 2020. [Google Scholar] [CrossRef]
- Khelifi, H.; Luo, S.; Nour, B.; Moungla, H.; Faheem, Y.; Hussain, R.; Ksentini, A. Named data networking in vehicular ad hoc networks: State-of-the-art and challenges. IEEE Commun. Surv. Tutor. 2019, 22, 320–351. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Wang, C.; Qiu, T.; Atiquzzaman, M.; Wu, D.O. Caching in vehicular named data networking: Architecture, schemes and future directions. IEEE Commun. Surv. Tutor. 2020, 22, 2378–2407. [Google Scholar] [CrossRef]
- Amadeo, M.; Campolo, C.; Molinaro, A.; Harri, J.; Rothenberg, C.E.; Vinel, A. Enhancing the 3GPP V2X architecture with information-centric networking. Future Internet 2019, 11, 199. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.H.; Bouk, S.H.; Yaqub, M.A.; Kim, D.; Gerla, M. CONET: Controlled data packets propagation in vehicular named data networks. In Proceedings of the 2016 13th IEEE Annual Consumer Communications & Networking Conference, Las Vegas, NV, USA, 9–12 January 2016; pp. 620–625. [Google Scholar]
- Amadeo, M.; Campolo, C.; Molinaro, A. Enhancing content-centric networking for vehicular environments. Comput. Netw. 2013, 57, 3222–3234. [Google Scholar] [CrossRef]
- Grassi, G.; Pesavento, D.; Pau, G.; Zhang, L.; Fdida, S. Navigo: Interest forwarding by geolocations in vehicular named data networking. In Proceedings of the 2015 IEEE 16th International Symposium on A World of Wireless, Mobile and Multimedia Networks, Boston, MA, USA, 14–17 June 2015; pp. 1–10. [Google Scholar]
- Wahid, A.; Shah, M.A.; Qureshi, F.F.; Maryam, H.; Iqbal, R.; Chang, V. Big data analytics for mitigating broadcast storm in vehicular content centric networks. Future Gener. Comput. Syst. 2018, 86, 1301–1320. [Google Scholar] [CrossRef] [Green Version]
- Tarnoi, S.; Suksomboon, K.; Kumwilaisak, W.; Ji, Y. Performance of Probabilistic Caching and Cache Replacement Policies for Content-Centric Networks. In Proceedings of the 39th Annual IEEE Conference on Local Computer Networks, Edmonton, AB, Canada, 8–11 September 2014; pp. 99–106. [Google Scholar]
- Modesto, F.M.; Boukerche, A. An Analysis of Caching in Information-Centric Vehicular Networks. In Proceedings of the 2017 IEEE International Conference on Communications, Paris, France, 21–25 May 2017; pp. 1–6. [Google Scholar]
- Kaul, S.; Gruteser, M.; Rai, V.; Kenney, J. Minimizing age of information in vehicular networks. In Proceedings of the IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, Salt Lake City, UT, USA, 27–30 June 2011; pp. 350–358. [Google Scholar]
- Lyamin, N.; Vinel, A.; Jonsson, M.; Bellalta, B. Cooperative awareness in VANETs: On ETSI EN 302 637-2 performance. IEEE Trans. Veh. Technol. 2017, 67, 17–28. [Google Scholar] [CrossRef]
- Zhou, B.; Saad, W. Joint status sampling and updating for minimizing age of information in the Internet of Things. IEEE Trans. Commun. 2019, 67, 7468–7482. [Google Scholar] [CrossRef] [Green Version]
- Lochert, C.; Scheuermann, B.; Caliskan, M.; Mauve, M. The feasibility of information dissemination in vehicular ad-hoc networks. In Proceedings of the Conference on Wireless on Demand Network Systems and Services, Obergurgl, Tyrol, Austria, 24–26 January 2007; pp. 92–99. [Google Scholar]
- Caliskan, M.; Graupner, D.; Mauve, M. Decentralized discovery of free parking places. In Proceedings of the 3rd International Workshop on Vehicular Ad Hoc Networks, Los Angeles, CA, USA, 29 September 2006; pp. 30–39. [Google Scholar]
