Biofuels Production: A Review on Sustainable Alternatives to Traditional Fuels and Energy Sources
Abstract
:1. Introduction
2. Biomass Energy
- Energy crop-based: Biomass from different energy crops such as herbaceous crops, woody, industrial crops, agricultural and aquatic crops are used for energy purposes.
- Agricultural residues and waste: Agriwaste (rice and wheat straw) and animal farm waste.
- Forestry waste and residues: Various mill wood waste, logging residues, trees and shrub residues etc.
- Industrial and municipal wastes: Municipal solid waste (MSW), sewage sludge and different industrial waste.
3. Types of Biofuels
3.1. Conventional/Traditional Biofuels
3.2. Advanced Biofuels
- Enzymatic dry milling
- Dry fractionation
- Ammoniation process in the wet mill
- Continuous membrane reactor for starch hydrolysis
- High-gravity fermentation
- Improved and efficient yeast (recombinant DNA techniques)
- Conversion of pentose and hexoses sugars to ethanol
- New enzymes for liquefaction and saccharification
- Optimized systems/conditions
4. Biofuels Generations/Classifications
4.1. First-Generation Biofuels
4.2. Second-Generation (2G) Biofuels
4.3. Third Generations of Biofuels
4.4. Fourth Generations of Biofuels
5. Biomass Conversion Technologies for Biofuel Production
- Physical route/processes
- Briquetting
- Pelletization
- Agrochemical route/processes
- Thermochemical route/Processes
- Combustion in excess air
- Carbonization
- Pyrolysis
- Very little air/no oxygen added
- 750 °F to 1500 °F
- Gasification
- Some air/oxygen used but less than for incineration
- Begins at 1300 °F
- Biochemical route/Processes
- Anaerobic Digestion
- Bacteria breaks down feedstock
- No oxygen
- Fermentation
- Anaerobic process
- Microbes used to produce ethanol
6. Comparison between Biofuels and Fossil Fuels
7. Future Prospective for Biofuels Production
8. National Policy on Biofuels
- To meet the energy needs of India’s rural population and create employment opportunities;
- To address global concerns by tightening automotive vehicle emission standards to curb air pollution;
- To reduce the dependence on the import of fossil fuels, provide a higher degree of national energy security;
- To derive biofuels from non-edible feedstock on degraded soils or wastelands unsuited to agriculture, avoiding a possible conflict between food and fuel.
9. Major Challenges in Biofuels Production
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dale, B. Biofuels: Thinking Clearly About the Issues. J. Agric. Food Chem. 2008, 56, 3885–3891. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, D.; Dai, L.; Chen, Y.; Dai, X. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge. Sci. Rep. 2016, 6, 25857–25862. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Prasad, R. Triglycerides Based Diesel Fuels. Renew. Sustain. Energy Rev. 2000, 4, 111–133. [Google Scholar] [CrossRef]
- Hussein, A.K. Applications of Nanotechnology in Renewable Energies—A comprehensive overview and understanding. Renew. Sustain. Energy Rev. 2015, 42, 460–476. [Google Scholar] [CrossRef]
- Palaniappan, K. An Overview of Applications of Nanotechnology in Biofuel Production. World Appl. Sci. J. 2017, 35, 1305–1311. [Google Scholar]
- Serrano, E.; Rus, G.; Garcia-Martinez, J. Nanotechnology for Sustainable Energy. Renew. Sustain. Energy Rev. 2009, 13, 2373–2384. [Google Scholar] [CrossRef]
- Ingle, A.; Paralikar, P.; Silva, D.S.S.; Rai, M. Nanotechnology-Based Developments in Biofuel Production: Current Trends and Appli. In Sustainable Biotechnology—Enzymatic Resources of Renewable Energy; Singh, O.V., Chandel, K.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 289–305. [Google Scholar]
- Aransiola, E.F.; Betiku, E.; Ikhuomoregbe, D.; Ojumu, T.V. Production of Biodiesel from Crude Neem Oil Feedstock and Its Emissions from Internal Combustion Engines. Afr. J. Biotechnol. 2012, 11, 6178–6186. [Google Scholar] [CrossRef]
- Pugh, S.; McKenna, R.; Moolick, R.; Nielsen, D.R. Advances and Opportunities at the Interface Between Microbial Bioenergy and Nanotechnology. Can. J. Chem. Eng. 2011, 89, 2–12. [Google Scholar] [CrossRef]
- Puri, M.; Abraham, R.E.; Barrow, C.J. Biofuel Production: Prospects, Challenges and Feedstock in Australia. Renew. Sustain. Energy Rev. 2012, 16, 6022–6031. [Google Scholar] [CrossRef]
- AFDC; Alternative Fuels Data Center; US Department of Energy. Energy Efficiency and Renewable Energy (EERE). 2006. Available online: https://afdc.energy.gov/ (accessed on 1 March 2006).
