Lipedema: From Women’s Hormonal Changes to Nutritional Intervention
Abstract
1. Introduction
2. Methodology
3. Estrogens, Inflammation, and Lipedema
3.1. Reproductive Milestones
3.2. Estrogens, Estrogen Receptors, and Adipose Tissue
3.3. Estrogens and Inflammation
3.4. The Role of “Leaky Gut”
4. Nutrition and Nutritional Supplements
4.1. Body Composition and Weight Management
4.2. Particularlities of Anthropometrical Evaluation
4.3. Food and Special Diets
4.4. Nutritional Supplements
5. Closing Remarks and Future Perspectives
Funding
Conflicts of Interest
References
- Faerber, G.; Cornely, M.; Daubert, C.; Erbacher, G.; Fink, J.; Hirsch, T.; Mendoza, E.; Miller, A.; Rabe, E.; Rapprich, S.; et al. S2k guideline lipedema. J. Dtsch. Dermatol. Ges. 2024, 22, 1303–1315. [Google Scholar] [CrossRef] [PubMed]
- Lundanes, J.; Sandnes, F.; Gjeilo, K.H.; Hansson, P.; Salater, S.; Martins, C.; Nymo, S. Effect of a low-carbohydrate diet on pain and quality of life in female patients with lipedema: A randomized controlled trial. Obesity 2024, 32, 1071–1082. [Google Scholar] [CrossRef]
- Carvalho, R. Lipedema: A common though often unrecognized condition. Chin. J. Plast. Reconstr. Surg. 2024, 6, 149–153. [Google Scholar] [CrossRef]
- Buck, D.W.; Herbst, K.L. Lipedema: A relatively common disease with extremely common misconceptions. Plast. Reconstr. Surg. Glob. Open 2016, 4, e1043. [Google Scholar] [CrossRef]
- Buso, G.; Depairon, M.; Tomson, D.; Raffoul, W.; Vettor, R.; Mazzolai, L. Lipedema: A Call to Action! Obesity 2019, 27, 1567–1576. [Google Scholar] [CrossRef]
- Peled, A.W.; Kappos, E.A. Lipedema: Diagnostic and management challenges. Int. J. Womens Health 2016, 8, 389–395. [Google Scholar] [CrossRef]
- Torre, Y.S.; Wadeea, R.; Rosas, V.; Herbst, K.L. Lipedema: Friend and foe. Horm. Mol. Biol. Clin. Investig. 2018, 33, 1–10. [Google Scholar] [CrossRef]
- Kamamoto, F.; Baiocchi, J.M.T.; Batista, B.N.; Ribeiro, R.D.A.; Modena, D.A.O.; Gornati, V.C. Lipedema: Exploring pathophysiology and treatment strategies—State of the art. J. Vasc. Bras. 2024, 23, e20240025. [Google Scholar] [CrossRef]
- Dudek, J.E.; Białaszek, W.; Ostaszewski, P. Quality of life in women with lipoedema: A contextual behavioral approach. Qual. Life Res. 2016, 25, 401–408. [Google Scholar] [CrossRef]
- Halk, A.B.; Damstra, R.J. First Dutch guidelines on lipedema using the international classification of functioning, disability and health. Phlebology 2017, 32, 152–159. [Google Scholar] [CrossRef]
- Herbst, K.L. Rare adipose disorders (RADs) masquerading as obesity. Acta Pharmacol. Sin. 2012, 33, 155–172. [Google Scholar] [CrossRef]
- Cooke, P.S.; Naaz, A. Role of estrogens in adipocyte development and function. Exp. Biol. Med. 2004, 229, 1127–1135. [Google Scholar] [CrossRef] [PubMed]
- Szél, E.; Kemény, L.; Groma, G.; Szolnoky, G. Pathophysiological dilemmas of lipedema. Med. Hypotheses 2014, 83, 599–606. [Google Scholar] [CrossRef]
- Katzer, K.; Hill, J.L.; McIver, K.B.; Foster, M.T. Lipedema and the potential role of estrogen in excessive adipose tissue accumulation. Int. J. Mol. Sci. 2021, 22, 11720. [Google Scholar] [CrossRef]
- Forner-Cordero, I.; Szolnoky, G.; Forner-Cordero, A.; Kemény, L. Lipedema: An overview of its clinical manifestations, diagnosis and treatment of the disproportional fatty deposition syndrome—Systematic review. Clin. Obes. 2012, 2, 86–95. [Google Scholar] [CrossRef]