- Baiocchi, A.; Turcanu, I. A model for the optimization of beacon message age-of-information in a VANET. In Proceedings of the 2017 29th International Teletraffic Congress (ITC 29), Genoa, Italy, 4–8 September 2017; Volume 1, pp. 108–116. [Google Scholar]
- Kaul, S.; Yates, R.; Gruteser, M. Real-time status: How often should one update? In Proceedings of the IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 2731–2735. [Google Scholar]
- Costa, M.; Codreanu, M.; Ephremides, A. On the age of information in status update systems with packet management. IEEE Trans. Inf. Theory 2016, 62, 1897–1910. [Google Scholar] [CrossRef]
- Abd-Elmagid, M.A.; Pappas, N.; Dhillon, H.S. On the Role of Age of Information in the Internet of Things. IEEE Commun. Mag. 2019, 57, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Aziz, M.K.; Samarakoon, S.; Liu, C.F.; Bennis, M.; Saad, W. Optimized age of information tail for ultra-reliable low-latency communications in vehicular networks. IEEE Trans. Commun. 2019, 68, 1911–1924. [Google Scholar] [CrossRef] [Green Version]
- Ang, L.M.; Seng, K.P.; Ijemaru, G.K.; Zungeru, A.M. Deployment of IoV for smart cities: Applications, architecture, and challenges. IEEE Access 2018, 7, 6473–6492. [Google Scholar] [CrossRef]
- Malandrino, F.; Casetti, C.; Chiasserini, C.F.; Sommer, C.; Dressler, F. The role of parked cars in content downloading for vehicular networks. IEEE Trans. Veh. Technol. 2014, 63, 4606–4617. [Google Scholar] [CrossRef] [Green Version]
- Fiore, M.; Casetti, C.; Chiasserini, C.F. Caching strategies based on information density estimation in wireless ad hoc networks. IEEE Trans. Veh. Technol. 2011, 60, 2194–2208. [Google Scholar] [CrossRef]
- Ayaida, M.; Barhoumi, M.; Fouchal, H.; Ghamri-Doudane, Y.; Afilal, L. HHLS: A hybrid routing technique for VANETs. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA, 3–7 December 2012; pp. 44–48. [Google Scholar]
- Nzouonta, J.; Rajgure, N.; Wang, G.; Borcea, C. VANET routing on city roads using real-time vehicular traffic information. IEEE Trans. Veh. Technol. 2009, 58, 3609–3626. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Zhang, Y.; Cao, G.; Xie, L. Data consistency for cooperative caching in mobile environments. IEEE Comput. 2007, 40, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Yu, C.; Das, C.R. Cooperative cache invalidation strategies for internet-based vehicular ad hoc networks. In Proceedings of the 18th IEEE International Conference on Computer Communications and Networks, San Francisco, CA, USA, 3–6 August 2009; pp. 1–6. [Google Scholar]
- Kam, C.; Kompella, S.; Nguyen, G.D.; Wieselthier, J.E.; Ephremides, A. Information freshness and popularity in mobile caching. In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Aachen, Germany, 25–30 June 2017; pp. 136–140. [Google Scholar]
- Amadeo, M.; Campolo, C.; Ruggeri, G.; Lia, G.; Molinaro, A. Caching Transient Contents in Vehicular Named Data Networking: A Performance Analysis. Sensors 2020, 20, 1985. [Google Scholar] [CrossRef] [Green Version]
- Baccelli, E.; Mehlis, C.; Hahm, O.; Schmidt, T.C.; Wählisch, M. Information centric networking in the IoT: Experiments with NDN in the wild. In Proceedings of the 1st ACM Conference on Information-Centric Networking, Paris, France, 24–26 September 2014; pp. 77–86. [Google Scholar]
