Integrated Petrophysical Evaluation and Rock Physics Modeling of Broom Creek Deep Saline Aquifer for Geological CO2 Storage
Abstract
:1. Introduction
2. Geological Settings
3. Data Availability and Methodology
3.1. Data
3.2. Multimineral Petrophysical Evaluation
3.2.1. Preliminary Data Processing
3.2.2. Multimineral Petrophysical Inversion
3.3. Rock Physics Modeling
3.3.1. Mineral and Fluid Mixing
3.3.2. Saturated Rock Moduli
4. Results and Discussion
4.1. Analysis of Cross-Plots
4.2. Mineralogical Interpretation
4.3. Rock Physics Modeling
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CO2 | Carbon dioxide |
NDIC | North Dakota Industrial Commission |
XRD | X-ray diffraction analysis |
CCUS | Carbon capture, utilization, and storage |
IEF | International Energy Forum |
NDCS | North Dakota Integrated Carbon Storage Complex Feasibility Study |
GR | Natural gamma-ray log |
AIG | Array induction logs |
RHOZ | Formation bulk density log |
NPHI | Neutron porosity log |
PEF | Photo-electric factor |
DTCO | Compressional slowness log |
HTHO | Formation thorium concentration log |
HURA | Formation uranium concentration log |
HFK | Formation potassium concentration log |
TCMR | Total nuclear magnetic resonance (NMR) Porosity |
CMFF | NMR free fluid |
CMRP_3MS | NMR porosity with T2 values greater than 3 ms |
KSDR | NMR SDR permeability |
KSDR | NMR Timur/Coates permeability |
Volume fraction of ith mineral | |
Geophysical log measurement | |
Log response value of the ith formation constituent | |
Volume fraction of fth fluid constituent | |
User imposed maximum porosity constraint | |
Total porosity | |
Elastic properties | |
Rock physics model | |
Voigt upper bound of bulk modulus | |
Reuss lower bound of bulk modulus | |
Hill average of bulk modulus | |
Voigt upper bound of shear modulus | |
Reuss lower bound of shear modulus | |
Hill average of shear modulus | |
Effective bulk modulus derived from self-consistent approach | |
Effective shear modulus derived from self-consistent approach | |
Volumetric strain concentration factor | |
Deviatoric strain concentration factors | |
Bulk modulus of host mineral | |
Shear modulus of host mineral |
Bulk modulus of inclusion | |
Shear modulus of inclusion | |
Aspect ratio | |
Sw | Water saturation |
Inverse of formation true resistivity | |
U | Volumetric photoelectric factor |
a, m and n | Archie’s parameters |
Rw | Formation water resistivity |
Compressional wave velocity | |
Shear wave velocity | |
Acoustic impedance | |
HS+ and HS− | Hashin–Strikman upper and lower bounds |
References
- Causes and Effects of Climate Change|United Nations. Available online: https://www.un.org/en/climatechange/science/causes-effects-climate-change (accessed on 20 December 2023).
- Wei, W.; Mushtaq, Z.; Sharif, M.; Zeng, X.; Wan-Li, Z.; Qaisrani, M.A. Evaluating the coal rebound effect in energy intensive industries of China. Energy 2020, 207, 118247. [Google Scholar] [CrossRef]
- U.S. Global Change Research Program. Climate Science Special Report: Fourth National Climate Assessment; Technical Report; U.S. Global Change Research Program: Washington, DC, USA, 2017; Volume I. [CrossRef]
- Allen, M.; Dube, O.; Solecki, W.; Aragón-Durand, F.; Cramer, W.; Humphreys, S.; Kainuma, M.; Kala, J.; Mahowald, N.; Mulugetta, Y.; et al. Framing and Context. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018; pp. 49–92. [Google Scholar] [CrossRef]
- Net Zero Coalition|United Nations. Available online: https://www.un.org/en/climatechange/net-zero-coalition (accessed on 20 December 2023).