- Kruppa, P.; Georgiou, I.; Biermann, N.; Prantl, L.; Klein-Weigel, P.; Ghods, M. Lipedema—Pathogenesis, diagnosis and treatment options. Dtsch. Arztebl. Int. 2020, 117, 396–403. [Google Scholar] [CrossRef]
- Child, A.H.; Gordon, K.D.; Sharpe, P.; Brice, G.; Ostergaard, P.; Jeffery, S.; Mortimer, P.S. Lipedema: An inherited condition. Am. J. Med. Genet. 2010, 152A, 970–976. [Google Scholar] [CrossRef]
- Paolacci, S.; Precone, V.; Acquaviva, F.; Chiurazzi, P.; Fulcheri, E.; Pinelli, M.; Buffelli, F.; Michelini, S.; Herbst, K.L.; Unfer, V.; et al. Genetics of lipedema: New perspectives on genetic research and molecular diagnoses. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 5581–5594. [Google Scholar]
- Bindlish, S.; Ng, J.; Ghusn, W.; Fitch, A.; Bays, H.E. Obesity, thrombosis, venous disease, lymphatic disease, and lipedema: An obesity medicine association (OMA) clinical practice statement (CPS) 2023. Obes. Pillars 2023, 8, 100092. [Google Scholar] [CrossRef]
- Bicca, J. Reproductive landmarks and lipedema: Lessons to be learned about women hormones throughout life. In Sex Steroid Hormones—Impact on Reproductive Physiology; Marsh, C., Ed.; IntechOpen: Rijeka, Croatia, 2024. [Google Scholar] [CrossRef]
- Shi, H.; Clegg, D.J. Sex differences in the regulation of body weight. Physiol. Behav. 2009, 97, 199–204. [Google Scholar] [CrossRef]
- Frank, A.P.; de Souza Santos, R.; Palmer, B.F.; Clegg, D.J. Determinants of body fat distribution in humans may provide insight about obesity-related health risks. J. Lipid Res. 2019, 60, 1710–1719. [Google Scholar] [CrossRef] [PubMed]
- Carré, N.; Binart, N. Prolactin and adipose tissue. Biochimie 2014, 97, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Kampmann, U.; Knorr, S.; Fuglsang, J.; Ovesen, P. Determinants of Maternal Insulin Resistance during Pregnancy: An Updated Overview. J. Diabetes Res. 2019, 2019, 5320156. [Google Scholar] [CrossRef]
- Patton, L.; Ricolfi, L.; Bortolon, M.; Gabriele, G.; Zolesio, P.; Cione, E.; Cannataro, R. Observational study on a large italian population with lipedema: Biochemical and hormonal profile, anatomical and clinical evaluation, self-reported history. Int. J. Mol. Sci. 2024, 25, 1599. [Google Scholar] [CrossRef]
- Monteiro, R.; Teixeira, D.; Calhau, C. Estrogen signaling in metabolic inflammation. Mediat. Inflamm. 2014, 2014, 615917. [Google Scholar] [CrossRef]
- Steiner, B.M.; Berry, D.C. The regulation of adipose tissue health by estrogens. Front. Endocrinol. 2022, 13, 889923. [Google Scholar] [CrossRef]
- Mauvais-Jarvis, F.; Clegg, D.J.; Hevener, A.L. The role of estrogens in control of energy balance and glucose homeostasis. Endocr. Rev. 2013, 34, 309–338. [Google Scholar] [CrossRef]
- Dieudonné, M.N.; Leneveu, M.C.; Giudicelli, Y.; Pecquery, R. Evidence for functional estrogen receptors alpha and beta in human adipose cells: Regional specificities and regulation by estrogens. Am. J. Physiol. Cell Physiol. 2004, 286, C655–C661. [Google Scholar] [CrossRef]
- Meyer, M.R.; Clegg, D.J.; Prossnitz, E.R.; Barton, M. Obesity, insulin resistance and diabetes: Sex differences and role of oestrogen receptors. Acta Physiol. 2011, 203, 259–269. [Google Scholar] [CrossRef]
- Gavin, K.M.; Cooper, E.E.; Hickner, R.C. Estrogen receptor protein content is different in abdominal than gluteal subcutaneous adipose tissue of overweight-to-obese premenopausal women. Metabolism 2013, 62, 1180–1188. [Google Scholar] [CrossRef]