- Demirbas, A. Political, Economic and Environmental Impacts of Biofuels: A review. Appl. Energy 2009, 86, 108–117. [Google Scholar] [CrossRef]
- Nizami, A.; Rehan, M. Towards Nanotechnology Based Biofuel Industry. Biofuel Res. J. 2018, 18, 798–799. [Google Scholar] [CrossRef]
- Bandyopadhyay, K.R. Biofuel Promotion in India for Transport: Exploring the Grey Areas; The Energy and Resources Institute, TERI: Mithapur, India, 2015; Available online: https://www.teriin.org/policy-brief/biofuel-promotion-india-transport-exploring-grey-areas (accessed on 7 February 2015).
- Reddy, B.V.S.; Ramesh, S.; Kumar, A.A.; Wani, S.P. Biofuel Crops Research for Energy Security and Rural Development in Developing Countries. Bioenergy Res. 2008, 1, 248–258. [Google Scholar] [CrossRef]
- GOI (Government of India). Report of the Committee on Development of Bio-Fuel; Planning Commission, Government of India: New Delhi, India, 2016; 130p. Available online: https://fas.usda.gov/ (accessed on 24 June 2016).
- Talukdar, D.; Verma, D.K.; Malik, K.; Mohapatra, B.; Yulianto, R. Sugarcane as a Potential Biofuel Crop. In Sugarcane Biotechnology; Mohan, C., Ed.; Challenges and Prospects; Springer International Publishing: Cham, Switzerland, 2017; pp. 123–137. [Google Scholar]
- Shu, R.; Li, R.; Lin, B.; Wang, C.; Cheng, Z.; Chen, Y. A review on the catalytic hydrodeoxygenation of lignin-derived phenolic compounds and the conversion of raw lignin to hydrocarbon liquid fuels. Biomass Bioenergy 2020, 132, 105432. [Google Scholar] [CrossRef]
- Goldemberg, J. Biomass and Energy. Química Nova 2008, 32, 582–587. [Google Scholar] [CrossRef]
- Demirbas, A. Biofuels Securing the Planet’s Future Energy Needs. Energy Convers. Manag. 2009, 50, 2239–2249. [Google Scholar] [CrossRef]
- Čuček, L.; Klemeš, J.; Kravanja, Z. Carbon and nitrogen trade-offs in Biomass Energy Production. Clean Technol. Environ. Policy 2012, 14, 389–397. [Google Scholar] [CrossRef]
- DieCorrea, D.F.; Beyer, H.L.; Fargione, J.E.; Hill, J.D.; Possingham, H.P.; Thomas-Hall, S.R.; Schenka, P.M. Towards the Implementation of Sustainable Biofuel Production Systems. Renew. Sustain. Energy Rev. 2019, 107, 250–263. [Google Scholar]
- NREL. Biomass Research. 2009. Available online: https://www.nrel.gov/ (accessed on 1 August 2009).
- Cramer, J.; Wissema, E.; Lammers, E.; Dijk, D.; Jager, H.; Bennekom, S.; Breunesse, E.; Horster, R.; Leenders, C.; Wolters, W. Criteria for Sustainable Biomass Production. Final Report of the Project Group Sustainable Production of Biomass. 2006. Available online: https://www.globalbioenergy.org/bioenergyinfo/bioenergy-and-food-security/detail/en/c/1488/ (accessed on 2 September 2008).
