Epidemiological Surveillance of Genetically Determined Microcephaly in Latin America: A Narrative Review
Abstract
1. Introduction
2. Relevant Sections
2.1. Genetic Etiology of Congenital Microcephaly
2.2. Numerical and Structural Chromosomal Abnormalities Associated with Microcephaly
2.3. Monogenic Syndromic Mutations Associated with Microcephaly
2.4. Autosomal Dominant Primary Microcephaly
2.5. Autosomal Recessive Primary Microcephaly (MCPH)
2.6. Microcephaly Associated with Impaired DNA Repair and Neuronal Migration
2.7. Holoprosencephaly (HPE)
3. Epidemiological Surveillance of Congenital Microcephaly with Genetic Etiology in Latin America
3.1. Prevalence of Congenital Microcephaly of Genetic Etiology in Latin America
3.2. Reported Genetic Variants Associated with Microcephaly in Latin America
3.3. Holoprosencephaly in Latin America
3.4. Diagnostic and Medical Approach to Microcephaly Cases
4. Discussion
4.1. Study Limitations
4.2. Future Directions
5. Conclusions
Methodology
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MCPH | Autosomal Recessive Primary Microcephaly |
HPE | Holoprosencephaly |
ECLAMC | Latin American Collaborative Study of Congenital Malformations |
RyVEMCE | the Registry and Epidemiological Surveillance of External Congenital Malformations |
ZACS | Zika Associated Congenital Syndrome |
ICBDSR | International Clearinghouse for Birth Defects Surveillance and Research |
References
- Melo, N.d.L.; de Sousa, D.F.; Laporta, G.Z. Microcephaly and associated risk factors in newborns: A systematic review and meta-analysis study. Trop. Med. Infect. Dis. 2022, 7, 261. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, H.A. Microcephaly. Medicina 2018, 78, 94–100. Available online: https://www.scielo.org.ar/scielo.php?pid=S0025-76802018000600018&script=sci_abstract&tlng=en (accessed on 24 February 2022). [PubMed]
- Morán-Barroso, V.F.; Cervantes, A.; Rivera-Vega, M.d.R.; del Castillo-Moreno, A.; Moreno-Chacón, A.; Mejía-Cauich, E.; Contreras-Ortiz, L.E.; Fernández-Ramírez, F. Mosaic proximal trisomy 13q and regular trisomy 13 in a female patient with long survival: Involvement of an incomplete trisomic rescue and a chromothripsis event. Mol. Genet. Genom. Med. 2021, 9, e1762. [Google Scholar] [CrossRef]
- Noriega, M.A.; Siddik, A.B. Trisomía 13. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Akhtar, F.; Bokhari, S.R.A. Down syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK526016 (accessed on 3 June 2025).
- Redhead, Y.; Gibbins, D.; Lana-Elola, E.; Watson-Scales, S.; Dobson, L.; Krause, M.; Liu, K.J.; Fisher, E.M.C.; Green, J.B.A.; Tybulewicz, V.L.J. Craniofacial dysmorphology in Down syndrome is caused by increased dosage of Dyrk1a and at least three other genes. Development 2023, 150, dev201077. [Google Scholar] [CrossRef]
- Rosa, R.F.M.; Rosa, R.C.M.; Lorenzen, M.B.; Zen, P.R.G.; Graziadio, C.; Paskulin, G.A. Craniofacial abnormalities among patients with Edwards Syndrome. Rev. Paul. Pediatr. 2013, 31, 293–298. [Google Scholar] [CrossRef]
- Balasundaram, P.; Avulakunta, I.D. Edwards syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK570597/ (accessed on 5 June 2025).
