Physical and Thermochemical Properties of Selected Wood Species in Nigeria: A Fuel Suitability and Pelleting Potential Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Sample Characterization
2.2.1. Physical Properties
2.2.2. Thermochemical Properties
Gross Calorific Value (GHV) and Net Calorific Value (NHV)
Proximate Analysis
Volatile Matter
Ash Content
Fixed Carbon
Ultimate Analysis
2.3. Rating of the Properties of the Wood Species
3. Results and Discussion
3.1. Physical Properties
3.2. Thermochemical Properties
3.2.1. Calorific Value
3.2.2. Proximate Analysis
3.3. Rating of the Properties of the Wood Species
3.4. Improving the Properties of Non-Suitable Wood Species
- (a)
- Using 5% lignin and 10% proline additives was found to improve density significantly, reduce ash content (AC) by 0.04%, and increase gross calorific value (GHV) by 0.2 MJ.kg−1 [47].
- (b)
- The calorific values may be improved using lignin additives. Based on this, the original content of lignin in the species can be added to the percentage of additives to obtain the total lignin (L). Thus, the gross calorific value (GHV) can be determined from Equation (8) [48].
3.5. Research Limitations, Practical Implications, and Future Perspectives
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
GDP | Gross Domestic Product |
ISO | International Organization for Standardization |
EN | European Norm |
DIN | German Institute for Standardization |
ÖNORM | Austrian Standard Institute |
₦ | Naira |
N | Nitrogen |
S | Sulfur |
C | Carbon |
H | Hydrogen |
O | Oxygen |
Cd | Cadmium |
Pb | Lead |
Ar | Arsenic |
AC | Ash Content |
VM | Volatile Matter |
FC | Fixed Carbon |
CV | Calorific Value |
GHV | Gross Calorific Value |
NCV | Net Calorific Value |
USA | United States of America |
MC | Moisture Content |
WB | With Bark |
WoB | Without Bark |
MM | Most Properties Meet the Standards |
FM | Few Properties Meet the Standards |
AK2 | Adenylate Kinase 2 |
L | Lignin |
References
- Schilmann, A.; Ruiz-García, V.; Serrano-Medrano, M. Just and fair household energy transition in rural Latin American households: Are we moving forward? Environ. Res. Lett. 2021, 16, 105012. [Google Scholar] [CrossRef]
- Boafo-mensah, G.; Darkwa, M.K.; Laryea, G. Effect of combustion chamber material on the performance of an improved biomass cookstove. Case Stud. Therm. Eng. 2020, 21, 100688. [Google Scholar] [CrossRef]
- Food and Agricultural Organization FAO. Global Forest Resources Assessment 2010: Main Report. Available online: https://www.fao.org/3/i1757e/i1757e.pdf (accessed on 3 January 2023).
- Food and Agriculture Organization FAO. Global Forest Resources Assessment 2015: How Are the World’s Forests Changing? Available online: https://www.fao.org/3/i4793e/i4793e.pdf (accessed on 8 January 2024).
- Food and Agricultural Organization FAO. FAOSTAT: Food and Agriculture Data. Available online: https://www.fao.org/faostat/en/#home (accessed on 16 March 2024).
- United Nations Environment Programme. Available online: https://www.uncclearn.org/wp-content/uploads/library/final_report_summary_for_decision_makers_redd_nigeria_unep.pdf (accessed on 17 March 2024).