- Lal, R. Carbon sequestration. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 815–830. [Google Scholar] [CrossRef] [PubMed]
- Sharif, M.; Zhang, T.; Wu, X.; Yu, Y.; Zhang, Z. Evaluation of CO2 absorption performance by molecular dynamic simulation for mixed secondary and tertiary amines. Int. J. Greenh. Gas Control 2020, 97, 103059. [Google Scholar] [CrossRef]
- Sharif, M.; Wu, X.; Yu, Y.; Zhang, T.; Zhang, Z. Estimation of diffusivity and intermolecular interaction strength of secondary and tertiary amine for CO2 absorption process by molecular dynamic simulation. Mol. Simul. 2022, 48, 484–494. [Google Scholar] [CrossRef]
- Sharif, M.; Fan, H.; Sultan, S.; Yu, Y.; Zhang, T.; Wu, X.; Zhang, Z. Evaluation of CO2 absorption and stripping process for primary and secondary amines. Mol. Simul. 2023, 49, 565–575. [Google Scholar] [CrossRef]
- Mushtaq, Z.; Wei, W.; Jamil, I.; Sharif, M.; Chandio, A.A.; Ahmad, F. Evaluating the factors of coal consumption inefficiency in energy intensive industries of China: An epsilon-based measure model. Resour. Policy 2022, 78, 102800. [Google Scholar] [CrossRef]
- Sharif, M.; Fan, H.; Wu, X.; Yu, Y.; Zhang, T.; Zhang, Z. Assessment of novel solvent system for CO2 capture applications. Fuel 2023, 337, 127218. [Google Scholar] [CrossRef]
- Luo, A.; Li, Y.; Chen, X.; Zhu, Z.; Peng, Y. Review of CO2 sequestration mechanism in saline aquifers. Nat. Gas Ind. B 2022, 9, 383–393. [Google Scholar] [CrossRef]
- IEF. Strategies to Scale Carbon Capture, Utilization, and Storage; Technical Report; The International Energy Forum: Riyadh, Saudi Arabia, 2022. [Google Scholar]
- Class VI—Geologic Sequestration Wells. Available online: https://www.dmr.nd.gov/dmr/oilgas/ClassVI (accessed on 20 December 2023).
- Class VI—Wells Used for Geologic Sequestration of Carbon Dioxide. Available online: https://www.epa.gov/uic/class-vi-wells-used-geologic-sequestration-carbon-dioxide (accessed on 20 December 2023).
- Peck, W.D.; Ayash, S.C.; Klapperich, R.J.; Gorecki, C.D. The North Dakota integrated carbon storage complex feasibility study. Int. J. Greenh. Gas Control 2019, 84, 47–53. [Google Scholar] [CrossRef]
- Jacobi, D.; Gladkikh, M.; LeCompte, B.; Hursan, G.; Mendez, F.; Longo, J.; Ong, S.; Bratovich, M.; Patton, G.; Shoemaker, P. Integrated Petrophysical Evaluation of Shale Gas Reservoirs. In Proceedings of the SPE Unconventional Resources Conference/Gas Technology Symposium, Calgary, AB, Canada, 16–19 June 2008; p. SPE-114925-MS. [Google Scholar] [CrossRef]
- Mellal, I.; Malki, M.L.; Latrach, A.; Ameur-Zaimech, O.; Bakelli, O. Multiscale Formation Evaluation and Rock Types Identification in the Middle Bakken Formation. In Proceedings of the SPWLA Annual Logging Symposium, Lake Conroe, TX, USA, 10–14 June 2023; p. D031S002R006. [Google Scholar] [CrossRef]
- Mellal, I.; Latrach, A.; Rasouli, V.; Bakelli, O.; Dehdouh, A.; Ouadi, H. Water Saturation Prediction in the Middle Bakken Formation Using Machine Learning. Eng 2023, 4, 1951–1964. [Google Scholar] [CrossRef]
- Mellal, I.; Rasouli, V.; Dehdouh, A.; Letrache, A.; Abdelhamid, C.; Malki, M.L.; Bakelli, O. Formation Evaluation Challenges of Tight and Shale Reservoirs. A Case Study of the Bakken Petroleum System. In Proceedings of the U.S. Rock Mechanics/Geomechanics Symposium, Atlanta, GA, USA, 25–28 June 2023; p. ARMA-2023-0894. [Google Scholar] [CrossRef]
- Gerhard, L.C.; Anderson, S.B.; Lefever, J.A.; Carlson, C.G. Geological Development, Origin, and Energy Mineral Resources of Williston Basin, North Dakota1. AAPG Bull. 1982, 66, 989–1020. [Google Scholar] [CrossRef]