- Ravindranath, N.H.; Sita Lakshmi, C.; Manuvie, R.; Balachandra, P. Biofuel Production and Implications for Land Use, Food Production and Environment in India. Energy Policy 2011, 39, 5737–5745. [Google Scholar] [CrossRef]
- Sivagurunathan, P.; Kumar, G.; Bakonyi, P.; Kim, S.H.; Kobayashi, T.; Nemestóthy, N.; Bélafi-Bakó, K. A Critical Review on Issues and Overcoming Strategies for the Enhancement of Dark Fermentative Hydrogen Production in Continuous Systems. Int. J. Hydrogen Energy 2016, 41, 3820–3836. [Google Scholar] [CrossRef]
- Singhvi, M.; Zinjarde, S.; Kim, B.S. Sustainable Strategies for the Conversion of Lignocellulosic Materials into Biohydrogen: Challenges and Solutions toward Carbon Neutrality. Energies 2022, 15, 8987. [Google Scholar] [CrossRef]
- Akram, H.A.; Imran, M.; Javaid, A.; Latif, S.; Rizvi, N.B.; Jesionowski, T.; Bilal, M. Pretreatment and catalytic conversion of lignocellulosic and algal biomass into biofuels by metal organic frameworks. Mol. Catal. 2023, 539, 112893. [Google Scholar] [CrossRef]
- Singhvi, M.; Kim, B.S. Green Hydrogen Production through Consolidated Bioprocessing of Lignocellulosic Biomass using Nanobiotechnology Approach. Bioresour. Technol. 2022, 365, 128108. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Sevda, S.; Abu Reesh, I.M.; Vanbroekhoven, K.; Rathore, D.; Pant, D. Biohydrogen Production from Lignocellulosic Biomass: Technology and Sustainability. Energies 2015, 8, 13062–13080. [Google Scholar] [CrossRef]
- IEA. Technology Roadmap Biofuels for Transport; International Energy Agency: Paris, France, 2011; p. 52. [Google Scholar]
- Available online: https://fuelsmarketnews.com/exploring-biofuels-conventional-and-advanced-biofuels-part-1 (accessed on 17 February 2021).
- Oh, Y.K.; Hwang, K.R.; Kim, C.; Kim, J.R.; Lee, J.S. Recent developments and key barriers to advanced biofuels: A short review. Bioresour Technol. 2018, 257, 320–333. [Google Scholar] [CrossRef]
- Singh, S.; Singh, S. Plant-Based Biofuels: An Overview. In Green Approach to Alternative Fuel for a Sustainable Future; Elsevier: Amsterdam, The Netherlands, 2023; pp. 433–442. [Google Scholar]
- Sindhu, R.; Binod, P.; Pandey, A.; Ankaram, S.; Duan, Y.; Awasthi, M.K. Biofuel Production from Biomass. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 79–92. [Google Scholar]
- Dickson, R.; Liu, J.J. A strategy for advanced biofuel production and emission utilization from macroalgal biorefinery using superstructure optimization. Energy 2021, 221, 119883. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Bonifacio, S.; Clowes, J.; Foulds, A.; Holland, R.; Matthews, J.C.; Percival, C.J.; Shallcross, D.E. Investigation of Biofuel as a Potential Renewable Energy Source. Atmosphere 2021, 12, 1289. [Google Scholar] [CrossRef]
- Kolakoti, A.; Prasadarao, B.; Satyanarayana, K.; Setiyo, M.; Köten, H.; Raghu, M. Elemental Thermal and Physicochemical Investigation of Novel Biodiesel from Wodyetia Bifurcata and Its Properties Optimization using Artificial Neural Network (ANN). Automot. Exp. 2022, 5, 3–15. [Google Scholar] [CrossRef]
- Sekhon, B.S. Nanotechnology in Agri-food Production: An Overview. Nanotechnol. Sci. Appl. 2014, 7, 31–53. [Google Scholar] [CrossRef]
- IEA. Energy Technology Perspectives 2012: Pathways to a Clean Energy System; International Energy Agency: Paris, France, 2012; p. 690. [Google Scholar]
- Trindade, S.C. Nanotech Biofuels and Fuel Additives; MADS; InTech: Berlin, Germany, 2011. [Google Scholar]
- Cavelius, P.; Engelhart-Straub, S.; Mehlmer, N.; Lercher, J.; Awad, D.; Bruck, T. The Potential of Biofuels from First to Fourth Generation. PloS Biol. 2023, 21, e3002063. [Google Scholar] [CrossRef]
- Mizik, T.; Gyarmati, G. Three pillars of advanced biofuels’ sustainability. Fuels 2022, 3, 607–626. [Google Scholar] [CrossRef]