- Akogun, O.A.; Waheed, M.A.; Ismaila, S.O.; Dairo, O.U. Physical and Combustion Indices of Thermally Treated Cornhusk and Sawdust Briquettes for Heating Applications in Nigeria. J. Nat. Fibers 2022, 19, 1201–1216. [Google Scholar] [CrossRef]
- Yunusa, S.U.; Mensah, E.; Preko, K.; Narra, S.; Saleh, A.; Sanfo, S. A comprehensive review on the technical aspects of biomass briquetting. Biomass Convers. Biorefinery 2023. [Google Scholar] [CrossRef]
- Narra, S.; Dasgupta, S.; Ay, P.; Zheng, T.; Weller, N. Pelletisation of Rye- and Wheat straw with additives. In Proceedings of the 19th European Biomass Conference and Exhibition, Berlin, Germany, 6–10 June 2011. [Google Scholar]
- Pal, D.B.; Tiwari, A.K.; Mohammad, A.; Prasad, N.; Srivastava, N.; Srivastava, K.R.; Singh, R.; Yoon, T.; Syed, A.; Bahkali, A.H.; et al. Enhanced biogas production potential analysis of rice straw: Biomass characterization, kinetics and anaerobic co-digestion investigations. Bioresour. Technol. 2022, 358, 127391. [Google Scholar] [CrossRef] [PubMed]
- Barbour, M.; Udesen, D.; Bentson, S.; Pundle, A.; Tackman, C.; Evitt, D.; Means, P.; Scott, P.; Still, D.; Kramlich, J.; et al. Development of wood-burning rocket cookstove with forced air-injection. Energy Sustain. Dev. 2021, 65, 12–24. [Google Scholar] [CrossRef]
- Yunusa, S.U.; Isiaka, M.; Saleh, A. Development of double burner natural-draft biomass cookstove. Agric. Eng. Int. CIGR J. 2022, 24, 194–206. [Google Scholar]
- Yunusa, S.U.; Mensah, E.; Preko, K.; Narra, S.; Saleh, A.; Sanfo, S.; Isiaka, M.; Dalha, I.B.; Abdulsalam, M. Biomass cookstoves: A review of technical aspects and recent advances. Energy Nexus 2023, 11, 100225. [Google Scholar] [CrossRef]
- Stoner, O.; Lewis, J.; Martínez, I.L.; Gumy, S.; Economou, T.; Adair-Rohani, H. Household cooking fuel estimates at global and country level for 1990 to 2030. Nat. Commun. 2021, 12, 5793. [Google Scholar] [CrossRef] [PubMed]
- Ogunsola, O.E.; Adeleke, O.; Aruna, A.T. Wood fuel analysis of some selected wood species within Ibadan. IOP Conf. Ser. Earth Environ. Sci. 2018, 173, 012043. [Google Scholar] [CrossRef]
- Lubwama, M.; Yiga, V.A.; Ssempijja, I.; Lubwama, H.N. Thermal and mechanical characteristics of local firewood species and resulting charcoal produced by slow pyrolysis. Biomass Convers. Biorefinery 2023, 13, 6689–6704. [Google Scholar] [CrossRef]
- Ndecky, A.; Tavares, P.W.; Senghor, A.; Kane, M.; Ndiath, H.; Youm, I. Proximate Analysis of Alternatives Cooking Solides Fuels in Sub Saharan by Using Astm Standards. Int. J. Clean Coal Energy 2022, 11, 1–12. [Google Scholar] [CrossRef]
- Charis, G.; Danha, G.; Muzenda, E. Characterizations of biomasses for subsequent thermochemical conversion: A comparative study of pine sawdust and acacia tortilis. Processes 2020, 8, 546. [Google Scholar] [CrossRef]
- Mitchual, S.J.; Frimpong-mensah, K.; Darkwa, N.A. Evaluation of Fuel Properties of Six Tropical Hardwood Timber Species for Briquettes. J. Sustain. Bioenergy Syst. 2014, 4, 44225. [Google Scholar] [CrossRef]
- Okoro, N.M.; Ikegwu, U.M.; Harding, K.G.; Daramola, M.O. Evaluation of Fuel Quality of Invasive Alien Plants and Tropical Hardwoods as Potential Feedstock Materials for Pyro-Gasification. Waste Biomass Valorization 2022, 13, 1293–1310. [Google Scholar] [CrossRef]
- Desta, H.M.; Ambaye, C.S. Determination of Energy Properties of Fuelwood from Five Selected Tree Species in Tropical Highlands of Southeast Ethiopia. J. Energy 2020, 2020, 3635094. [Google Scholar] [CrossRef]
- European Pellet Council (EPC). Quality Certification Scheme For Wood Pellets. Part 3: Pellet Quality Requirements. In The EN Plus Handbook; European Pellet Council: Brussels, Belgium, 2015; pp. 1–10. [Google Scholar]
- Pellets Atlas. Available online: www.pelletsatlas.info (accessed on 18 October 2023).
