Parathyroid Carcinoma: Update on Pathogenesis and Therapy
Abstract
:1. Introduction
2. Pathogenesis of Parathyroid Carcinoma
2.1. Genetics of Parathyroid Carcinoma
2.1.1. CDC73 Gene
2.1.2. CCND1 Gene
2.1.3. PRUNE2 Gene
2.1.4. MEN1 Gene
2.1.5. Genes of the PI3K/AKT/mTOR Signaling Pathway
2.1.6. Genes of the Wnt Signaling Pathways
2.1.7. Other Genes
2.2. Epigenetics of Parathyroid Carcinoma
2.2.1. DNA Methylation
2.2.2. Chromatin Modification
2.2.3. microRNAs
2.2.4. Long Non-Coding RNAs
2.3. Proteomics of PC
3. Therapy of Parathyroid Carcinoma
3.1. Current Therapies
3.1.1. Surgery
3.1.2. Adjuvant Therapies
3.1.3. Therapies for the Control of Calcium Homeostasis
3.2. Emerging Therapies
3.2.1. Inhibitors of the PI3K/AKT/mTOR Pathway
3.2.2. Inhibitors of Angiogenesis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perrier, N.D.; Arnold, A.; Costa-Guda, J.; Busaidy, N.L.; Nguyen, H.; Chuang, H.H.; Brandi, M.L. Hereditary endocrine tumours: Current state-of-the-art and research opportunities: New and future perspectives for parathyroid carcinoma. Endocr. Relat. Cancer 2020, 27, T53–T63. [Google Scholar] [CrossRef]
- Clarke, C.N.; Katsonis, P.; Hsu, T.K.; Koire, A.M.; Silva-Figueroa, A.; Christakis, I.; Williams, M.D.; Kutahyalioglu, M.; Kwatampora, L.; Xi, Y.; et al. Comprehensive Genomic Characterization of Parathyroid Cancer Identifies Novel Candidate Driver Mutations and Core Pathways. J. Endocr. Soc. 2018, 3, 544–559. [Google Scholar] [CrossRef] [Green Version]
- Kumari, N.; Chaudhary, N.; Pradhan, R.; Agarwal, A.; Krishnani, N. Role of Histological Criteria and Immunohistochemical Markers in Predicting Risk of Malignancy in Parathyroid Neoplasms. Endocr. Pathol. 2016, 27, 87–96. [Google Scholar] [CrossRef]
- Cui, M.; Hu, Y.; Zheng, B.; Zhang, S.; Zhang, X.; Wang, M.; Qiu, X.Y.; Liao, Q.; Zhao, Y.P. Cancer-derived immunoglobulin G: A novel marker for differential diagnosis and relapse prediction in parathyroid carcinoma. Clin. Endocrinol. 2020, 92, 461–467. [Google Scholar] [CrossRef]
- Tavanti, G.S.; Verdelli, C.; Morotti, A.; Maroni, P.; Guarnieri, V.; Scillitani, A.; Silipigni, R.; Guerneri, S.; Maggiore, R.; Mari, G.; et al. Yes-Associated Protein 1 Is a Novel Calcium Sensing Receptor Target in Human Parathyroid Tumors. Int. J. Mol. Sci. 2021, 22, 2016. [Google Scholar] [CrossRef]
- Storvall, S.; Leijon, H.; Ryhänen, E.M.; Vesterinen, T.; Heiskanen, I.; Schalin-Jäntti, C.; Arola, J. Filamin A and parafibromin expression in parathyroid carcinoma. Eur. J. Endocrinol. 2021, 185, 803–812. [Google Scholar] [CrossRef]
- Verdelli, C.; Avagliano, L.; Guarnieri, V.; Cetani, F.; Ferrero, S.; Vicentini, L.; Beretta, E.; Scillitani, A.; Creo, P.; Bulfamante, G.P.; et al. Expression, function, and regulation of the embryonic transcription factor TBX1 in parathyroid tumors. Lab. Investig. 2017, 97, 1488–1499. [Google Scholar] [CrossRef]
- Kong, S.H. Updates of Genomics and Proteomics of Parathyroid Carcinoma. Endocrines 2022, 3, 745–752. [Google Scholar] [CrossRef]
- Marini, F.; Giusti, F.; Palmini, G.; Perigli, G.; Santoro, R.; Brandi, M.L. Genetics and Epigenetics of Parathyroid Carcinoma. Front. Endocrinol. 2022, 13, 834362. [Google Scholar] [CrossRef]
- Enomoto, K.; Uchino, S.; Ito, A.; Watanabe, S.; Shibuya, H.; Enomoto, Y.; Noguchi, S. The surgical strategy and the molecular analysis of patients with parathyroid cancer. World J. Surg. 2010, 34, 2604–2610. [Google Scholar] [CrossRef]