- Gnanasekaran, L.; Priya, A.K.; Thanigaivel, S.; Tuan, K.A.H.; Moscoso, M.S. The conversion of biomass to fuels via cutting-edge technologies: Explorations from natural utilization systems. Fuel 2023, 33, 125668. [Google Scholar] [CrossRef]
- Hofsetz, K.; Silva, M.A. Brazilian Sugarcane Bagasse: Energy and Non-Energy Consumption. Biomass Bioenergy 2012, 46, 564–573. [Google Scholar] [CrossRef]
- Nanda, S.; Rana, R.; Sarangi, P.K.; Dalai, A.K.; Kozinski, J.A. A Broad Introduction to First, Second and Third Generation Biofuels. In Recent Advancements in Biofuels and Bioenergy Utilization; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–25. [Google Scholar]
- Malik, K.; Anand, R.C.; Kadian, D.; Narula, A. Microalgae: A Promising Feedstock as Source for Third Generation Renewable Energy. In Microorganisms in Sustainable Agriculture, Food and the Environment; Verma, D.K., Srivastav, P.P., Eds.; Apple Academic Press Inc.: Palm Bay, FL, USA, 2018; pp. 395–420. [Google Scholar]
- Lin, Y.; Tanaka, S. Ethanol Fermentation from Biomass Resources: Current state and Prospects. Appl. Microbiol. Biotechnol. 2006, 69, 627–642. [Google Scholar] [CrossRef]
- Sikarwal, V.S.; Zhao, M.; Fennell, P.; Shah, N.; Anthony, E.J. Progress in Biofuel Production from Gasification. Prog. Energy Combust. 2017, 61, 189–248. [Google Scholar] [CrossRef]
- Hayder, A.; Alalwan, A.; Alminshid, A.H.; Haydar, A.S. Promising Evolution of Biofuel Generations: A Review. Renew. Energy Focus 2019, 28, 127–139. [Google Scholar]
- Naik, S.N.; Goud, V.; Rout, P.K.; Dalai, A.K. Production of First- and Second-Generation Biofuels: A Comprehensive Review. Renew. Sustain. Energy Rev. 2010, 14, 578–597. [Google Scholar] [CrossRef]
- Koçar, G.; Civas, N. An Overview of Biofuels from Energy Crops: Current Status and Future Prospects. Renew. Sustain. Energy Rev. 2013, 28, 900–916. [Google Scholar] [CrossRef]
- Rathmann, R.; Szklo, A.; Schaeffer, R. Land Use Competition for Production of Food and Liquid Biofuels: An Analysis of the Arguments in the Current Debate. Renew. Energy 2010, 35, 14–22. [Google Scholar] [CrossRef]
- Tuli, D.K. Opportunities in 2nd Generation Biofuel-Current Status; Petrofed, Indian Oil Corporation Limited: New Delhi, India, 2011. [Google Scholar]
- El-Desouky, M.G.; Khalil, M.A.; El-Bindary, A.A.; El-Bindary, M.A. Biological, Biochemical and Thermochemical Techniques for Biofuel Production: An Updated Review. Biol. Interface Res. Appl. Chem. 2022, 12, 3034–3054. [Google Scholar]
- Bacovsky, D.; Michal, D.; Wörgetter, M. Status of 2nd Generation Biofuels Demonstration Facilities in June 2010; Report T39-P1b; IEA: Paris, France, 2010. [Google Scholar]
- Swanson, R.M.; Platon, A.; Satrio, J.A.; Brown, R.C. Techno-Economic Analysis of Biomass-to-Liquids Production Based on Gasification. Fuel 2010, 89, 11–19. [Google Scholar] [CrossRef]
- Kim, M.; Singhvi, M.S.; Kim, B.S. Eco-Friendly and Rapid One-Step Fermentable Sugar Production from Raw Lignocellulosic Biomass using Enzyme Mimicking Nanomaterials: A Novel Cost-Effective Approach to Biofuel Production. Chem. Eng. J. 2023, 465, 142879. [Google Scholar] [CrossRef]
- Demirbas, A. Social, Economic, Environmental and Policy Aspects of Biofuels. Energy Educ. Sci. Technol. Part B Soc. Educ. Study 2010, 2, 75–109. [Google Scholar]
- Sivasubramanian, V. Algal Biofuels: Indian Scenario. In Proceedings of the Sahyog Minisymposium and Twinning Workshop Developments in Sustainable Biomass Valorization EU-India R&D Collaboration in Biomass and Biowaste, Utrecht, The Netherlands, 28–29 October 2013. [Google Scholar]
- Um, B.H.; Kim, Y.S. Review: A Chance for Korea to Advance Algal-Biodiesel Technology. J. Ind. Eng. Chem. 2009, 15, 1–7. [Google Scholar] [CrossRef]