- International Organization for Standardization ISO. Available online: https://www.iso.org/standard/76088.html (accessed on 19 March 2024).
- ASTM D3173-87; Standard Test Method for Moisture in the Analysis Sample of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 1996; pp. 315–316.
- ASTM D5865-10a; Standard Test Method for Gross Calorific Value of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2010; pp. 1–14.
- Musabbikhah; Saptoadi, H.; Subarmono; Wibisono, M.A. Analysis and Selection of the Best Model of Biomass Briquette Based on Calorific Value. J. Phys. Conf. Ser. 2019, 1175, 012270. [Google Scholar]
- Ebeling, J.M.; Jenkins, B.M. Physical and Chemical Properties of Biomass Fuels. Trans. Am. Soc. Agric. Eng. 1985, 28, 898–902. [Google Scholar] [CrossRef]
- ASTM D3175-07; Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2007.
- ASTM D3174-02; Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal. ASTM International: West Conshohocken, PA, USA, 2002.
- Mansaray, K.G.; Ghaly, A.E. Physical and thermochemical properties of rice husk. Energy Sources 1997, 19, 989–1004. [Google Scholar] [CrossRef]
- TT, A.K.; Mech, N.; Ramesh, S.T.; Gandhimathi, R. Evaluation of composite briquettes from dry leaves in energy applications for agrarian communities in India. J. Clean. Prod. 2022, 350, 131312. [Google Scholar] [CrossRef]
- Kaliyan, N.; Morey, R.V. Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 2009, 33, 337–359. [Google Scholar] [CrossRef]
- Sakthivadivel, D.; Iniyan, S. Characterization, density and size effects of fuels in an advanced micro-gasifier stove. Biofuels 2020, 11, 857–869. [Google Scholar] [CrossRef]
- Alkadri, A.; Jullien, D.; Arnould, O.; Rosenkrantz, E.; Langbour, P.; Hovasse, L.; Gril, J. Hygromechanical properties of grenadilla wood (Dalbergia melanoxylon). Wood Sci. Technol. 2020, 54, 1269–1297. [Google Scholar] [CrossRef]
- Mierzwa-Hersztek, M.; Gondek, K.; Jewiarz, M.; Dziedzic, K. Assessment of energy parameters of biomass and biochars, leachability of heavy metals and phytotoxicity of their ashes. J. Mater. Cycles Waste Manag. 2019, 21, 786–800. [Google Scholar] [CrossRef]
- Thabuot, M.; Pagketanang, T.; Panyacharoen, K.; Mongkut, P.; Wongwicha, P. Effect of Applied Pressure and Binder Proportion on the Fuel Properties of Holey Bio-Briquettes. Energy Procedia 2015, 79, 890–895. [Google Scholar] [CrossRef]
- Nagarajan, J.; Prakash, L. Preparation and characterization of biomass briquettes using sugarcane bagasse, corncob and rice husk. Mater. Today Proc. 2021, 47, 4194–4198. [Google Scholar] [CrossRef]
- European Committee for Standardization EN 1860-2. Appliances, Solid Fuels and Firelighters for Barbecueing, Part 2: Barbecue Charcoal and Barbecue Charcoal Briquettes. Requirements and Test Methods. 2005. Available online: https://www.cleanfuels.nl/Sitepdfs/EN-1860-2_eng_.pdf (accessed on 19 March 2024).