- Carpten, J.D.; Robbins, C.M.; Villablanca, A.; Forsberg, L.; Presciuttini, S.; Bailey-Wilson, J.; Simonds, W.F.; Gillanders, E.M.; Kennedy, A.M.; Chen, J.D.; et al. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat. Genet. 2002, 32, 676–680. [Google Scholar] [CrossRef]
- Yu, W.; McPherson, J.R.; Stevenson, M.; van Eijk, R.; Heng, H.L.; Newey, P.; Gan, A.; Ruano, D.; Huang, D.; Poon, S.L.; et al. Whole-exome sequencing studies of parathyroid carcinomas reveal novel PRUNE2 mutations, distinctive mutational spectra related to APOBEC-catalyzed DNA mutagenesis and mutational enrichment in kinases associated with cell migration and invasion. J. Clin. Endocrinol. Metab. 2015, 100, E360–E364. [Google Scholar] [CrossRef] [Green Version]
- Pandya, C.; Uzilov, A.V.; Bellizzi, J.; Lau, C.Y.; Moe, A.S.; Strahl, M.; Hamou, W.; Newman, L.C.; Fink, M.Y.; Antipin, Y.; et al. Genomic profiling reveals mutational landscape in parathyroid carcinomas. JCI Insight 2017, 2, e92061. [Google Scholar] [CrossRef] [Green Version]
- Kong, J.; Wang, O.; Nie, M.; Shi, J.; Jiang, Y.; Li, M.; Xia, W.B.; Meng, X.W.; Xing, X.P. CDC73 gene mutation and parafibromin expression status of parathyroid carcinoma in Chinese. Zhonghua Yi Xue Za Zhi 2013, 93, 3364–3368. [Google Scholar]
- Serrano-Gonzalez, M.; Shay, S.; Austin, J.; Maceri, D.R.; Pitukcheewanont, P. A germline mutation of HRPT2/CDC73 (70 G>T) in an adolescent female with parathyroid carcinoma: First case report and a review of the literature. J. Pediatr. Endocrinol. Metab. 2016, 29, 1005–1012. [Google Scholar] [CrossRef]
- Krupinova, J.; Mokrysheva, N.; Petrov, V.; Pigarova, E.; Eremkina, A.; Dobreva, E.; Ajnetdinova, A.; Melnichenko, G.; Tiulpakov, A. Serum circulating miRNA-342-3p as a potential diagnostic biomarker in parathyroid carcinomas: A pilot study. Endocrinol. Diabetes Metab. 2021, 4, e00284. [Google Scholar] [CrossRef]
- Juhlin, C.C.; Villablanca, A.; Sandelin, K.; Haglund, F.; Nordenström, J.; Forsberg, L.; Bränström, R.; Obara, T.; Arnold, A.; Larsson, C.; et al. Parafibromin immunoreactivity: Its use as an additional diagnostic marker for parathyroid tumor classification. Endocr. Relat. Cancer 2007, 14, 501–512. [Google Scholar] [CrossRef] [Green Version]
- Makino, H.; Notsu, M.; Asayama, I.; Otani, H.; Morita, M.; Yamamoto, M.; Yamauchi, M.; Nakao, M.; Miyake, H.; Araki, A.; et al. Successful Control of Hypercalcemia with Sorafenib, Evocalcet, and Denosumab Combination Therapy for Recurrent Parathyroid Carcinoma. Intern. Med. 2022, 61, 3383–3390. [Google Scholar] [CrossRef]
- Haven, C.J.; van Puijenbroek, M.; Tan, M.H.; The, B.T.; Fleuren, G.J.; van Wezel, T.; Morreau, H. Identification of MEN1 and HRPT2 somatic mutations in paraffin-embedded (sporadic) parathyroid carcinomas. Clin. Endocrinol. 2007, 67, 370–376. [Google Scholar] [CrossRef]
- Siu, W.K.; Law, C.Y.; Lam, C.W.; Mak, C.M.; Wong, G.W.; Ho, A.Y.; Ho, K.Y.; Loo, K.T.; Chiu, S.C.; Chow, L.T.; et al. Novel nonsense CDC73 mutations in Chinese patients with parathyroid tumors. Fam. Cancer 2011, 10, 695–699. [Google Scholar] [CrossRef]
- Cavaco, B.M.; Santos, R.; Félix, A.; Carvalho, D.; Lopes, J.M.; Domingues, R.; Sirgado, M.; Rei, N.; Fonseca, F.; Santos, J.R.; et al. Identification of de novo germline mutations in the HRPT2 gene in two apparently sporadic cases with challenging parathyroid tumor diagnoses. Endocr. Pathol. 2011, 22, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Wang, O.; Wang, C.; Nie, M.; Cui, Q.; Guan, H.; Jiang, Y.; Li, M.; Xia, W.; Meng, X.; Xing, X. Novel HRPT2/CDC73 gene mutations and loss of expression of parafibromin in Chinese patients with clinically sporadic parathyroid carcinomas. PLoS ONE 2012, 7, e45567. [Google Scholar] [CrossRef]