- Bastianoni, S.; Coppola, F.T.; Colacevicin, A.; Borghini, F.; Focardi, S. Biofuel Potential Production from the Orbetello Lagoon Macroalgae: A Comparision with Sunflower Feedstock. Biomass Bioenergy 2008, 32, 619–628. [Google Scholar] [CrossRef]
- Lang, X.; Dalai, A.K.; Bakshi, N.N. Preparation and Characterization of Biodiesels from Various Bio Oils. Biores. Technol. 2001, 80, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Chisti, Y. Biodiesel from Microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef]
- Rajvanshi, S.; Sharma, M.P. Microalgae: A Potential Source of Biodiesel. J. Sustain. Bioenergy Syst. 2012, 2, 49–59. [Google Scholar] [CrossRef]
- Nigam, P.S.; Singh, A. Production of Liquid Biofuels from Renewable Resources. Prog. Energy Combust. Sci. 2011, 37, 52–68. [Google Scholar] [CrossRef]
- Abdullah, B.; Syed, A.; Muhammad, E.S.; Mahmood, A.N. Fourth Generation Biofuel: A Review on Risks and Mitigation Strategies. Renew. Sust. Energy Rev. 2019, 107, 37–50. [Google Scholar] [CrossRef]
- Hallenbeck, P. Hydrogen Production by Cyanobacteria. Microbial Technologies. In Advanced Biofuels Production; Hallenbeck, P.C., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 15–28. [Google Scholar]
- Fritsche, U.R.; Fehrenbach, H.; Koppen, S. Biofuels—What Role in the Future Energy Mix? Shell Deutschland Oil: Darmstadt, Germany, 2012; p. 42. [Google Scholar]
- Farghali, P.M.; Mayumi, M.; Syo, K.; Satoshi, A.; Takashima, S.; Moustaf, T.Y. Potential of Biogas Production from Manure of Dairy Cattle Fed on Natural Soil Supplement Rich in Iron Under Batch and Semi-Continous Anaerobic Digestion. Bioresour. Technol. 2020, 309, 123298. [Google Scholar] [CrossRef]
- Sohel, M.I.; Jack, M.W. Thermodynamic Analysis of Lignocellulosic Biofuel Production via a Biochemical Process: Guiding Technology Selection and Research Focus. Bioresour. Technol. 2011, 102, 2617–2622. [Google Scholar] [CrossRef]
- Malik, K.; Verma, D.K.; Srivastava, S.; Mehta, S.; Khushboo, N.K.; Verma, M.; Kumar, A.; Tiwari, A.K.; Singh, K.P. Sugarcane Production and It’s Utilization as Biofuel. In India: Current Policy and Status; Verma, D.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 123–138. [Google Scholar]
- Mussatto, S.I.; Dragonea, G.; Guimarãesa, P.M.R.; Silva, J.P.A.; Carneiro, L.M.; Roberto, I.C.; Vicentea, A.; Domingues, L.; Teixeira, J.A. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol. Adv. 2010, 28, 817–830. [Google Scholar] [CrossRef]
- Pradoand, J.M.; Meireles, M.A.A. Production of Valuable Compounds by Supercritical Technology Using Residues from Sugarcane Processing. In Biorefinery Co-Products: Phytochemicals, Primary Metabolites and Value-Added Biomass Processing; Bergeron, C., Carrier, D.J., Ramaswamy, S., Eds.; Wiley: Hoboken, NJ, USA, 2012; pp. 133–151. [Google Scholar]
- Muhammad, U.L.; Shamsuddin, I.M.; Danjuma, A.; Musawa, R.S.; Dembo, U.A. Biofuels as the Starring Substitute to Fossil Fuels. Pet. Sci. Eng. 2018, 2, 44–49. [Google Scholar]
- Reijnders, L. The Life Cycle Emission of Greenhouse Gases Associated with Plant Oils used as Biofuel. Renew. Energy 2011, 36, 879–880. [Google Scholar] [CrossRef]
- Le, T.L.; van Ierland, E.C.; Zhu, X.; Wesseler, J. Energy and Greenhouse Gas Balances of Cassava-Based Ethanol. Biomass Bioenergy 2013, 51, 125–135. [Google Scholar] [CrossRef]
- Duer, H.; Christensen, P.O. Socio-Economic Aspects of Different Biofuel Development Pathways. Biomass Bioenergy 2010, 34, 237–243. [Google Scholar] [CrossRef]
- Nogueira, L.A. Does Biodiesel make Sense? Energy 2011, 36, 3659–3666. [Google Scholar] [CrossRef]
- IRENA. Global Energy Transformation: The REmap Transition Pathway; Background Report to 2019 Edition; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2019; Available online: https://www.irena.org/publications/2019/Apr/Global-energy-transformation-The-REmap-transition-pathway (accessed on 4 August 2020).