- Sunnu, A.K.; Adu-Poku, K.A.; Ayetor, G.K. Production and Characterization of Charred Briquettes from Various Agricultural Waste. Combust. Sci. Technol. 2023, 195, 1000–1021. [Google Scholar] [CrossRef]
- Sarkar, D. Fuels and Combustion. In Thermal Power Plant; Elsevier: Amsterdam, The Netherlands, 2015; pp. 91–137. [Google Scholar]
- Rajput, S.P.; Jadhav, S.V.; Thorat, B.N. Methods to improve properties of fuel pellets obtained from different biomass sources: Effect of biomass blends and binders. Fuel Process. Technol. 2020, 199, 106255. [Google Scholar] [CrossRef]
- Azargohar, R.; Nanda, S.; Kang, K.; Bond, T.; Karunakaran, C.; Dalai, A.K.; Kozinski, J.A. Effects of bio-additives on the physicochemical properties and mechanical behavior of canola hull fuel pellets. Renew. Energy 2019, 132, 296–307. [Google Scholar] [CrossRef]
- Emami, S.; Tabil, L.G.; Adapa, P.; George, E.; Tilay, A.; Dalai, A.; Drisdelle, M.; Ketabi, L. Effect of fuel additives on agricultural straw pellet quality. Int. J. Agric. Biol. Eng. 2014, 7, 92–100. [Google Scholar]
- Xia, X.; Zhang, K.; Xiao, H.; Xiao, S.; Song, Z.; Yang, Z. Effects of additives and hydrothermal pretreatment on the pelleting process of rice straw: Energy consumption and pellets quality. Ind. Crops Prod. 2019, 133, 178–184. [Google Scholar] [CrossRef]
- Tarasov, D.; Shahi, C.; Leitch, M. Effect of Additives on Wood Pellet Physical and Thermal Characteristics: A Review. Int. Sch. Res. Not. 2013, 2013, 876939. [Google Scholar] [CrossRef]
- Abedi, A.; Cheng, H.; Dalai, A.K. Effects of Natural Additives on the Properties of Sawdust Fuel Pellets. Energy Fuels 2018, 32, 1863–1873. [Google Scholar] [CrossRef]
- Demirbaş, A. Relationships between lignin contents and heating values of biomass. Energy Convers. Manag. 2001, 42, 183–188. [Google Scholar] [CrossRef]
- Olabisi, A.S.; Balogun, A.O.; Oni, T.O.; Fakinle, B.S.; Sotoudehnia, F.; McDonald, A.G.; Ikubanni, P.P. Physicochemical Characterization of Woody Lignocellulosic Biomass and Charcoal for Bio-energy Heat Generation. Sci. Rep. 2023, 13, 19242. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Mohanty, B. Thermal degradation of mango (Mangifera indica) wood sawdust in a nitrogen environment: Characterization, kinetics, reaction mechanism, and thermodynamic analysis. RSC Adv. 2021, 11, 13396. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.; Reja, M.M.; Hilary, L.N.; Saiful Islam, M.; Zamsed Uddin, M.; Ajmotgir, W.M. Preparation and characterization of nanocellulose from Albizia lebbeck sawdust and their application in nanocomposites using poly (vinyl chloride) (PVC). Res. Sq. 2021. [CrossRef]