- Prossnitz, E.R.; Barton, M. Signaling, physiological functions and clinical relevance of the G proteincoupled estrogen receptor GPER. Prostaglandins Other Lipid Mediat. 2009, 89, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Deroo, B.J. Estrogen receptors and human disease. J. Clin. Investig. 2006, 116, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Eaton, S.A.; Sethi, J.K. Immunometabolic links between estrogen, adipose tissue and female reproductive metabolism. Biology 2019, 8, 8. [Google Scholar] [CrossRef]
- Yi, K.W.; Shin, J.H.; Seo, H.S.; Lee, J.K.; Oh, M.J.; Kim, T.; Saw, H.S.; Kim, S.H.; Hur, J.Y. Role of estrogen receptor-alpha and -beta in regulating leptin expression in 3T3-L1 adipocytes. Obesity 2008, 16, 2393–2399. [Google Scholar] [CrossRef]
- Grewal, T.; Kempa, S.; Buechler, C. Lipedema: A Disease Triggered by M2 Polarized Macrophages? Biomedicines 2025, 13, 561. [Google Scholar] [CrossRef]
- Felmerer, G.; Stylianaki, A.; Hollmén, M.; Ströbel, P.; Stepniewski, A.; Wang, A.; Frueh, F.S.; Kim, B.S.; Giovanoli, P.; Lindenblatt, N.; et al. Increased levels of VEGF-C and macrophage infiltration in lipedema patients without changes in lymphatic vascular morphology. Sci. Rep. 2020, 10, 10947. [Google Scholar] [CrossRef]
- Kruppa, P.; Gohlke, S.; Łapiński, K.; Garcia-Carrizo, F.; Soultoukis, G.A.; Infanger, M.; Schulz, T.J.; Ghods, M. Lipedema stage affects adipocyte hypertrophy, subcutaneous adipose tissue inflammation and interstitial fibrosis. Front. Immunol. 2023, 14, 1223264. [Google Scholar] [CrossRef]
- Al-Ghadban, S.; Cromer, W.; Allen, M.; Ussery, C.; Badowski, M.; Harris, D.; Herbst, K.L. Dilated blood and lymphatic microvessels, angiogenesis, increased macrophages, and adipocyte hypertrophy in lipedema thigh skin and fat tissue. J. Obes. 2019, 2019, 8747461. [Google Scholar] [CrossRef]
- Bornstein, S.R.; Rutkowski, H.; Vrezas, I. Cytokines and steroidogenesis. Mol. Cell. Endocrinol. 2004, 215, 135–141. [Google Scholar] [CrossRef]
- Schäffler, A.; Schölmerich, J. Innate immunity and adipose tissue biology. Trends Immunol. 2010, 31, 228–235. [Google Scholar] [CrossRef]
- Streubel, M.K.; Baumgartner, A.; Meier-Vollrath, I.; Frambach, Y.; Brandenburger, M.; Kisch, T. Transcriptomics of Subcutaneous Tissue of Lipedema Identified Differentially Expressed Genes Involved in Adipogenesis, Inflammation, and Pain. Plast. Reconstr. Surg. Glob. Open 2024, 12, e6288. [Google Scholar] [CrossRef] [PubMed]
- Di Renzo, L.; Cinelli, G.; Romano, L.; Zomparelli, S.; Lou De Santis, G.; Nocerino, P.; Bigioni, G.; Arsini, L.; Cenname, G.; Pujia, A.; et al. Potential effects of a modified Mediterranean diet on body composition in lipoedema. Nutrients 2021, 13, 358. [Google Scholar] [CrossRef]
- Bereshchenko, O.; Bruscoli, S.; Riccardi, C. Glucocorticoids, sex hormones, and immunity. Front. Immunol. 2018, 9, 1332. [Google Scholar] [CrossRef] [PubMed]
- Stubelius, A.; Andersson, A.; Islander, U.; Carlsten, H. Ovarian hormones in innate inflammation. Immunobiology 2017, 222, 878–883. [Google Scholar] [CrossRef]
- Straub, R.H. The complex role of estrogens in inflammation. Endocr. Rev. 2007, 28, 521–574. [Google Scholar] [CrossRef]
- Cannataro, R.; Cione, E. Lipedema and nutrition: What’s the link? Acta Sci. Nutr. Health 2020, 4, 86–89. [Google Scholar]
- Blüher, M. Metabolically Healthy Obesity. Endocr Rev. 2020, 41, bnaa004. [Google Scholar] [CrossRef]
- Kruglikov, I.L.; Scherer, P.E. Is the endotoxin-complement cascade the major driver in lipedema? Trends Endocrinol. Metab. 2024, 35, 769–780. [Google Scholar] [CrossRef]
