Time in Tight Range: A New Frontier in Glycemic Control or Just a Tighter Time in Range? A Narrative Review
Abstract
1. Introduction
Methods
2. Limitations of TIR
3. TITR Definition, Physiological Basis, and Therapeutic Goals
3.1. TITR Therapeutic Goals
3.2. TITR and Its Relationship with Other Glycemic Variables
3.2.1. TITR and TIR
3.2.2. TITR and Coefficient of Variation (CV)
3.3. TITR in Real Life
4. TITR for Whom, Current Debate on TiTR vs. TIR in Diabetes Management, Limitations and Strengths
5. TITR and Chronic Complications
6. Conclusions
Funding
Conflicts of Interest
References
- American Diabetes Association Professional Practice Committee. Summary of Revisions: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48 (Suppl. S1), S6–S13. [Google Scholar] [CrossRef]
- Battelino, T.; Danne, T.; Bergenstal, R.M.; Amiel, S.A.; Beck, R.; Biester, T.; Bosi, E.; Buckingham, B.A.; Cefalu, W.T.; Close, K.L.; et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care 2019, 42, 1593–1603. [Google Scholar] [CrossRef] [PubMed]
- Bellido, V.; Aguilera, E.; Cardona-Hernandez, R.; Diaz-Soto, G.; de Villar, N.G.P.; Picón-César, M.J.; Ampudia-Blasco, F.J. Expert Recommendations for Using Time-in-Range and Other Continuous Glucose Monitoring Metrics to Achieve Patient-Centered Glycemic Control in People with Diabetes. J. Diabetes Sci. Technol. 2023, 17, 1326–1336. [Google Scholar] [CrossRef]
- Battelino, T.; Alexander, C.M.; Amiel, S.A.; Arreaza-Rubin, G.; Beck, R.W.; Bergenstal, R.M.; A Buckingham, B.; Carroll, J.; Ceriello, A.; Chow, E.; et al. Continuous glucose monitoring and metrics for clinical trials: An international consensus statement. Lancet Diabetes Endocrinol. 2023, 11, 42–57. [Google Scholar] [CrossRef]
- Beck, R.W.; Bergenstal, R.M.; Riddlesworth, T.D.; Kollman, C.; Li, Z.; Brown, A.S.; Close, K.L. Validation of Time in Range as an Outcome Measure for Diabetes Clinical Trials. Diabetes Care 2019, 42, 400–405. [Google Scholar] [CrossRef]
- Kovatchev, B.P.; Lobo, B.; Fabris, C.; Ganji, M.; El Fathi, A.; Breton, M.D.; Kanapka, L.; Kollman, C.; Battelino, T.; Beck, R.W. The Virtual DCCT: Adding Continuous Glucose Monitoring to a Landmark Clinical Trial for Prediction of Microvascular Complications. Diabetes Technol. Ther. 2025, 27, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Beck, R.W. The Association of Time in Range and Diabetic Complications: The Evidence Is Strong. Diabetes Technol. Ther. 2023, 25, 375–377. [Google Scholar] [CrossRef]
- Shah, V.N.; DuBose, S.N.; Li, Z.; Beck, R.W.; Peters, A.L.; Weinstock, R.S.; Kruger, D.; Tansey, M.; Sparling, D.; Woerner, S.; et al. Continuous Glucose Monitoring Profiles in Healthy Nondiabetic Participants: A Multicenter Prospective Study. J. Clin. Endocrinol. Metab. 2019, 104, 4356–4364. [Google Scholar] [CrossRef]
- Haller, M.J.; Bell, K.J.; Besser, R.E.J.; Casteels, K.; Couper, J.J.; Craig, M.E.; Larsson, H.E.; Jacobsen, L.; Lange, K.; Oron, T.; et al. ISPAD Clinical Practice Consensus Guidelines 2024: Screening, Staging, and Strategies to Preserve Beta-Cell Function in Children and Adolescents with Type 1 Diabetes. Horm. Res. Paediatr. 2024, 97, 529–545. [Google Scholar] [CrossRef]