- Vural, S.; Wang, N.; Navaratnam, P.; Tafazolli, R. Caching transient data in internet content routers. IEEE/ACM Trans. Netw. 2016, 25, 1048–1061. [Google Scholar] [CrossRef] [Green Version]
- Hail, M.A.; Amadeo, M.; Molinaro, A.; Fischer, S. Caching in Named Data Networking for the Wireless Internet of Things. In Proceedings of the 2015 International Conference on Recent Advances in Internet of Things (RIoT), Singapore, 7–9 April 2015; pp. 1–6. [Google Scholar]
- Hahm, O.; Baccelli, E.; Schmidt, T.C.; Wählisch, M.; Adjih, C.; Massoulié, L. Low-power internet of things with NDN & cooperative caching. In Proceedings of the ACM Conference on Information-Centric Networking, Berlin, Germany, 26–28 September 2017; pp. 98–108. [Google Scholar]
- Amadeo, M.; Ruggeri, G.; Campolo, C.; Molinaro, A.; Mangiullo, G. Caching Popular and Fresh IoT Contents at the Edge via Named Data Networking. In Proceedings of the IEEE INFOCOM WKSHPS, Toronto, ON, Canada, 6–9 July 2020; pp. 610–615. [Google Scholar]
- Zhang, Z.; Lung, C.H.; Lambadaris, I.; St-Hilaire, M. IoT data lifetime-based cooperative caching scheme for ICN-IoT networks. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–7. [Google Scholar]
- Ong, M.D.; Chen, M.; Taleb, T.; Wang, X.; Leung, V. FGPC: Fine-Grained Popularity-based Caching Design for Content Centric Networking. In Proceedings of the ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, Montreal, QC, Canada, 21–26 September 2014; pp. 295–302. [Google Scholar]
- Abdullahi, I.; Arif, S.; Hassan, S. Survey on caching approaches in information centric networking. J. Netw. Comput. Appl. 2015, 56, 48–59. [Google Scholar] [CrossRef]
- Meddeb, M.; Dhraief, A.; Belghith, A.; Monteil, T.; Drira, K.; Mathkour, H. Least fresh first cache replacement policy for NDN-based IoT networks. Pervasive Mob. Comput. 2019, 52, 60–70. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.; Luo, H.; Gao, J.; Zhao, L.; Shen, X.S. Towards fresh and low-latency content delivery in vehicular networks: An edge caching aspect. In Proceedings of the IEEE International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 18–20 October 2018; pp. 1–6. [Google Scholar]
- Ding, R.; Wang, T.; Song, L.; Han, Z.; Wu, J. Roadside-Unit Caching in Vehicular Ad Hoc Networks for Efficient Popular Content Delivery. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, LA, USA, 9–12 March 2015; pp. 1207–1212. [Google Scholar]
- Quan, W.; Liu, Y.; Jiang, X.; Guan, J. Intelligent popularity-aware content caching and retrieving in highway vehicular networks. EURASIP J. Wirel. Commun. Netw. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Amadeo, M.; Ruggeri, G.; Campolo, C.; Molinaro, A. Diversity-improved caching of popular transient contents in Vehicular Named Data Networking. Comput. Netw. 2020, 184, 107625. [Google Scholar] [CrossRef]
- Ostrovskaya, S.; Surnin, O.; Hussain, R.; Bouk, S.H.; Lee, J.; Mehran, N.; Ahmed, S.H.; Benslimane, A. Towards Multi-metric Cache Replacement Policies in Vehicular Named Data Networks. In Proceedings of the IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy, 9–12 September 2018; pp. 1–7. [Google Scholar]
- Yao, L.; Wang, Y.; Xia, Q.; Xu, R. Popularity Prediction Caching Using Hidden Markov Model for Vehicular Content Centric Networks. In Proceedings of the 2019 20th IEEE International Conference on Mobile Data Management (MDM), Hong Kong, China, 10–13 June 2019; pp. 533–538. [Google Scholar]