- Bakelli, O.; Chellal, H.A.K.; Aoun, A.E.; Khetib, Y.; Mellal, I.; Kegang, L. Integrated Reservoir Simulation and Discrete Fracture Network Modeling for Produced Water Source Identification in Tight Reservoirs, Case Study from the Bakken Formation, Williston Basin. In Proceedings of the U.S. Rock Mechanics/Geomechanics Symposium, Atlanta, GA, USA, 25–28 June 2023; p. ARMA-2023-0864. [Google Scholar] [CrossRef]
- Carlson, C.G.; Anderson, S.B. Sedimentary and Tectonic History of North Dakota Part of Williston Basin1. AAPG Bull. 1965, 49, 1833–1846. [Google Scholar] [CrossRef]
- Gaswirth, S.B.; Lillis, P.G.; Pollastro, R.M.; Anna, L.O. Geologic Assessment of Undiscovered Oil and Gas Resources in the Madison Group, Williston Basin, North Dakota and Montana. In Assessment of Undiscovered Oil and Gas Resources of the Williston Basin Province of North Dakota, Montana, and South Dakota; US Geological Survey Williston Basin Province Assessment Team, Ed.; U.S. Geological Survey: Reston, VA, USA, 2013; Chapter 4; p. 1. Available online: https://pubs.usgs.gov/dds/dds-069/dds-069-w/ (accessed on 23 January 2024).
- Steadman, E.N.; Daly, D.J.; De Silva, L.L.; Harju, J.A.; Jensen, M.D.; O’Leary, E.M.; Peck, W.D.; Smith, S.A.; Sorensen, J.A. PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP (PHASE I) FINAL REPORT; Technical Report; Energy & Environmental Research Center, University of North Dakota: Grand Forks, ND, USA, 2006. [Google Scholar]
- Belobraydic, M.L.; Richards, T.L.; Pekot, L.J.; Stevens, C.R.; Feole, I.K.; Warmack, M.P.; Regorrah, J.G.; Burnison, S.A.; Meyer, J.A.; Klapperich, R.J.; et al. TECHNICAL APPROACHES to STACKED STORAGE, Plains CO2 Reduction (PCOR) Partnership, Task 2—Deliverable D3.A; Technical Report; Energy & Environmental Research Center, University of North Dakota: Grand Forks, ND, USA, 2021. [Google Scholar]
- Sorensen, J.A.; Bailey, T.P.; Dobroskok, A.A.; Gorecki, C.D.; Smith, S.A.; Fisher, D.W.; Peck, W.D.; Steadman, E.N.; Harju, J.A. Characterization and Modeling of the Broom Creek Formation for potential storage of CO2 from coal-fired power plants in North Dakota. Search Discov. 2009, 1, 1–14. [Google Scholar]
- Bakelli, O.; Xiao, T.; McPherson, B.; Doghmane, M.Z. Geomechanical Characterization of the Broom Creek Reservoir for Geologic Carbon Storage in the Williston Basin, North Dakota, U.S. In Proceedings of the ARMA/DGS/SEG International Geomechanics Symposium, Dhahran, Saudi Arabia, 30 October–2 November 2023; p. ARMA-IGS-2023-0042. [Google Scholar] [CrossRef]
- Rygh, M.E. The Broom Creek Formation (Permian), in Southwestern North Dakota: Depositional Environments and Nitrogen Occurrence. Master’s Thesis, University of North Dakota, Grand Forks, ND, USA, 1990. [Google Scholar]
- Barajas-Olalde, C.; Adams, D.C.; Curcio, A.; Davydycheva, S.; Klapperich, R.J.; Martinez, Y.; Paembonan, A.Y.; Peck, W.D.; Strack, K.; Soupios, P. Application of Electromagnetic Methods for Reservoir Monitoring with Emphasis on Carbon Capture, Utilization, and Storage. Minerals 2023, 13, 1308. [Google Scholar] [CrossRef]
- Benison, K.C.; Goldstein, R.H. Sedimentology of Ancient Saline Pans: An Example from the Permian Opeche Shale, Williston Basin, North Dakota, USA. J. Sediment. Res. 2000, 70, 159–169. [Google Scholar] [CrossRef]
- Ziebarth, H.C. The Stratigraphy and Economic Potential of Permo-Pennsylvanian Strata in Southwestern North Dakota; The University of North Dakota: Grand Forks, ND, USA, 1972. [Google Scholar]
- NDIC. Department of Mineral Resources, North Dakota. Available online: https://www.dmr.nd.gov/ (accessed on 5 December 2023).