- Page, M.J.; Kell, D.B.; Pretorius, E. The role of lipopolysaccharide-induced cell signalling in chronic inflammation. Chronic Stress 2022, 6, 24705470221076390. [Google Scholar] [CrossRef]
- Salguero, M.V.; Al-Obaide, M.A.I.; Singh, R.; Siepmann, T.; Vasylyeva, T.L. Dysbiosis of Gram-negative gut microbiota and the associated serum lipopolysaccharide exacerbates inflammation in type 2 diabetic patients with chronic kidney disease. Exp. Ther. Med. 2019, 18, 3461–3469. [Google Scholar] [CrossRef]
- Herbst, K.L.; Kahn, L.A.; Iker, E.; Ehrlich, C.; Wright, T.; McHutchison, L.; Schwartz, J.; Sleigh, M.; Donahue, P.M.; Lisson, K.H.; et al. Standard of care for lipedema in the United States. Phlebology 2021, 36, 779–796. [Google Scholar] [CrossRef] [PubMed]
- Grylls, A.; Seidler, K.; Neil, J. Link between microbiota and hypertension: Focus on LPS/TLR4 pathway in endothelial dysfunction and vascular inflammation, and therapeutic implication of probiotics. Biomed. Pharmacother. 2021, 137, 111334. [Google Scholar] [CrossRef] [PubMed]
- Bonetti, G.; Herbst, K.L.; Dhuli, K.; Kiani, A.K.; Michelini, S.; Michelini, S.; Ceccarini, M.R.; Michelini, S.; Ricci, M.; Cestari, M.; et al. Dietary supplements for lipedema. J. Prev. Med. Hyg. 2022, 63 (Suppl. 3), E169–E173. [Google Scholar]
- van Esch-Smeenge, J.; Damstra, R.J.; Hendrickx, A.A. Muscle strength and functional exercise capacity in patients with lipoedema and obesity: A comparative study. J. Lymphoedema 2017, 12, 27–31. [Google Scholar]
- Bertsch, T.; Erbacher, G. Lipoedema-myths and facts. Part 1. Phlebologie 2018, 47, 84–92. [Google Scholar]
- Verde, L.; Camajani, E.; Annunziata, G.; Sojat, A.; Marina, L.V.; Colao, A.; Caprio, M.; Muscogiuri, G.; Barrea, L. Ketogenic diet: A nutritional therapeutic tool for lipedema? Curr. Obes. Rep. 2023, 12, 529–543. [Google Scholar] [CrossRef]
- Poojari, A.; Dev, K.; Rabiee, A. Lipedema: Insights into morphology, pathophysiology, and challenges. Biomedicines 2022, 10, 3081. [Google Scholar] [CrossRef]
- Suga, H.; Araki, J.; Aoi, N.; Kato, H.; Higashino, T.; Yoshimura, K. Adipose tissue remodeling in lipedema: Adipocyte death and concurrent regeneration. J. Cutan. Pathol. 2009, 36, 1293–1298. [Google Scholar] [CrossRef]
- Pagani, A.; Duscher, D.; Kempa, S.; Ghods, M.; Prantl, L. Preliminary Single-Cell RNA-Sequencing Analysis Uncovers Adipocyte Heterogeneity in Lipedema. Cells 2024, 13, 1028. [Google Scholar] [CrossRef]
- Brenner, E.; Forner-Cordero, I.; Faerber, G.; Rapprich, S.; Cornely, M. Body mass index vs. waist-to-height-ratio in patients with lipohyperplasia dolorosa (vulgo lipedema). J. Dtsch. Dermatol. Ges. 2023, 21, 1179–1185. [Google Scholar]
- Lundanes, J.; Gårseth, M.; Taylor, S.; Crescenzi, R.; Pridmore, M.; Wagnild, R.; Hyldmo, Å.A.; Martins, C.; Nymo, S. The effect of a low-carbohydrate diet on subcutaneous adipose tissue in females with lipedema. Front. Nutr. 2024, 11, 1484612. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.L.; Donahue, P.M.C.; Pridmore, M.D.; Garza, M.E.; Patel, N.J.; Custer, C.A.; Luo, Y.; Aday, A.W.; Beckman, J.A.; Donahue, M.J.; et al. Semiautomated segmentation of lower extremity MRI reveals distinctive subcutaneous adipose tissue in lipedema: A pilot study. J. Med. Imaging 2023, 10, 036001. [Google Scholar] [CrossRef] [PubMed]