- Khan, S.; Naushad, M.; Iqbal, J.; Bathula, C.; AL-Muhtaseb, A.H. Challenges and Perspectives on Innovative Technologies for Biofuel Production and Sustainable Environmental Management. Fuel 2022, 325, 124845. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Mentore Vaccari, M.; Bonilla-Petriciolet, A.; Prasad, S.; van Hullebusch, E.D.; Rtimi, S. Emerging technologies for biofuel production: A critical review on recent progress, challenges and perspectives. J. Environ. Manag. 2021, 290, 112627. [Google Scholar] [CrossRef] [PubMed]
- De Araujo, B.M.C.; Costa, I.O.; de Brito, H.G.; Rios, N.S.; Dos, S. Enzyme technology in bioethanol production from lignocellulosic biomass: Recent trends with a focus on immobilized enzymes. Bioresources 2023, 18, 352023. [Google Scholar] [CrossRef]
- Ministry of New and Renewable Energy. National Policy on Biofuels; Ministry of New and Renewable Energy: New Delhi, India, 2009. [Google Scholar]
- Available online: https://pib.gov.in/PressReleaseIframePage.aspx?PRID=1960491 (accessed on 25 September 2023).
- National Biofuel Policy. 2018. Available online: https://mnre.gov.in/file-manager/UserFiles/biofuel_policy.pdf (accessed on 20 September 2015).
- Mandade, P.P.; Yogesh, M.; Nimdeo, N. Techno-economic assessment of biofuel production using thermochemical pathways. In Biofuels Bioenergy; Elsevier: Amsterdam, The Netherlands, 2022; pp. 653–671. [Google Scholar]
- Lee, S.Y.; Sankaran, R.; Chew, K.W.; Tan, C.H.; Krishnamoorthy, R.; Chu, D.T.; Show, P.L. Waste to Bioenergy: A Review on the Recent Conversion Technologies. BMC Energy 2019, 1, 4. [Google Scholar] [CrossRef]
- Prasad, S.; Singh, A.; Korres, N.E.; Rathore, D.; Pant, D. Sustainable utilization of crop residues for energy generation: A life cycle assessment (LCA) perspective. Bioresour. Technol. 2020, 303, 122964. [Google Scholar] [CrossRef] [PubMed]
- Sie, S.W.; Riyang, S.; Zhang, J.; Liu, H.; Ning, Y. Downstream processing of lignin derived feedstock into end products. Chem. Soc. Rev. 2020, 49, 5510–5560. [Google Scholar]
Classifications | Product | Feedstock |
---|---|---|
First generation (food feedstocks) | Ethanol | Corn, sugar beet, sugarcane, cereals, sorghum, grains etc. |
Biodiesel | Rapeseed, palm oil, soybean, waste oils, animal fats | |
Second generation (biomass) | Cellulosic ethanol | Switch grass, wheat straw, jatropha, miscanthus, corn Stover, stalks, stubbles, leaves, seed pods, rice and wheat straw, sugarcane bagasse, fruit and vegetable wastes |
Third generation | Bioethanol/ethanol | Algae |
Fourth generation | Biodiesel/bioethanol | “Drop in” biofuels, genetically modified crops for biofuels, renewable solar fuel |
Type of Biofuel | Product | Feedstock | Conversion Process/Technologies |
---|---|---|---|
Biodiesel | Biodiesel (methyl and ethyl esters of fatty acids) derived from energy crops | Oil crops (soybean, sunflower, rapeseed, palm, etc.) | Cold and warm pressing, drying, extraction, transesterification, purification, |
Biodiesel from organic waste materials | Waste oil, cooking/frying oil | Hydrogenation | |
Bioethanol | Conventional ethanol | Sugar beet, sugarcane | Direct fermentation of juice |
Starchy ethanol | Corn, wheat and other grains | Enzymatic hydrolysis, fermentation |
Substrate(s) | Fermentation Mode |
---|---|
Bioethanol | |
Corn, potato, cassava, sorghum, grains, fruit and vegetables waste, sweet potato, sugar cane, sugar beets, etc. | Simultaneous saccharification and fermentation (SSF), separated hydrolysis and fermentation (SHF) |