- Operator. NDIC 37380 Well File (Unpublished). 2020. Available online: https://www.dmr.nd.gov/ (accessed on 15 December 2022).
- Grandi Karam, S. Effects of Borehole Stability on Well Log Data. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2003. [Google Scholar]
- Doveton, J.H. Compositional Analysis of Lithologies from Wireline Logs. In Geologic Log Analysis Using Computer Methods; American Association of Petroleum Geologists: Tulsa, OK, USA, 1994. [Google Scholar] [CrossRef]
- Quirein, J.; Kimminau, S.; La Vigne, J.; Julian, S.; Wendel, F. A Coherent Framework For Developing And Applying Multiple Formation Evaluation Models. In Proceedings of the SPWLA 27th Annual Logging Symposium, SPWLA-1986-DD, Houston, TX, USA, 9–13 June 1986; Available online: https://your-url-here.com (accessed on 23 January 2024).
- Cheng, L.; Jin, G.; Michelena, R.; Tura, A. Practical Bayesian Inversions for Rock Composition and Petrophysical Endpoints in Multimineral Analysis. SPE Reserv. Eval. Eng. 2022, 25, 849–865. [Google Scholar] [CrossRef]
- Luycx, M.; Wheelock, B.; Kadir, H.; Oyewole, E.O.; Ijasan, O.; McLendon, D. Core-Calibrated Multi-Mineral Interpretation in Reservoirs with Complex Mineralogy. In Proceedings of the Unconventional Resources Technology Conference, Houston, TX, USA, 20–22 June 2022; p. D031S049R001. [Google Scholar] [CrossRef]
- Avseth, P.; Mukerji, T.; Mavko, G.; Dvorkin, J. Rock-physics diagnostics of depositional texture, diagenetic alterations, and reservoir heterogeneity in high-porosity siliciclastic sediments and rocks—A review of selected models and suggested work flows. Geophysics 2010, 75, 75A31–75A47. [Google Scholar] [CrossRef]
- Grana, D.; Pirrone, M.; Mukerji, T. Quantitative log interpretation and uncertainty propagation of petrophysical properties and facies classification from rock-physics modeling and formation evaluation analysis. Geophysics 2012, 77, WA45–WA63. [Google Scholar] [CrossRef]
- Mavko, G.; Mukerji, T.; Dvorkin, J. Effective Elastic Media: Bounds and Mixing Laws. In The Rock Physics Handbook, 3rd ed.; Cambridge University Press: Cambridge, UK, 2020; pp. 220–308. [Google Scholar] [CrossRef]
- Berryman, J.G. Mixture Theories for Rock Properties. In Rock Physics & Phase Relations; American Geophysical Union (AGU): Washington, DC, USA, 1995; pp. 205–228. [Google Scholar] [CrossRef]
- Berryman, J.G. Single-scattering approximations for coefficients in Biot’s equations of poroelasticity. J. Acoust. Soc. Am. 1992, 91, 551–571. [Google Scholar] [CrossRef]
- Schlumberger. Techlog Wellbore Software, Version 2020.1. Available online: https://www.software.slb.com/products/techlog (accessed on 23 January 2024).