- Nguyen, J.M.; Qualmann, K.J.; Okashah, R.; Reilly, A.; Alexeyev, M.F.; Campbell, D.J. 5p deletions: Current knowledge and future directions. Am. J. Med. Genet. C Semin. Med. Genet. 2015, 169, 224–238. [Google Scholar] [CrossRef]
- Battaglia, A.; Filippi, T.; Carey, J.C. Update on the clinical features and natural history of Wolf-Hirschhorn (4p-) syndrome: Experience with 87 patients and recommendations for routine health supervision. Am. J. Med. Genet. C Semin. Med. Genet. 2008, 148, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Zeng, Y.; Wang, L.; Yin, D.; Chen, L.; Xie, D.; Wang, J. Prenatal phenotype of Wolf-Hirschhorn syndrome: A case series and literature review. Mol. Genet. Genom. Med. 2023, 11, e2155. [Google Scholar] [CrossRef]
- Nowaczyk, M.J.M.; Wassif, C.A. Smith-Lemli-Opitz syndrome. In GeneReviews(®); University of Washington: Seattle, WA, USA, 1993. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1143/ (accessed on 3 February 2024).
- Sanghera, A.S.; Zeppieri, M. Smith-Lemli-Opitz syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/nbk599510/ (accessed on 3 June 2025).
- Barisic, I.; Tokic, V.; Loane, M.; Bianchi, F.; Calzolari, E.; Garne, E.; Wellesley, D.; Dolk, H.; EUROCAT Working Group. Descriptive epidemiology of Cornelia de Lange syndrome in Europe. Am. J. Med. Genet. A 2008, 146, 51–59. [Google Scholar] [CrossRef]
- Deardorff, M.A.; Noon, S.E.; Krantz, I.D. Cornelia de Lange syndrome. In GeneReviews(®); University of Washington: Seattle, WA, USA, 1993. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1104/ (accessed on 6 February 2024).
- Kline, A.D.; Moss, J.F.; Selicorni, A.; Bisgaard, A.-M.; Deardorff, M.A.; Gillett, P.M.; Ishman, S.L.; Kerr, L.M.; Levin, A.V.; Mulder, P.A.; et al. Diagnosis and management of Cornelia de Lange syndrome: First international consensus statement. Nat. Rev. Genet. 2018, 19, 649–666. [Google Scholar] [CrossRef]
- Abuelo, D. Microcephaly síndromes. Semin. Pediatr. Neurol. 2007, 14, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Iglesias Escalera, G.; Carrasco Marina, M.L.; Martín Del Valle, F.; Martínez Guardia, N.; Rodríguez, L.; Martínez-Fernández, M.L. Síndrome de Miller-Dieker. Anales Pediatr. 2009, 70, 304–306. [Google Scholar] [CrossRef]
- Mendoza Torres, J.C.; Coiscou Domínguez, N.R. Síndrome de Miller-Dieker: Reporte de dos casos. Rev. Fac. Med. Univ. Nac. Auton. Mex. 2024, 67, 19–25. [Google Scholar] [CrossRef]
- Kalay, E.; Yigit, G.; Aslan, Y.; Brown, K.E.; Pohl, E.; Bicknell, L.S.; Kayserili, H.; Li, Y.; Tüysüz, B.; Nürnberg, G.; et al. CEP152 is a genome maintenance protein disrupted in Seckel syndrome. Nat. Genet. 2011, 43, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Verloes, A.; Drunat, S.; Passemard, S. ASPM primary microcephaly. In GeneReviews(®); University of Washington: Seattle, WA, USA, 1993. Available online: https://www.ncbi.nlm.nih.gov/books/NBK555474/ (accessed on 6 February 2024).
- van Bon, B.W.M.; Coe, B.P.; de Vries, B.B.A.; Eichler, E.E. DYRK1A syndrome. In GeneReviews(®); University of Washington: Seattle, WA, USA, 1993. Available online: https://www.ncbi.nlm.nih.gov/books/NBK333438/ (accessed on 8 February 2024).
