Characterization of Organic Conductive Materials as an Ecological Solution for RF Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Screen Printing
2.2. Inks
2.2.1. PEDOT:PSS
2.2.2. Carbon Flakes Paste
2.2.3. Ink Conductivity
2.3. Paper as Substrate
3. Material Characterization
3.1. S-Parameters
3.2. Transmission Lines
4. Printing Process
Printed Transmission Lines
5. Results
5.1. Reference Transmission Line
5.2. S21 Measurements
5.3. Material Characteristics
6. Applications
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cuerchouche, K.; Herth, E.; Calvet, L.; Roland, N.; Loyez, C. Conductive Polymer Based Antenna for Wireless Green Sensors Application; Elsevier: Amsterdam, The Netherlands, 2017; Volume 182, pp. 46–52. [Google Scholar] [CrossRef]
- Li, Z.; Sinha, S.K.; Treich, G.M.; Wang, Y.; Yang, Q.; Deshmukh, A.A.; Sotzing, G.A.; Cao, Y. All-Organic Flexible Fabric Antenna for Weareble Electronics. J. Mater. Chem. C 2020, 8, 5662–5667. [Google Scholar] [CrossRef]
- Mehdipour, A.; Sebak, A.R.; Trueman, C.W.; Rosca, I.D.; Hoa, S.V. Conductive Carbon Fiber Composite Materials for Antenna and Microwave Applications. In Proceedings of the 2012 29th National Radio Science Conference (NRSC), Cairo, Egypt, 10–12 April 2012; pp. 1–8. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, Y.; Lv, Z.; Li, M.; Ma, S.; Cui, Z.; Kong, Q. Carbon Nanotubes, Carbon Black and Graphite Powder Based Paste Electrodes. Int. J. Electrochem. Sci. 2011, 6, 6063–6073. [Google Scholar]
- Suganuma, K. Introduction to Printed Electronics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2017; Volume 74. [Google Scholar]
- Zheng, C. Printed Electronics: Manufacturing Technologies and Applications; John Wiley & Sons Singapore Pte. Ltd.: Singapore, 2014. [Google Scholar]
- Nisato, G.; Lupo, D.; Ganz, S. Organic and Printed Electronics: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Pardo, D.A.; Jabbour, G.E.; Peyghambarian, N. Application of Screen Printing in the Fabrication of Organic Light-Emitting Devices. Adv. Mater. 2000, 12, 1249–1252. [Google Scholar] [CrossRef]
- Albrecht, A. Printed Sensors for the Internet of Things; Technical University of Munich: Munich, Germany, 2018. [Google Scholar]
- Khan, S.; Lorenzelli, L.; Dahiya, R.S. Screen printed flexible pressure sensors skin. In Proceedings of the 25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), Saratoga Springs, NY, USA, 19–21 May 2014; pp. 219–224. [Google Scholar]
- Lipomi, D.; Lee, J.; Vosgueritchian, M.; Tee, B.; Bolander, J.; Bao, Z. Electronic properties of transparent conductive films of PEDOT:PSS on strechable substrates. Chem. Mater. 2012, 24, 373–382. [Google Scholar] [CrossRef]
- Datasheet Orgacon. Available online: https://kayakuam.com/wp-content/uploads/2020/03/Technical-Data-Sheet-ORGACON-EL-P-April-22-2021.pdf (accessed on 1 January 2020).
- Datasheet Microchem. Available online: https://kayakuam.com/wp-content/uploads/2020/03/C-200-Carbon-Ink.pdf (accessed on 1 January 2020).
- Tobjörk, D.; Österbacka, R. Paper electronics. Adv. Mater. 2011, 23, 1935–1961. [Google Scholar] [CrossRef] [PubMed]
- Roselli, L. Green RFID Systems; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Khaleel, H. Innovation in Wearable and Flexible Antennas; WIT Press: Boston, MA, USA, 2015. [Google Scholar]
- Steer, M. Microwave and RF Design: Transmission Lines, 3rd ed.; NC State University: Raleigh, NC, USA, 2019; Volume 2. [Google Scholar] [CrossRef]
- Sefar, Product Information. Guide for Precision Electronic Screens; Sefar, Product Information: Buffalo, NY, USA, 2015. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz, B.; Eschlwech, P.; Hani, M.; Biebl, E. Characterization of Organic Conductive Materials as an Ecological Solution for RF Applications. Electron. Mater. 2022, 3, 265-280. https://doi.org/10.3390/electronicmat3040023
Cruz B, Eschlwech P, Hani M, Biebl E. Characterization of Organic Conductive Materials as an Ecological Solution for RF Applications. Electronic Materials. 2022; 3(4):265-280. https://doi.org/10.3390/electronicmat3040023
Chicago/Turabian StyleCruz, Bruna, Philipp Eschlwech, Michael Hani, and Erwin Biebl. 2022. "Characterization of Organic Conductive Materials as an Ecological Solution for RF Applications" Electronic Materials 3, no. 4: 265-280. https://doi.org/10.3390/electronicmat3040023
APA StyleCruz, B., Eschlwech, P., Hani, M., & Biebl, E. (2022). Characterization of Organic Conductive Materials as an Ecological Solution for RF Applications. Electronic Materials, 3(4), 265-280. https://doi.org/10.3390/electronicmat3040023