- Petersson, J.; Åkesson, K.; Sundberg, F.; Särnblad, S. Translating glycated hemoglobin A1c into time spent in glucose target range: A multicenter study. Pediatr. Diabetes 2019, 20, 339–344. [Google Scholar] [CrossRef]
- Castañeda, J.; Arrieta, A.; van den Heuvel, T.; Battelino, T.; Cohen, O. Time in Tight Glucose Range in Type 1 Diabetes: Predictive Factors and Achievable Targets in Real-World Users of the MiniMed 780G System. Diabetes Care 2024, 47, 790–797. [Google Scholar] [CrossRef]
- Bahillo-Curieses, P.; Velasco, P.F.; Pérez-López, P.; Martínez, A.M.V.; Nieto de la Marca, M.O.; Díaz-Soto, G. Utility of time in tight range (TITR) in evaluating metabolic control in pediatric and adult patients with type 1 diabetes in treatment with advanced hybrid closed-loop systems. Endocrine 2024, 86, 539–545. [Google Scholar] [CrossRef]
- Eviz, E.; Killi, N.E.; Karakus, K.E.; Can, E.; Gokce, T.; Mutlu, G.Y.; Hatun, S. Assessing the feasibility of time in tight range (TITR) targets with advanced hybrid closed loop (AHCL) use in children and adolescents: A single-centre real-world study. Diabet. Med. 2024, 41, e15333. [Google Scholar] [CrossRef]
- Beck, R.W.; Raghinaru, D.; Calhoun, P.; Bergenstal, R.M. A Comparison of Continuous Glucose Monitoring-Measured Time-in-Range 70–180 mg/dL Versus Time-in-Tight-Range 70–140 mg/dL. Diabetes Technol. Ther. 2024, 26, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Beck, R.W. Is It Time to Replace Time-in-Range with Time-in-Tight-Range? Maybe Not. Diabetes Technol. Ther. 2024, 26, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Soto, G.; Bahíllo-Curieses, M.P.; Jimenez, R.; Nieto, M.d.l.O.; Gomez, E.; Torres, B.; Gomez, J.J.L.; de Luis, D. The relationship between glycosylated hemoglobin, time-in-range and glycemic variability in type 1 diabetes patients under flash glucose monitoring. Endocrinol. Diabetes Nutr. 2021, 68, 465–471. [Google Scholar] [CrossRef]
- Xu, Y.; Dunn, T.C.; Bergenstal, R.M.; Cheng, A.; Dabiri, Y.; Ajjan, R.A. Time in Range, Time in Tight Range, and Average Glucose Relationships Are Modulated by Glycemic Variability: Identification of a Glucose Distribution Model Connecting Glycemic Parameters Using Real-World Data. Diabetes Technol. Ther. 2024, 26, 467–477. [Google Scholar] [CrossRef]
- Passanisi, S.; Piona, C.; Salzano, G.; Marigliano, M.; Bombaci, B.; Morandi, A.; Alibrandi, A.; Maffeis, C.; Lombardo, F. Aiming for the Best Glycemic Control Beyond Time in Range: Time in Tight Range as a New Continuous Glucose Monitoring Metric in Children and Adolescents with Type 1 Diabetes Using Different Treatment Modalities. Diabetes Technol. Ther. 2024, 26, 161–166. [Google Scholar] [CrossRef]
- Schiaffini, R.; Lumaca, A.; Martino, M.; Rapini, N.; Deodati, A.; Amodeo, M.E.; Ciampalini, P.; Matteoli, M.C.; Pampanini, V.; Cianfarani, S. Time In Tight Range in children and adolescents with type 1 diabetes: A cross-sectional observational single centre study evaluating efficacy of new advanced technologies. Diabetes Metab. Res. Rev. 2024, 40, e3826. [Google Scholar] [CrossRef]
- Piona, C.; Passanisi, S.; Bombaci, B.; Marigliano, M.; Lombardo, F.; Mancioppi, V.; Morandi, A.; Maffeis, C.; Salzano, G.; ISPED Diabetes Study Group. Time in tight range in automated insulin delivery system users: Real-world data from children and adolescents with type 1 diabetes. Diabetes Obes. Metab. 2024, 26, 4767–4771. [Google Scholar] [CrossRef]