- Zaqout, S.; Morris-Rosendahl, D.; Kaindl, A.M. Autosomal recessive primary microcephaly (MCPH): An update. Neuropediatrics 2017, 48, 135–142. [Google Scholar] [CrossRef]
- Naveed, M.; Kazmi, S.K.; Amin, M.; Asif, Z.; Islam, U.; Shahid, K.; Tehreem, S. Comprehensive review on the molecular genetics of autosomal recessive primary microcephaly (MCPH). Genet. Res. 2018, 100, e7. [Google Scholar] [CrossRef]
- Moawia, A.; Shaheen, R.; Rasool, S.; Waseem, S.S.; Ewida, N.; Budde, B.; Kawalia, A.; Motameny, S.; Khan, K.; Fatima, A.; et al. Mutations of KIF14 cause primary microcephaly by impairing cytokinesis. Ann. Neurol. 2017, 82, 562–577. [Google Scholar] [CrossRef]
- Takimoto, M. D40/KNL1/CASC5 and autosomal recessive primary microcephaly. Congenit. Anom. 2017, 57, 191–196. [Google Scholar] [CrossRef]
- Perez, Y.; Bar-Yaacov, R.; Kadir, R.; Wormser, O.; Shelef, I.; Birk, O.S.; Flusser, H.; Birnbaum, R.Y. Mutations in the microtubule-associated protein MAP11 (C7orf43) cause microcephaly in humans and zebrafish. Brain 2019, 142, 574–585. [Google Scholar] [CrossRef]
- Bel-Fenellós, C.; Biencinto-López, C.; Sáenz-Rico, B.; Hernández, A.; Sandoval-Talamantes, A.K.; Tenorio-Castaño, J.; Lapunzina, P.; Nevado, J. Cognitive-behavioral profile in pediatric patients with syndrome 5p-; Genotype-phenotype correlationships. Genes 2023, 14, 1628. [Google Scholar] [CrossRef]
- Marcelis, C.L.M.; de Brouwer, A.P.M. Feingold syndrome 1. In GeneReviews(®); University of Washington: Seattle, WA, USA, 1993. Available online: https://www.ncbi.nlm.nih.gov/books/NBK7050/ (accessed on 4 February 2024).
- Tatiya, N.; Kesri, R.; Ukey, A. Seckel dwarfism-A Rare Autosomal Recessive Inherited Syndrome: A case report. Int. J. Clin. Pediatr. Dent. 2024, 17, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Yu, H.; Zhu, M.; Liu, L.; Cheng, L.; Han, Z.; Jin, W. NCAPD2 promotes the malignant progression of oral squamous cell carcinoma via the Wnt/β-catenin pathway. Cell Cycle 2024, 23, 588–601. [Google Scholar] [CrossRef]
- DiStasio, A.; Driver, A.; Sund, K.; Donlin, M.; Muraleedharan, R.M.; Pooya, S.; Kline-Fath, B.; Kaufman, K.M.; Prows, C.A.; Schorry, E.; et al. Copb2 is essential for embryogenesis and hypomorphic mutations cause human microcephaly. Hum. Mol. Genet. 2017, 26, 4836–4848. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Shen, J.; Gao, Y.; Dai, W.; Liang, S.; Chen, J.; Gao, L.; Lin, Y.; Cai, L.; Qin, L.; et al. Nucleoporin37 may play a role in early embryo development in human and mice. Mol. Hum. Reprod. 2022, 28, gaac017. [Google Scholar] [CrossRef] [PubMed]
- Damiano, J.A.; Afawi, Z.; Bahlo, M.; Mauermann, M.; Misk, A.; Arsov, T.; Oliver, K.L.; Dahl, H.-H.M.; Shearer, A.E.; Smith, R.J.; et al. Mutation of the nuclear lamin gene LMNB2 in progressive myoclonus epilepsy with early ataxia. Hum. Mol. Genet. 2015, 24, 4483–4490. [Google Scholar] [CrossRef]
- Farooq, M.; Lindbæk, L.; Krogh, N.; Doganli, C.; Keller, C.; Mönnich, M.; Gonçalves, A.B.; Sakthivel, S.; Mang, Y.; Fatima, A.; et al. RRP7A links primary microcephaly to dysfunction of ribosome biogenesis, resorption of primary cilia, and neurogenesis. Nat. Commun. 2020, 11, 5816. [Google Scholar] [CrossRef]
- Khan, A.; Alaamery, M.; Massadeh, S.; Obaid, A.; Kashgari, A.A.; Walsh, C.A.; Eyaid, W. PDCD6IP, encoding a regulator of the ESCRT complex, is mutated in microcephaly. Clin. Genet. 2020, 98, 80–85. [Google Scholar] [CrossRef]
- Murray, J.E.; van der Burg, M.; Ijspeert, H.; Carroll, P.; Wu, Q.; Ochi, T.; Leitch, A.; Miller, E.S.; Kysela, B.; Jawad, A.; et al. Mutations in the NHEJ component XRCC4 cause primordial dwarfism. Am. J. Hum. Genet. 2015, 96, 412–424. [Google Scholar] [CrossRef]
- Becerra-Solano, L.E.; Mateos-Sánchez, L.; López-Muñoz, E. Microcephaly, an etiopathogenic vision. Pediatr. Neonatol. 2021, 62, 354–360. [Google Scholar] [CrossRef]
- Passemard, S.; Kaindl, A.M.; Verloes, A. Microcephaly. Handb. Clin. Neurol. 2013, 111, 129–141. [Google Scholar] [CrossRef]
- Malta, M.; AlMutiri, R.; Martin, C.S.; Srour, M. Holoprosencephaly: Review of embryology, clinical phenotypes, etiology and management. Children 2023, 10, 647. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Das, J.M. Holoprosencephaly. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK560861/ (accessed on 3 June 2025).