- Manimaran, P.; Senthamaraikannan, P.; Sanjay, M.R.; Barile, C. Comparison of fibres properties of azadirachta indica and acacia arabica plant for lightweight composite applications. Struct. Integr. Life 2018, 18, 37–43. [Google Scholar]
- Lourenço, A.; Neiva, D.M.; Gominho, J.; Marques, A.V.; Pereira, H. Characterization of lignin in heartwood, sapwood and bark from Tectona grandis using Py–GC–MS/FID. Wood Sci. Technol. 2015, 49, 159–175. [Google Scholar] [CrossRef]
Specie | Country | MC (%) | AC (% db) | VM (% db) | FC (% db) | GHV MJ.kg−1 | N (%) | S (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|
M. excelsa | Nigeria | 9.0 | 4.62 | 82.41 | 3.97 | 20.20 | - | - | [15] |
M. altissima | Nigeria | 13.0 | 2.01 | 80.93 | 4.06 | 21.50 | - | - | [15] |
D. cinerea | Uganda | 16.57 | 0.60 | 62.49 | 20.34 | 16.71 | - | - | [16] |
C. molle | Uganda | 17.61 | 1.15 | 63.93 | 17.30 | 15.61 | - | - | [16] |
Senegal wood | Senegal | - | - | - | - | 17.27 | - | - | [17] |
Acacia tortilis | Botswana | 3.72 | 3.90 | 76.51 | 19.59 | 17.27 | 1.23 | - | [18] |
Pine | Zimbabwe | 6.50 | 0.83 | 79.16 | 20.00 | 17.57 | 0.039 | - | [18] |
Jacaranda | S. Africa | 9.12 | 2.21 | 57.91 | 30.76 | 18.43 | 0.18 | 0 | [20] |
Afr. mesquite | S. Africa | 9.61 | 0.10 | 43.29 | 47.11 | 20.72 | 0.26 | 0.01 | [20] |
C. pentandra | Ghana | - | 4.72 | 82.43 | - | 20.33 | 0.48 | 0.05 | [19] |
T. scleroxylon | Ghana | - | 2.01 | 80.97 | - | 21.60 | 0.56 | 0.09 | [19] |
O. africana | Ethiopia | 5.91 | 0.994 | 70.710 | 22.388 | - | - | - | [21] |
A. nilotica | Ethiopia | 7.0 | 1.971 | 71.495 | 19.503 | - | - | - | [21] |
ENplus A1 | ≤10 | ≤0.7 | - | - | ≥16.56 | ≤0.3 | ≤0.04 | [22] | |
ENplus A2 | ≤10 | ≤1.2 | - | - | - | ≤0.5 | ≤0.05 | [22] | |
ENplus B | ≤10 | ≤2.0 | - | - | - | ≤1.0 | ≤0.05 | [22] | |
DIN 51731/DINplus | ≤10–12 | ≤1.5 | - | - | ≥17.5–19.5 | ≤0.3 | ≤0.08 | [23] | |
ÖNORM M7135 | ≤10 | ≤0.5 | - | - | ≥18 | ≤0.3 | ≤0.04 | [23] | |
ISO 17225-2 | ≤10 | 0.7–2.0 | - | - | ≥16.56 | ≤0.3 | ≤0.05 | [24] |
Sample | MC % (wb) | Density (kg/m3) |
---|---|---|
Tectona grandis | 6 | 928.69 |
Mangifera indica | 4 | 915.69 |
Khaya senegalensis | 5 | 977.50 |
Parkia biglobosa | 7 | 910.00 |
Anogeissus leiocarpus | 4 | 930.77 |
Eucalyptus cam. | 4 | 901.00 |
Vitellaria paradoxa | 6 | 398.00 |
Albizia lebbeck | 5.80 | 947.50 |
Azadirachta indica | 4.08 | 674.75 |
ENplus A1, A2, B | ≤10 | ≥600–750 |
DIN 51731 | ≤12 | 1000–1400 |
DINplus | ≤10 | 1120 |
ÖNORM M7135 | ≤10 | 1120 |
ISO 17225-2 | ≤10 | ≥600 |
Sample | Tectona grandis | Mangifera indica | Khaya senegalensis | Parkia biglobosa | Anogeissus leiocarpus | Eucalyptus cam. | Vitellaria paradoxa | Albizia lebbeck | Azadirachta indica | |