- Battelino, T.; Bergenstal, R.M.; Rodríguez, A.; Landó, L.F.; Bray, R.; Tong, Z.; Brown, K. Efficacy of once-weekly tirzepatide versus once-daily insulin degludec on glycaemic control measured by continuous glucose monitoring in adults with type 2 diabetes (SURPASS-3 CGM): A substudy of the randomised, open-label, parallel-group, phase 3 SURPASS-3 trial. Lancet Diabetes Endocrinol. 2022, 10, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Ohno, T.; Tsujino, D.; Nishimura, R. Is there a target value for time in tight range for individuals with type 1 diabetes on MDI? Data from masked CGM. Expert Rev. Endocrinol. Metab. 2024, 19, 507–512. [Google Scholar] [CrossRef]
- Hamidi, V.; Pettus, J.H. Time in Tight Range for Patients With Type 1 Diabetes: The Time Is Now, or Is It Too Soon? Diabetes Care 2024, 47, 782–784. [Google Scholar] [CrossRef]
- Dunn, T.C.; Ajjan, R.A.; Bergenstal, R.M.; Xu, Y. Is It Time to Move Beyond TIR to TITR? Real-World Data from Over 20,000 Users of Continuous Glucose Monitoring in Patients with Type 1 and Type 2 Diabetes. Diabetes Technol. Ther. 2024, 26, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Liu, J.; Lu, J.; Ni, J.; Wang, C.; Chen, L.; Lu, W.; Zhu, W.; Xia, T.; Zhou, J. Impact of time in tight range on all-cause and cardiovascular mortality in type 2 diabetes: A prospective cohort study. Diabetes Obes. Metab. 2025, 27, 2154–2162. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lu, J.; Yu, J.; Ni, J.; Wang, M.; Lu, W.; Zhu, W.; Guo, J.; Bao, Y.; Zhou, J. Association between time in tight range and incident diabetic retinopathy in adults with type 2 diabetes. Diabetes Obes. Metab. 2024, 27, 1415–1422. [Google Scholar] [CrossRef]
- De Meulemeester, J.; Charleer, S.; Visser, M.M.; De Block, C.; Mathieu, C.; Gillard, P. The association of chronic complications with time in tight range and time in range in people with type 1 diabetes: A retrospective cross-sectional real-world study. Diabetologia 2024, 67, 1527–1535. [Google Scholar] [CrossRef]
Category | Target Range | TIR Target | High Glucose (>180 mg/dL) | Very-High Glucose (>250 mg/dL) | Low Glucose (<70 mg/dL) | Very-Low Glucose (<54 mg/dL) |
---|---|---|---|---|---|---|
Type 1 & Type 2 Diabetes | 70–180 mg/dL (3.9–10.0 mmol/L) | >70% | <25% | <5% | <4% | <1% |
Older/High-Risk: Type 1 & Type 2 Diabetes | 70–180 mg/dL (3.9–10.0 mmol/L) | >50% | <50% | <10% | <1% | <1% |
TiTR Threshold | Correlation |
---|---|
>45% | HbA1c < 7% (Undetermined if 45% is the new 70%) |
>50% | GMI < 6.8% |
>55% | GMI < 6.5% |
Population Group | Relevance of TiTR |
---|---|
Individuals with Type 1 Diabetes | TiTR may help achieve tighter glucose control, particularly in those using advanced diabetes technology such as hybrid closed-loop systems. |
Individuals with Type 2 Diabetes on New Therapies | New treatments allow for glucose levels closer to normoglycemia, making TiTR a valuable metric. |
Pregnant Women with Diabetes | Strict glycemic control is essential due to fetal and maternal health concerns, making TiTR particularly relevant. |
Children and Adolescents with Diabetes | Long life expectancy and metabolic memory effects support the use of TiTR for better long-term outcomes. |