- Poletta, F.A.; Gili, J.A.; Castilla, E.E. Latin American Collaborative Study of Congenital Malformations (ECLAMC): A model for health collaborative studies. Public Health Genom. 2014, 17, 61–67. [Google Scholar] [CrossRef]
- Cardoso-Dos-Santos, A.C.; Magalhães, V.S.; Medeiros-De-Souza, A.C.; Bremm, J.M.; Alves, R.F.S.; de Araujo, V.E.M.; Macario, E.M.; de Oliveira, W.K.; de França, G.V.A. Redes internacionais de colaboração para a vigilância das anomalias congênitas: Uma revisão narrativa. Epidemiol. Serv. Saude 2020, 29, e2020093. [Google Scholar] [CrossRef]
- Navarrete-Hernández, E.; Canún-Serrano, S.; Valdés-Hernández, J.; Reyes-Pablo, A.E. Malformaciones congénitas al nacimiento: México, 2008–2013. Bol. Med. Hosp. Infant. Mex 2017, 74, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Castilla, E.E.; Campaña, H.; Camelo, J.S. Economic activity and congenital anomalies: An ecologic study in Argentina. ECLAMC ECOTERAT Group. Environ. Health Perspect. 2000, 108, 193–197. [Google Scholar] [CrossRef]
- Cortés-Enríquez, O.D.; López-Serna, N.; Hernández-Gallegos, A.; Yáñez-Caballero, M.T.; Ibarra-Llamas, D.A.; Zamarrón-Segura, I.A.; Guerra-Salinas, F.B.; Beltrán-Aguilar, V.M.; Carrazco-Chapa, A.; Rivero-Zambrano, C.A.; et al. Panorama de las anomalías congénitas de interés epidemiológico en México. Perinatol. Y Reprod. Humana 2022, 36, 16–20. [Google Scholar] [CrossRef]
- Castilla, E.E.; Orioli, I.M. ECLAMC: The Latin-American collaborative study of congenital malformations. Community Genet. 2004, 7, 76–94. [Google Scholar] [CrossRef] [PubMed]
- Corral, S.E.; Moreno, S.R.; Perez, G.G.; Ojeda, B.M.; Valenzuela, G.H.; Reascos, M.M.; Sepulveda, L.W. Effect of flour folic acid fortification on the incidence of cranio encephalic congenital defects. Rev. Med. Chil. 2006, 134, 1129–1134. [Google Scholar] [CrossRef]
- Nazer Herrera, J.; Cifuentes Ovalle, L.; Cortez López, A. Frequency of holoprosencephaly in Chile. Rev. Med. Chil. 2015, 143, 874–879. [Google Scholar] [CrossRef]
- Ministério de la Salud de Brasil. Guia Prático: Diagnóstico de Anomalias Congênitas no Pré-Natal e ao Nascimento; Ministério de la Salud de Brasil, Secretaría de Vigilancia en Salud y Ambiente, Departamento de Análisis Epidemiológico y Vigilanciade Enfermedades No Transmisibles: Brasília, Brazil, 2023; ISBN 978-65-5993-424-9+2. Available online: http://bvsms.saude.gov.br/bvs/publicacoes/guia_diagnostico_anomalias_congenitas_espanhol.pdf (accessed on 20 March 2025).