- Chootong, S.; Thaenthong, J. Cache replacement mechanism with content popularity for vehicular content-centric networks (vccn). In Proceedings of the IEEE International Joint Conference on Computer Science and Software Engineering (JCSSE), NakhonSiThammarat, Thailand, 12–14 July 2017; pp. 1–6. [Google Scholar]
- Khelifi, H.; Luo, S.; Nour, B.; Moungla, H. A QoS-aware cache replacement policy for Vehicular Named Data Networks. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Whaiduzzaman, M.; Sookhak, M.; Gani, A.; Buyya, R. A survey on vehicular cloud computing. J. Netw. Comput. Appl. 2014, 40, 325–344. [Google Scholar] [CrossRef]
- Gerla, M.; Lee, E.K.; Pau, G.; Lee, U. Internet of vehicles: From intelligent grid to autonomous cars and vehicular clouds. In Proceedings of the IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea, 6–8 March 2014; pp. 241–246. [Google Scholar]
- Amadeo, M.; Ruggeri, G.; Campolo, C.; Molinaro, A. Iot services allocation at the edge via named data networking: From optimal bounds to practical design. IEEE Trans. Netw. Serv. Manag. 2019, 16, 661–674. [Google Scholar] [CrossRef]
- Tschudin, C.; Sifalakis, M. Named functions and cached computations. In Proceedings of the IEEE 11th Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 10–13 January 2014; pp. 851–857. [Google Scholar]
- Grewe, D.; Wagner, M.; Arumaithurai, M.; Psaras, I.; Kutscher, D. Information-centric mobile edge computing for connected vehicle environments: Challenges and research directions. In Proceedings of the Workshop on Mobile Edge Communications, Los Angeles, CA, USA, 21 August 2017; pp. 7–12. [Google Scholar]
- Quan, W.; Liu, Y.; Zhang, H.; Yu, S. Enhancing crowd collaborations for software defined vehicular networks. IEEE Commun. Mag. 2017, 55, 80–86. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Wang, X.W.; Huang, M.; Li, K.Q.; Das, S.K. Software defined networking meets information centric networking: A survey. IEEE Access 2018, 6, 39547–39563. [Google Scholar] [CrossRef]
- Dai, Y.; Xu, D.; Maharjan, S.; Qiao, G.; Zhang, Y. Artificial intelligence empowered edge computing and caching for internet of vehicles. IEEE Wirel. Commun. 2019, 26, 12–18. [Google Scholar] [CrossRef]
- Rossi, D.; Rossini, G. Caching Performance of Content Centric Networks under Multi-Path Routing (and More). Technical Report, Telecom ParisTech. 2011, pp. 1–6. Available online: https://perso.telecom-paristech.fr/drossi/paper/rossi11ccn-techrep1.pdf (accessed on 8 February 2021).
Topic | Challenges | Main Findings |
---|---|---|
AoI Assessment |
| |
AoI Minimization |
|
|
Cache Consistency |
| |
Caching Strategy |
|
|
Metric | Target | Reference Paper (s) |
---|---|---|
Residual Lifetime |
| [41,51,54,55] |
Popularity |
| [53,54,55,56,57] |
Distance |
| [55] |
Availability |
| [54] |
Vehicular Content Class |
| [58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amadeo, M. A Literature Review on Caching Transient Contents in Vehicular Named Data Networking. Telecom 2021, 2, 75-92. https://doi.org/10.3390/telecom2010006
Amadeo M. A Literature Review on Caching Transient Contents in Vehicular Named Data Networking. Telecom. 2021; 2(1):75-92. https://doi.org/10.3390/telecom2010006
Chicago/Turabian StyleAmadeo, Marica. 2021. "A Literature Review on Caching Transient Contents in Vehicular Named Data Networking" Telecom 2, no. 1: 75-92. https://doi.org/10.3390/telecom2010006