Patients at High Risk of Hypoglycemia | TiTR can provide additional insight into glucose stability without excessive hypoglycemia risk. |
Early-Stage Diabetes (Stage 2)/Dysglycemia/Prediabetes | TiTR may help in identifying individuals who could benefit from early interventions to delay disease progression. |
Study | Number of Subjects | Year | Research Methods | Conclusion | Limitations |
---|---|---|---|---|---|
Shah et al. [8] | 153 | 2019 | CGM study on healthy individuals | TiTR in healthy individuals is around 96% | Limited to healthy subjects |
Petersson et al. [10] | 133 | 2019 | Translating HbA1c to TiTR | TiTR of 50% correlates with HbA1c of 6.5% | Needs validation in different populations |
Castañeda et al. [11] | 13,461 | 2024 | Analyzing TiTR in diabetes patients | Proposed new TiTR targets for diabetes | Lack of consensus on TiTR target |
Bahíllo et al. [12] | 117 | 2024 | Studying TiTR in AHCL systems | TiTR levels increase with AHCL use | Limited data on MDI and type 2 diabetes |
Eviz et al. [13] | 56 | 2024 | Real-world study on AHCL use in children | Majority achieved TiTR >50%, higher values at night | Small sample size, single-center study |
Beck et al. [14] | 1096 | 2024 | Comparing TiTR with TIR | TiTR is about 20–25% lower than TIR | Non-linear relationship in normoglycemia |
Passanisi et al. [18] | 854 | 2024 | Evaluating TiTR in pediatric patients | Higher TiTR linked to better control | Focused only on pediatrics |
Schiaffini et al. [19] | 534 | 2024 | Cross-sectional study on TiTR in children | AHCL systems improve TiTR in children | Single-center observational study on pediatrics |
Piona et al. [20] | 613 | 2024 | Real-world study on TiTR | Optimal TiTR settings improve outcomes | Cross-sectional real-world study in pediatrics |
Cai et al. [25] | 6061 | 2025 | Prospective cohort study on TiTR and mortality | Higher TiTR linked to lower mortality risk | Lack of long-term validation |
Wang et al. [26] | 2518 | 2024 | Association of TiTR with diabetic retinopathy | Higher TiTR associated with lower retinopathy risk | Correlation does not prove causation |
De Meulemeester et al. [27] | 808 | 2024 | Association of TiTR with chronic complications | Lower TiTR linked to chronic complications | Retrospective study limitations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diaz Soto, G.; Fernández Velasco, P.; Bahillo Curieses, P. Time in Tight Range: A New Frontier in Glycemic Control or Just a Tighter Time in Range? A Narrative Review. Endocrines 2025, 6, 34. https://doi.org/10.3390/endocrines6030034
Diaz Soto G, Fernández Velasco P, Bahillo Curieses P. Time in Tight Range: A New Frontier in Glycemic Control or Just a Tighter Time in Range? A Narrative Review. Endocrines. 2025; 6(3):34. https://doi.org/10.3390/endocrines6030034
Chicago/Turabian StyleDiaz Soto, Gonzalo, Pablo Fernández Velasco, and Pilar Bahillo Curieses. 2025. "Time in Tight Range: A New Frontier in Glycemic Control or Just a Tighter Time in Range? A Narrative Review" Endocrines 6, no. 3: 34. https://doi.org/10.3390/endocrines6030034
APA StyleDiaz Soto, G., Fernández Velasco, P., & Bahillo Curieses, P. (2025). Time in Tight Range: A New Frontier in Glycemic Control or Just a Tighter Time in Range? A Narrative Review. Endocrines, 6(3), 34. https://doi.org/10.3390/endocrines6030034