- Direccion General de Epidemiología. Procedimientos Estandarizados Para La Vigilancia Epidemilógica De Los Defectos Al Nacimiento; Secretaria de Salud, Subsecretaria de Prevención y Promoción de la Salud: Ciudad de México, Mexico, 2023. Available online: https://www.gob.mx/salud/documentos/defectos-al-nacimiento-2023 (accessed on 25 June 2024).
- Hernández-Ávila, J.E.; Palacio-Mejía, L.S.; López-Gatell, H.; Alpuche-Aranda, C.M.; Molina-Vélez, D.; González-González, L.; Hernández-Ávila, M. Zika virus infection estimates, Mexico. Bull. World Health Organ. 2018, 96, 306–313. [Google Scholar] [CrossRef]
- Morris, J.; Orioli, I.M.; Benavides-Lara, A.; Barboza-Arguello, M.d.l.P.; Tapia, M.A.C.; de França, G.V.A.; Groisman, B.; Holguin, J.; Hurtado-Villa, P.M.; Ramirez, M.I.; et al. Prevalence of microcephaly: The Latin American Network of Congenital Malformations 2010–2017. BMJ Paediatr. Open 2021, 5, e001235. [Google Scholar] [CrossRef] [PubMed]
- Leal, G.F.; Roberts, E.; Silva, E.O.; Costa, S.M.R.; Hampshire, D.J.; Woods, C.G. A novel locus for autosomal recessive primary microcephaly (MCPH6) maps to 13q12.2. J. Med. Genet. 2003, 40, 540–542. [Google Scholar] [CrossRef] [PubMed]
- Cueto-González, A.M.; Fernández-Cancio, M.; Fernández-Alvarez, P.; García-Arumí, E.; Tizzano, E.F. Unusual context of CENPJ variants and primary microcephaly: Compound heterozygosity and nonconsanguinity in an Argentinian patient. Hum. Genome Var. 2020, 7, 20. [Google Scholar] [CrossRef] [PubMed]
- Orioli, I.M.; Castilla, E.E. Epidemiology of holoprosencephaly: Prevalence and risk factors. Am. J. Med. Genet. C Semin. Med. Genet. 2010, 154, 13–21. [Google Scholar] [CrossRef]
- El-Jaick, K.B.; Powers, S.E.; Bartholin, L.; Myers, K.R.; Hahn, J.; Orioli, I.M.; Ouspenskaia, M.; Lacbawan, F.; Roessler, E.; Wotton, D.; et al. Functional analysis of mutations in TGIF associated with holoprosencephaly. Mol. Genet. Metab. 2007, 90, 97–111. [Google Scholar] [CrossRef]
- Costa-Lima, M.A.; Meneses, H.N.M.; El-Jaick, K.B.; Amorim, M.R.; Castilla, E.E.; Orioli, I.M. No association of the polyhistidine tract polymorphism of the ZIC2 gene with neural tube defects in a South American (ECLAMC) population. Mol. Med. Rep. 2008, 1, 443–446. [Google Scholar] [CrossRef]
- Aguinaga, M.; Llano, I.; Zenteno, J.C.; Kofman Alfaro, S. Novel sonic hedgehog mutation in a couple with variable expression of holoprosencephaly. Case Rep. Genet. 2011, 2011, 703497. [Google Scholar] [CrossRef]
- Savastano, C.P.; Bernardi, P.; Seuánez, H.N.; Moreira, M.Â.M.; Orioli, I.M. Rare nasal cleft in a patient with holoprosencephaly due to a mutation in the ZIC2 gene. Birth Defects Res. A Clin. Mol. Teratol. 2014, 100, 300–306. [Google Scholar] [CrossRef]
- de Castro, V.F.; Mattos, D.; de Carvalho, F.M.; Cavalcanti, D.P.; Duenas-Roque, M.M.; Llerena, J., Jr.; Cosentino, V.R.; Honjo, R.S.; Leite, J.C.L.; Sanseverino, M.T.; et al. New SHH and known SIX3 variants in a series of Latin American patients with holoprosencephaly. Mol. Syndr. 2021, 12, 219–233. [Google Scholar] [CrossRef]