- Sørlie, V.; De Soysa, A.K.; Hyldmo, Å.A.; Retterstøl, K.; Martins, C.; Nymo, S. Effect of a ketogenic diet on pain and quality of life in patients with lipedema: The LIPODIET pilot study. Obes. Sci. Pract. 2022, 8, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Hardy, D.; Williams, A. Best practice guidelines for the management of lipoedema. Br. J. Community Nurs. 2017, 22, S44–S48. [Google Scholar] [CrossRef]
- Castellana, M.; Conte, E.; Cignarelli, A.; Perrini, S.; Giustina, A.; Giovanella, L.; Giorgino, F.; Trimboli, P. Efficacy and safety of very low-calorie ketogenic diet (VLCKD) in patients with overweight and obesity: A systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2020, 21, 5–16. [Google Scholar] [CrossRef]
- Al-Ghadban, S.; Herbst, K.L.; Bunnell, B.A. Lipedema: A Painful Adipose Tissue Disorder. In Adipose Tissue—An Update; IntechOpen: London, UK, 2019. [Google Scholar]
- Lundanes, J.; Storliløkken, G.E.; Solem, M.S.; Dankel, S.N.; Tangvik, R.J.; Ødegård, R.; Holst, J.J.; Rehfeld, J.F.; Martins, C.; Nymo, S. Gastrointestinal hormones and subjective ratings of appetite after low-carbohydrate vs low-fat low-energy diets in females with lipedema—A randomized controlled trial. Clin. Nutr. ESPEN 2025, 65, 16–24. [Google Scholar] [CrossRef]
- Blüher, M.; Fasshauer, M.; Tönjes, A.; Kratzsch, J.; Schön, M.R.; Paschke, R. Association of interleukin-6, C-reactive protein, interleukin-10 and adiponectin plasma concentrations with measures of obesity, insulin sensitivity and glucose metabolism. Exp. Clin. Endocrinol. Diabetes 2005, 113, 534–537. [Google Scholar] [CrossRef]
- Amato, A.C.M. Is lipedema a unique entity? EC Clin. Med. Cases Rep. 2020, 2, 1–7. [Google Scholar]
- Keith, L.; Seo, C.A.; Rowsemitt, C.; Pfeffer, M.; Wahi, M.; Staggs, M.; Dudek, J.; Gower, B.; Carmody, M. Ketogenic diet as a potential intervention for lipedema. Med. Hypotheses 2021, 146, 110435. [Google Scholar] [CrossRef]
- Sears, B. Anti-inflammatory diets. J. Am. Coll. Nutr. 2015, 34 (Suppl. 1), 14–21. [Google Scholar] [CrossRef]
- El-Zayat, S.R.; Sibaii, H.; El-Shamy, K.A. Physiological process of fat loss. Bull. Natl. Res. Cent. 2019, 43, 208. [Google Scholar] [CrossRef]
- Wanten, G.; Naber, A. Cellular and physiological effects of medium-chain Triglycerides. Mini Rev. Med. Chem. 2004, 4, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Maher, T.; Sampson, A.; Goslawska, M.; Pangua-Irigaray, C.; Shafat, A.; Clegg, M.E. Food intake and satiety response after medium-chain triglycerides ingested as solid or liquid. Nutrients 2019, 11, 1638. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Verde, L.; Sulu, C.; Katsiki, N.; Hassapidou, M.; Frias-Toral, E.; Cucalón, G.; Pazderska, A.; Yumuk, V.D.; Colao, A.; et al. Mediterranean diet and obesity-related disorders: What is the evidence? Curr. Obes. Rep. 2022, 11, 287–304. [Google Scholar] [CrossRef]
- Cannataro, R.; Michelini, S.; Ricolfi, L.; Caroleo, M.; Gallelli, L.; de Sarro, G.; Onorato, A.; Cione, E. Management of lipedema with ketogenic diet: 22-month follow-up. Life 2021, 11, 1402. [Google Scholar] [CrossRef]
- Jeziorek, M.; Szuba, A.; Kujawa, K.; Regulska-Ilow, B. The Effect of a Low-Carbohydrate, High-Fat Diet versus Moderate-Carbohydrate and Fat Diet on Body Composition in Patients with Lipedema. Diabetes Metab. Syndr. Obes. 2022, 15, 2545–2561. [Google Scholar] [CrossRef]
- Amato, A.C.M.; Benitti, D.A. Lipedema can be treated non-surgically: A report of 5 cases. Am. J. Case Rep. 2021, 22, e934406. [Google Scholar] [CrossRef]