- Doveton, J.H. Graphical Techniques for the Analysis and Display of Logging Information. In Geologic Log Analysis Using Computer Methods; American Association of Petroleum Geologists: Tulsa, OK, USA, 1994. [Google Scholar] [CrossRef]
- Schlumberger Limited. Log Interpretation Charts; Schlumberger: Houston, TX, USA, 2009. [Google Scholar]
- Smith, S.A.; Beddoe, C.J.; Mibeck, B.A.; Heebink, L.V.; Kurz, B.A.; Peck, W.D.; Jin, L. Relative Permeability of Williston Basin CO2 Storage Targets. Energy Procedia 2017, 114, 2957–2971. [Google Scholar] [CrossRef]
- Pickett, G. A Review of Current Techniques for Determination of Water Saturation From Logs. J. Pet. Technol. 1966, 18, 1425–1433. [Google Scholar] [CrossRef]
- Waxman, M.; Smits, L. Electrical Conductivities in Oil-Bearing Shaly Sands. Soc. Pet. Eng. J. 1968, 8, 107–122. [Google Scholar] [CrossRef]
- Gupta, A.R.; Kamal. A theoretical approach for water saturation estimation in shaly sandstones. Geoenergy Sci. Eng. 2023, 228, 212001. [Google Scholar] [CrossRef]
- Gupta, A.R.; Gupta, P.K.; Singh, V.N. A genetic algorithm approach to evaluate models for electrical conductivity response of shaly sand reservoir, based on volumetric approach. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Houston, TX, USA, 2023; pp. 1570–1574. [Google Scholar] [CrossRef]
- Mavko, G.; Mukerji, T.; Dvorkin, J. Appendices. In The Rock Physics Handbook, 3rd ed.; Cambridge University Press: Cambridge, UK, 2020; pp. 613–672. [Google Scholar] [CrossRef]
Data | Used in |
---|---|
Geophysical well logs | Quantitative multimineral petrophysical evaluation; estimation of porosity and permeability. Rock physics modeling |
X-ray diffraction (XRD) data | Quantitative validation of multimineral petrophysical evaluation |
Routine core analysis | Quantitative validation of porosity and permeability |
Advanced core analysis | Pore throat distribution analysis (derived from mercury injection studies) |
Cutting description | Qualitative validation of multimineral petrophysical evaluation |
Data | Units | Description | Remarks |
---|---|---|---|
GR | GAPI | Natural gamma-ray log | Used in the quantitative multimineral evaluation and rock physics modeling |
AIG | Ohm-m | Array induction logs | |
RHOZ | g/cc | Formation bulk density log | |
NPHI | p.u | Neutron porosity log | |
PEF | b/e | Photo-electric factor | |
DTCO | μs/ft | Compressional slowness log | |
HTHO | ppm | Formation thorium concentration log | Used in clay mineralogy identification |
HURA | ppm | Formation uranium concentration log | |
HFK | % | Formation potassium concentration log | |
TCMR | v/v | Total nuclear magnetic resonance (NMR) porosity | Used in calibration/validation |
CMFF | v/v | NMR free fluid | |
CMRP_3MS | v/v | NMR-porosity with T2 values greater than 3 ms | |
KSDR | mD | NMR SDR Permeability | |
KSDR | mD | NMR Timur/Coates’ permeability |
Sandstone | Dolomite | Anhydrite | Shale | Brine | |
---|---|---|---|---|---|
Bulk modulus (K) (GPa) | 37.00 | 94.90 | 56.10 | 15.00 | 2.20 |
Shear modulus (G) (GPa) | 44.00 | 45.00 | 29.10 | 10.00 | 0.00 |
Density () (g/cc) | 2.65 | 2.87 | 2.99 | 2.50 | 1.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pothana, P.; Ifrene, G.; Ling, K. Integrated Petrophysical Evaluation and Rock Physics Modeling of Broom Creek Deep Saline Aquifer for Geological CO2 Storage. Fuels 2024, 5, 53-74. https://doi.org/10.3390/fuels5010004
Pothana P, Ifrene G, Ling K. Integrated Petrophysical Evaluation and Rock Physics Modeling of Broom Creek Deep Saline Aquifer for Geological CO2 Storage. Fuels. 2024; 5(1):53-74. https://doi.org/10.3390/fuels5010004
Chicago/Turabian StylePothana, Prasad, Ghoulem Ifrene, and Kegang Ling. 2024. "Integrated Petrophysical Evaluation and Rock Physics Modeling of Broom Creek Deep Saline Aquifer for Geological CO2 Storage" Fuels 5, no. 1: 53-74. https://doi.org/10.3390/fuels5010004
APA StylePothana, P., Ifrene, G., & Ling, K. (2024). Integrated Petrophysical Evaluation and Rock Physics Modeling of Broom Creek Deep Saline Aquifer for Geological CO2 Storage. Fuels, 5(1), 53-74. https://doi.org/10.3390/fuels5010004