- Dubourg, C.; Kim, A.; Watrin, E.; de Tayrac, M.; Odent, S.; David, V.; Dupé, V. Recent advances in understanding inheritance of holoprosencephaly. Am. J. Med. Genet. C Semin. Med. Genet. 2018, 178, 258–269. [Google Scholar] [CrossRef]
- Hanzlik, E.; Gigante, J. Microcephaly. Children 2017, 4, 47. [Google Scholar] [CrossRef] [PubMed]
- Ashwal, S.; Michelson, D.; Plawner, L.; Dobyns, W.B. Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Practice parameter: Evaluation of the child with microcephaly (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 2009, 73, 887–897. [Google Scholar] [CrossRef]
- DeSilva, M.; Munoz, F.M.; Sell, E.; Marshall, H.; Kawai, A.T.; Kachikis, A.; Heath, P.; Klein, N.P.; Oleske, J.M.; Jehan, F.; et al. Congenital microcephaly: Case definition & guidelines for data collection, analysis, and presentation of safety data after maternal immunisation. Vaccine 2017, 35, 6472–6482. [Google Scholar] [CrossRef] [PubMed]
- Garza-Mayén, G.; Fiesco-Roa, M.; Frías, S.; García-De Teresa, B. Microcefalia: Consideraciones para el abordaje diagnóstico. Acta Pediátr. Méx. 2020, 41, 222–230. [Google Scholar] [CrossRef]
- Leoncini, E.; Baranello, G.; Orioli, I.M.; Annerén, G.; Bakker, M.; Bianchi, F.; Bower, C.; Canfield, M.A.; Castilla, E.E.; Cocchi, G.; et al. Frequency of holoprosencephaly in the International Clearinghouse Birth Defects Surveillance Systems: Searching for population variations. Birth Defects Res. A Clin. Mol. Teratol. 2008, 82, 585–591. [Google Scholar] [CrossRef]
- Orioli, I.M.; Dolk, H.; Lopez-Camelo, J.S.; Mattos, D.; Poletta, F.A.; Dutra, M.G.; Carvalho, F.M.; Castilla, E. Prevalence and clinical profile of microcephaly in South America pre-Zika, 2005–2014: Prevalence and case-control study. BMJ 2017, 359, j5018. [Google Scholar] [CrossRef]
- Ferreira, A.P.; Santana, D.S.; Figueiredo, E.R.L.; Simões, M.C.; de Morais, D.F.; Tavares, V.B.; de Sousa, J.G.; Silva, M.J.A.; Gomes, F.d.C.; Neto, J.S.d.M. Sociodemographic and clinical factors for microcephaly secondary to teratogenic infections in Brazil: An ecological study. Viruses 2023, 15, 1675. [Google Scholar] [CrossRef]
Name of the Disease | Genetic Alterations | Percentage of Cases with Microcephaly | Relevant Clinical Features | Source | |
---|---|---|---|---|---|
Structural and numerical abnormalities | Patau’s Syndrome | Mosaicism, complete or partial trisomy of chromosome 13 | 86% complete trisomy 52% mosaicism 29% 13q partial trisomies | Incomplete midline cleavage, leading to holoprosencephaly in varying degrees. | [7,8,9] |
Down Syndrome | Mosaicism or complete trisomy of chromosome 21 | ND | Neurological and metabolic disorders, dysmorphic facial features with 100% penetrance. | [10,11] | |
Edwards Syndrome | Mosaicism, complete or partial trisomy of chromosome 18 | 8–100% | Microcephaly, microphthalmia, microretrognathia, skeletal and cardiac defects. | [12,13] | |
Cri-Du-Chat Syndrome | Deletion on the short arm of chromosome 5 | 91.1% | Dysmorphic facial features, developmental and growth delays, patients with a distinctive “cat-like cry”. | [11,12] | |
Wolf–Hirschhorn Syndrome | Deletion on chromosome 4p16 | ~90% | Craneofacial appearance like “Greek soldier’s helmet”, microcephaly, micrognathia, and convulsive episodes in 93%. | [14,15,16,17] | |