Lignocellulose materials, such as wheat and rice straw, corn stover, corn cobs, switchgrass, hardwood, sugarcane bagasse, etc. | Simultaneous saccharification and fermentation (SSF), simultaneous saccharification and fermentation with prehydrolysis time (PTSSF) |
Alkaline-treated sugarcane bagasse | Consolidated bioprocessing (CBP) |
Biohydrogen | |
Agriculture residue (sugarcane bagasse, rice straw, leaves, etc.) | Dark and photofermentation |
Fruits and vegetables waste | Photofermentation |
Algae (macro and micro), cyanobacteria | Biophotolysis |
Types of Biofuels | Biomass/Substrate | Conversion Process/ Technologies | Applications |
---|---|---|---|
Bioethanol | Corn, potatoes, sugarcane, sugar beet crops, Wheat, barley sorghum grains, Poplar and wood chips, agricultural waste (corn, sorghum, oat, barley, wheat, soybean, cotton, bagasse, and rice straws) and energy crops (hybrid sorghum, energy cane, miscanthus, switchgrass, eucalyptus, and pine) | Pre-treatment, Liquefaction, Enzymatic hydrolysis, saccharification and fermentation | Drop in fuel, blending for gasoline engine, alcohol to jet for aviation |
Biodiesel | Rapeseed, sunflower, palm, soybean, canola, jatropha oil, algae, etc. | Pressing, Cultivation, Harvesting, extraction, purification and trans-esterification | Drop in fuel, blending for diesel engine |
Biogas | Dung, agriwaste, sewage water and sludge, municipal solid waste, organic waste, industrial waste, etc. | Anaerobic digestion (AD) | Blended with natural gas for transportation, cooking |
Biohydrogen | Lignocellulosic materials, bio-waste, macro and micro algae, industrial waste, etc. | Dark and photo fermentation, biophotolysis | Internal combustion engines |
Characteristics | Biofuels | Fossil Fuels |
---|---|---|
Type | Renewable | Non-renewable |
Impact on health | Nontoxic | Toxic ingredients, chemicals and by-products |
State of industry | Growing | declining |
Energy production | Provides a low amount of energy per unit biomass | Provides a high amount of energy per unit mass |
Environmentally friendly | yes | no |
production methods | Safer | unsafe |
CO2 neutral process | Release net zero carbon dioxide | Increase the concentration of carbon dioxide |
Sustainability | yes | no |
Examples | Bioethanol, biodiesel, methanol, biobutanol, biogas, biohydrogen | Gasoline, ethane, diesel, methane, butane |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, K.; Capareda, S.C.; Kamboj, B.R.; Malik, S.; Singh, K.; Arya, S.; Bishnoi, D.K. Biofuels Production: A Review on Sustainable Alternatives to Traditional Fuels and Energy Sources. Fuels 2024, 5, 157-175. https://doi.org/10.3390/fuels5020010
Malik K, Capareda SC, Kamboj BR, Malik S, Singh K, Arya S, Bishnoi DK. Biofuels Production: A Review on Sustainable Alternatives to Traditional Fuels and Energy Sources. Fuels. 2024; 5(2):157-175. https://doi.org/10.3390/fuels5020010
Chicago/Turabian StyleMalik, Kamla, Sergio C. Capareda, Baldev Raj Kamboj, Shweta Malik, Karmal Singh, Sandeep Arya, and Dalip Kumar Bishnoi. 2024. "Biofuels Production: A Review on Sustainable Alternatives to Traditional Fuels and Energy Sources" Fuels 5, no. 2: 157-175. https://doi.org/10.3390/fuels5020010
APA StyleMalik, K., Capareda, S. C., Kamboj, B. R., Malik, S., Singh, K., Arya, S., & Bishnoi, D. K. (2024). Biofuels Production: A Review on Sustainable Alternatives to Traditional Fuels and Energy Sources. Fuels, 5(2), 157-175. https://doi.org/10.3390/fuels5020010