- Cannataro, R.; Caroleo, M.C.; Fazio, A.; La Torre, C.; Plastina, P.; Gallelli, L.; Lauria, G.; Cione, E. Ketogenic diet and microRNAs linked to antioxidant biochemical homeostasis. Antioxidants 2019, 8, 269. [Google Scholar] [CrossRef]
- Jeziorek, M.; Szuba, A.; Sowicz, M.; Adaszyńska, A.; Kujawa, K.; Chachaj, A. The effect of a low-carbohydrate high-fat diet on laboratory parameters in women with lipedema in comparison to overweight/obese women. Nutrients 2023, 15, 2619. [Google Scholar] [CrossRef]
- Forsythe, C.E.; Phinney, S.D.; Fernandez, M.L.; Quann, E.E.; Wood, R.J.; Bibus, D.M.; Kraemer, W.J.; Feinman, R.D.; Volek, J.S. Comparison of low fat and low carbohydrate diets on circulating fatty acid composition and markers of inflammation. Lipids 2008, 43, 65–77. [Google Scholar] [CrossRef]
- Puchalska, P.; Crawford, P.A. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 2017, 25, 262–284. [Google Scholar] [CrossRef] [PubMed]
- Nowotny, K.; Jung, T.; Höhn, A.; Weber, D.; Grune, T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 2015, 5, 194–222. [Google Scholar] [CrossRef] [PubMed]
- Cardoso-Silva, D.; Delbue, D.; Itzlinger, A.; Moerkens, R.; Withoff, S.; Branchi, F.; Schumann, M. Intestinal barrier function in gluten-related disorders. Nutrients 2019, 11, 2325. [Google Scholar] [CrossRef] [PubMed]
- Fassio, F.; Facioni, M.S.; Guagnini, F. Lactose maldigestion, malabsorption, and intolerance: A comprehensive review with a focus on current management and future perspectives. Nutrients 2018, 10, 1599. [Google Scholar] [CrossRef]
- Amato, A.C.M.; Amato, J.L.S.; Benitti, D.A. The efficacy of ketogenic diets (low carbohydrate; high fat) as a potential nutritional intervention for lipedema: A systematic review and meta-analysis. Nutrients 2024, 16, 3276. [Google Scholar] [CrossRef]
- O’Neill, B.; Raggi, P. The ketogenic diet: Pros and cons. Atherosclerosis 2020, 292, 119–126. [Google Scholar] [CrossRef]
- Di Renzo, L.; Gualtieri, P.; Zomparelli, S.; De Santis, G.L.; Seraceno, S.; Zuena, C.; Frank, G.; Cianci, R.; Centofanti, D.; De Lorenzo, A. Modified Mediterranean-Ketogenic Diet and Carboxytherapy as Personalized Therapeutic Strategies in Lipedema: A Pilot Study. Nutrients 2023, 15, 3654. [Google Scholar] [CrossRef]
- Piccolella, S.; Crescente, G.; Candela, L.; Pacifico, S. Nutraceutical polyphenols: New analytical challenges and opportunities. J. Pharm. Biomed. Anal. 2019, 175, 112774. [Google Scholar] [CrossRef]
- Cannataro, R.; Cione, E. Nutritional Supplements and Lipedema: Scientific and Rational Use. Nutraceuticals 2022, 2, 270–277. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochem. Soc. Trans. 2017, 45, 1105–1115. [Google Scholar] [CrossRef]
- Allen, E.V.; Hines, E.A.J. Lipedema of the legs: A syndrome characterized by fat legs and orthostatic edema. Proc. Staff. Meet. Mayo Clin. 1940, 15, 184–187. [Google Scholar]
Types of Lipedema (According to the Area Where Adipose Tissue Is Accumulated) | |
---|---|
1 | Fat accumulates in the pelvis, buttocks, and hip |
2 | Fat spreads from the buttocks to the knees (with formation of folds of fat around the inner side of the knee) |
3 | Fat extends to the hips and ankles (feet are not affected) |
4 a–c | Fat is increased in the upper arms sparing the wrist (a: upper arm; b: lower arm; c: whole arm) |
5 | Fat accumulates in the lower legs (knees to ankles) |
Stages of Lipedema (According to the Progression of Fat Accumulation and Changes to Skin and Lymphatic System) | |