Monogenic syndromes | Smith–Lemil–Opitz Syndrome | Deficiency 7-dehydrocholeterol reductase (7-DHC) enzyme | 80–84% | Microcephaly, syndactyly in toes, and polydactyly in hands, cleft lip and palate, intestinal motility failure, genital abnormalities in 70%, medium to severe intellectual disability. | [15,18,19] |
Feingold Syndrome 1 and 2 | Pathogenic variant of MYCN and MIR17HG genes, respectively | 86% | Hand and facial abnormalities, clinodactyly in the second and fifth fingers; hypoplasia of the middle phalanx, dysmorphic facial features, tracheo-esophageal fistula, intellectual disability. Penetrance in 100% in digital abnormalities. | [15,20] | |
Cornelia de Lange Syndrome | Heterozygous mutation in NIPBL (80%), SMC1A (5%), HDAC8 (4%), SMC3 (1–2%), RAD21 (<1%), BRD4 (<1%) genes | >90% | Dysmorphic facial features, prominent and arched eyebrows, growth restriction, oligodactyly, reduction in the size of the upper extremities, intellectual disability ranging from mild to severe. | [21,22] | |
Miller–Dieker Syndrome | Deletion of the 17p13 region (involvement of PAFAH1B1 and YWHAE genes). | ND | Lissencephaly, congenital or acquired microcephaly during the first year of life, micrognathia, cardiac renal and ocular malformations. | [15,23,24] | |
Seckel Syndrome | Genetic mutations of ATR, CENPJ, CEP152, CEP63, DNA2, NIN, NSMCE2, RBBP8, TRAIP genes | ND | Short stature, microcephaly, intellectual disability, and craneofacial features described as “bird-headed”. | [25,26,27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Fernandez, M.D.; Jiménez-Gil, K.; Garcés-Ramírez, L.; Martínez-Juárez, A.; Moreno-Verduzco, E.R.; Solís-Paredes, J.M.; Pérez-Durán, J.; Torres-Torres, J.; Monroy-Muñoz, I.E. Epidemiological Surveillance of Genetically Determined Microcephaly in Latin America: A Narrative Review. Epidemiologia 2025, 6, 37. https://doi.org/10.3390/epidemiologia6030037
Gonzalez-Fernandez MD, Jiménez-Gil K, Garcés-Ramírez L, Martínez-Juárez A, Moreno-Verduzco ER, Solís-Paredes JM, Pérez-Durán J, Torres-Torres J, Monroy-Muñoz IE. Epidemiological Surveillance of Genetically Determined Microcephaly in Latin America: A Narrative Review. Epidemiologia. 2025; 6(3):37. https://doi.org/10.3390/epidemiologia6030037
Chicago/Turabian StyleGonzalez-Fernandez, Melissa Daniella, Karina Jiménez-Gil, Linda Garcés-Ramírez, Alejandro Martínez-Juárez, Elsa Romelia Moreno-Verduzco, Juan Mario Solís-Paredes, Javier Pérez-Durán, Johnatan Torres-Torres, and Irma Eloisa Monroy-Muñoz. 2025. "Epidemiological Surveillance of Genetically Determined Microcephaly in Latin America: A Narrative Review" Epidemiologia 6, no. 3: 37. https://doi.org/10.3390/epidemiologia6030037
APA StyleGonzalez-Fernandez, M. D., Jiménez-Gil, K., Garcés-Ramírez, L., Martínez-Juárez, A., Moreno-Verduzco, E. R., Solís-Paredes, J. M., Pérez-Durán, J., Torres-Torres, J., & Monroy-Muñoz, I. E. (2025). Epidemiological Surveillance of Genetically Determined Microcephaly in Latin America: A Narrative Review. Epidemiologia, 6(3), 37. https://doi.org/10.3390/epidemiologia6030037