---|---|---|---|---|---|---|---|---|---|---|
GHV (MJ.kg−1) | 10.92 | 15.25 | 18.85 | 18.42 | 17.35 | 18.80 | 14.16 | 14.33 | 11.57 | |
NHV (MJ.kg−1) | 10.61 | 14.96 | 18.26 | 17.42 | 17.06 | 18.44 | 13.62 | 13.84 | 11.49 | |
ENplus A1, A2 and B | NHV ≥ 16.5 MJ.kg−1 | |||||||||
DIN 51731/DIN plus | ≥17.5–19.5 MJ.kg−1 | |||||||||
ÖNORM M7135 | ≥18 MJ.kg−1 | |||||||||
ISO 17225-2 | NHV ≥ 16.56 MJ.kg−1 |
Sample | AC (% db) | VM (% db) | FC (% db) |
---|---|---|---|
Vitellaria paradoxa (WoB) | 6.5 | 78.19 | 15.31 |
Vitellaria paradoxa (WB) | 15.4 | 81.09 | 3.51 |
Mangifera indica (WoB) | 21.3 | 73.98 | 4.72 |
Mangifera indica (WB) | 24.4 | 65.94 | 9.66 |
Albizia lebbeck (WoB) | 2.9 | 80.46 | 16.64 |
Albizia lebbeck (WB) | 7.4 | 79.35 | 13.25 |
Azadirachta indica (WoB) | 2.1 | 79.27 | 18.63 |
Azadirachta indica (WB) | 6 | 84.76 | 9.24 |
Anogeissus leiocarpus (WoB) | 3.4 | 78.74 | 17.86 |
Anogeissus leiocarpus (WB) | 4.6 | 87.77 | 7.63 |
Khaya senegalensis (WoB) | 9.5 | 75.24 | 15.26 |
Khaya senegalensis (WB) | 10.8 | 79.49 | 9.71 |
Eucalyptus cam. (WoB) | 5.3 | 78.31 | 16.39 |
Eucalyptus cam. (WB) | 9.3 | 82.66 | 8.04 |
Tectona grandis (WoB) | 3.3 | 81.16 | 15.54 |
Tectona grandis (WB) | 6 | 86.85 | 7.15 |
Parkia biglobosa (WoB) | 7.4 | 85.99 | 6.61 |
Parkia biglobosa (WB) | 13.2 | 74.91 | 11.89 |
ENplus A1 | ≤0.7 | - | - |
ENplus A2 | ≤1.2 | - | - |
ENplus B | ≤2.0 | - | - |
DIN 51731/DINplus | ≤1.5 | - | - |
ÖNORM M7135 | ≤0.5 | - | - |
ISO 17225-2 | 0.7–2.0 | - | - |
Sample | C (%) | N (%) | S (%) | H (%) | O (%) |
---|---|---|---|---|---|
Anogeissus leiocarpus | 44.78 | 1.82 | 0.0115 | 5.76 | 43.65 |
Parkia biglobosa | 40.75 | 2.38 | 0.0108 | 5.33 | 38.87 |
Tectona grandis | 43.92 | 1.54 | 0.0124 | 5.69 | 43.03 |
Eucalyptus camaldulensis | 42.25 | 2.24 | 0.0089 | 5.53 | 41.29 |
Khaya senegalensis | 41.70 | 2.66 | 0.0031 | 5.45 | 40.33 |
Albizia lebbeck | 44.21 | 3.78 | 0.0034 | 5.62 | 41.55 |
Mangifera indica | 34.15 | 1.68 | 0.0088 | 4.77 | 33.65 |
Vitellaria paradoxa | 38.07 | 1.82 | 0.0070 | 5.23 | 38.87 |
Azadirachta indica | 44.29 | 2.52 | 0.0104 | 5.69 | 42.76 |
ENplus A1 | - | ≤0.3 | ≤0.04 | - | - |
ENplus A2 | - | ≤0.5 | ≤0.05 | - | - |
ENplus B | - | ≤1.0 | ≤0.05 | - | - |
DIN 51731/DINplus | - | ≤0.3 | ≤0.08 | - | - |
ÖNORM M7135 | - | ≤0.3 | ≤0.04 | - | - |
ISO 17225-2 | - | ≤0.3 | ≤0.05 | - | - |
1 = Best | 9 = Worst | ||||||||
---|---|---|---|---|---|---|---|---|---|
Property | Species | ||||||||
Tectona grandis | Mangifera indica | Khaya senegalensis | Parkia biglobosa | Anogeissus leiocarpus | Eucalyptus cam. | Vitellaria paradoxa | Albizia lebbeck | Azadirachta indica | |