1 | Normal skin surface with enlarged subcutaneous tissue; fat tissue is soft with noticeable small nodules |
2 | Uneven skin with enlarged subcutaneous tissue; larger fat nodules present |
3 | Large extrusions of tissue cause deformations, especially on the thighs and around the knees; fat nodules of varying sizes are palpable |
4 | Development of lipolymphedema with large overhangs of tissue |
Characteristics | Lipedema | Obesity |
---|---|---|
Gender | Female | Male and Female |
Onset | Puberty Pregnancy Menopause | Any time over life span |
Causal effect of diet | None | Present |
Effect of legs elevation on symptoms | Minimal | Ineffective |
Bilateral | Always | Always (android or gynoid) |
Affected areas | Lower limbs and arms | Whole body |
Retromalleolar fat pad | Present | Absent |
Tissue consistency upon palpation | Soft-firm | Soft |
Easy bruising of affected skin areas | Very common | Absent |
Tenderness of affected skin areas | Very common | Absent |
Stemmer’s sign | Negative | Negative |
Pain/Painful skin sensitivity to touch or pressure | Yes | No |
Diet Type | Main Features | Potential Benefits in Lipedema | Considerations/Limitations |
---|---|---|---|
Ketogenic Diet | Very low carbohydrate (<50 g/day); high fat; moderate protein | Enhanced fat oxidation (may lead to rapid fat loss, primarily in non-lipedema areas); reduced inflammation; appetite control; possible reduction of lipedema-related adipose tissue | Long-term safety unclear; may be restrictive and unsustainable; potential nutrient deficiencies |
Low-Carbohydrate, High-Fat Diet | Restricts carbohydrates; increases fat intake; moderate protein; often calorie restricted | Weight reduction; improved insulin sensitivity; improved lipid and glucose profiles; reduction in pain and edema | Long-term adherence may be challenging; potential nutrient deficiencies; requires monitoring |
Calorie-Restricted Diet | Focus on overall reduction in daily caloric intake | General weight and fat loss | Lipedema fat is often resistant to calorie restriction alone |
Mediterranean Diet | Emphasis on whole grains, vegetables, legumes, fish and olive oil; eliminates processed foods, sugars and processed fats; rich in antioxidants and omega-3 fatty acids | Anti-inflammatory effects; cardiovascular and metabolic health; supports gradual weight loss | Effectiveness depends on adherence; may be less effective for fat redistribution |
Modified Mediterranean Ketogenic Diet | Combines principles of Mediterranean and Ketogenic diets; low carbohydrates; rich in unsaturated fats | Potential anti-inflammatory and metabolic benefits; more palatable and sustainable than classic Ketogenic diet | Limited evidence in lipedema; needs further clinical validation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomada, I. Lipedema: From Women’s Hormonal Changes to Nutritional Intervention. Endocrines 2025, 6, 24. https://doi.org/10.3390/endocrines6020024
Tomada I. Lipedema: From Women’s Hormonal Changes to Nutritional Intervention. Endocrines. 2025; 6(2):24. https://doi.org/10.3390/endocrines6020024
Chicago/Turabian StyleTomada, Inês. 2025. "Lipedema: From Women’s Hormonal Changes to Nutritional Intervention" Endocrines 6, no. 2: 24. https://doi.org/10.3390/endocrines6020024
APA StyleTomada, I. (2025). Lipedema: From Women’s Hormonal Changes to Nutritional Intervention. Endocrines, 6(2), 24. https://doi.org/10.3390/endocrines6020024