Density | 4 | 5 | 1 | 6 | 3 | 7 | 9 | 2 | 8 |
CV | 9 | 5 | 1 | 3 | 4 | 2 | 7 | 6 | 8 |
Ash | 3 | 9 | 6 | 7 | 1 | 5 | 8 | 4 | 2 |
VM | 2 | 9 | 6 | 8 | 1 | 4 | 5 | 7 | 3 |
FC | 8 | 4 | 3 | 2 | 7 | 6 | 9 | 1 | 5 |
Carbon | 4 | 9 | 7 | 6 | 1 | 5 | 8 | 3 | 2 |
Nitrogen | 1 | 2 | 7 | 5 | 3 | 4 | 3 | 8 | 6 |
Sulfur | 9 | 4 | 1 | 7 | 8 | 5 | 3 | 2 | 6 |
Hydrogen | 2 | 8 | 5 | 6 | 1 | 4 | 7 | 3 | 2 |
Oxygen | 2 | 8 | 6 | 7 | 1 | 5 | 7 | 4 | 3 |
As | 2 | 6 | 7 | 3 | 1 | 4 | 9 | 8 | 5 |
Cd | 2 | 4 | 3 | 1 | 2 | 4 | 1 | 3 | 1 |
Pb | 2 | 9 | 4 | 1 | 6 | 5 | 7 | 3 | 8 |
Average | 3.85 | 6.31 | 4.38 | 4.77 | 3 | 4.62 | 6.38 | 4.15 | 4.54 |
Standards | Species | ||||||||
---|---|---|---|---|---|---|---|---|---|
Tectona grandis | Mangifera indica | Khaya senegalensis | Parkia biglobosa | Anogeissus leiocarpus | Eucalyptus cam. | Vitellaria paradoxa | Albizia lebbeck | Azadirachta indica | |
ENplus A1, A2, B | MM | MM | MM | MM | MM | MM | MF | MM | MM |
DIN 51731/DINplus | FM | FM | MM | MM | FM | MM | FM | FM | FM |
ÖNORM M7135 | FM | FM | MM | MM | FM | MM | FM | FM | FM |
ISO 17225-2 | MM | MM | MM | MM | MM | MM | FM | MM | MM |
Sample | L (%) | L + 5%A | GHV (MJ.kg−1) | Improved GHV (MJ.kg−1) |
---|---|---|---|---|
Vitellaria paradoxa | 35.7 | 40.7 | 14.16 | 20.61 |
Magnifera indica | 23.75 | 28.75 | 15.25 | 19.54 |
Albizia lebbeck | 25.67 | 30.67 | 14.33 | 19.71 |
Azadirachta indica | 13.58 | 18.58 | 11.57 | 18.63 |
Tectona grandis | 35.4 | 40.4 | 14.16 | 20.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yunusa, S.U.; Narra, S.; Mensah, E.; Preko, K.; Saleh, A. Physical and Thermochemical Properties of Selected Wood Species in Nigeria: A Fuel Suitability and Pelleting Potential Assessment. Fuels 2024, 5, 261-277. https://doi.org/10.3390/fuels5030015
Yunusa SU, Narra S, Mensah E, Preko K, Saleh A. Physical and Thermochemical Properties of Selected Wood Species in Nigeria: A Fuel Suitability and Pelleting Potential Assessment. Fuels. 2024; 5(3):261-277. https://doi.org/10.3390/fuels5030015
Chicago/Turabian StyleYunusa, Suleiman Usman, Satyanarayana Narra, Ebenezer Mensah, Kwasi Preko, and Aminu Saleh. 2024. "Physical and Thermochemical Properties of Selected Wood Species in Nigeria: A Fuel Suitability and Pelleting Potential Assessment" Fuels 5, no. 3: 261-277. https://doi.org/10.3390/fuels5030015
APA StyleYunusa, S. U., Narra, S., Mensah, E., Preko, K., & Saleh, A. (2024). Physical and Thermochemical Properties of Selected Wood Species in Nigeria: A Fuel Suitability and Pelleting Potential Assessment. Fuels, 5(3), 261-277. https://doi.org/10.3390/fuels5030015