- Mamedova, E.; Mokrysheva, N.; Vasilyev, E.; Petrov, V.; Pigarova, E.; Kuznetsov, S.; Kuznetsov, N.; Rozhinskaya, L.; Melnichenko, G.; Dedov, I.; et al. Primary hyperparathyroidism in young patients in Russia: High frequency of hyperparathyroidism-jaw tumor syndrome. Endocr. Connect. 2017, 6, 557–565. [Google Scholar] [CrossRef] [Green Version]
- Kong, J.; Wang, O.; Nie, M.; Shi, J.; Hu, Y.; Jiang, Y.; Li, M.; Xia, W.; Meng, X.; Xing, X. Familial isolated primary hyperparathyroidism/hyperparathyroidism-jaw tumour syndrome caused by germline gross deletion or point mutations of CDC73 gene in Chinese. Clin. Endocrinol. 2014, 81, 222–230. [Google Scholar] [CrossRef]
- Cetani, F.; Pardi, E.; Ambrogini, E.; Banti, C.; Viacava, P.; Borsari, S.; Bilezikian, J.P.; Pinchera, A.; Marcocci, C. Hyperparathyroidism 2 gene (HRPT2, CDC73) and parafibromin studies in two patients with primary hyperparathyroidism and uncertain pathological assessment. J. Endocrinol. Investig. 2008, 31, 900–904. [Google Scholar] [CrossRef] [Green Version]
- Cetani, F.; Banti, C.; Pardi, E.; Borsari, S.; Viacava, P.; Miccoli, P.; Torregrossa, L.; Basolo, F.; Pelizzo, M.R.; Rugge, M.; et al. CDC73 mutational status and loss of parafibromin in the outcome of parathyroid cancer. Endocr. Connect. 2013, 2, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Shattuck, T.M.; Välimäki, S.; Obara, T.; Gaz, R.D.; Clark, O.H.; Shoback, D.; Wierman, M.E.; Tojo, K.; Robbins, C.M.; Carpten, J.D.; et al. Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid carcinoma. N. Engl. J. Med. 2003, 349, 1722–1729. [Google Scholar] [CrossRef]
- Park, H.S.; Lee, Y.H.; Hong, N.; Won, D.; Rhee, Y. Germline Mutations Related to Primary Hyperparathyroidism Identified by Next-Generation Sequencing. Front. Endocrinol. 2022, 13, 853171. [Google Scholar] [CrossRef]
- Cetani, F.; Ambrogini, E.; Viacava, P.; Pardi, E.; Fanelli, G.; Naccarato, A.G.; Borsari, S.; Lemmi, M.; Berti, P.; Miccoli, P.; et al. Should parafibromin staining replace HRTP2 gene analysis as an additional tool for histologic diagnosis of parathyroid carcinoma? Eur. J. Endocrinol. 2007, 156, 547–554. [Google Scholar] [CrossRef] [Green Version]
- Guarnieri, V.; Bisceglia, M.; Bonfitto, N.; Cetani, F.; Marcocci, C.; Minisola, S.; Battista, C.; Chiodini, I.; Cole, D.E.; Scillitani, A. Re: Familial hyperparathyroidism: Surgical outcome after 30 years of follow-up in three families with germline HRPT2 mutations. Surgery 2008, 144, 839–840. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Adikaram, P.R.; Welch, J.; Guan, B.; Weinstein, L.S.; Chen, H.; Simonds, W.F. Genotype of CDC73 germline mutation determines risk of parathyroid cancer. Endocr. Relat. Cancer 2020, 27, 483–494. [Google Scholar] [CrossRef]
- Rozhinskaya, L.; Pigarova, E.; Sabanova, E.; Mamedova, E.; Voronkova, I.; Krupinova, J.; Dzeranova, L.; Tiulpakov, A.; Gorbunova, V.; Orel, N.; et al. Diagnosis and treatment challenges of parathyroid carcinoma in a 27-year-old woman with multiple lung metastases. Endocrinol. Diabetes Metab. Case Rep. 2017, 2017, 16-0113. [Google Scholar] [CrossRef]
- Van der Tuin, K.; Tops, C.M.J.; Adank, M.A.; Cobben, J.M.; Hamdy, N.A.T.; Jongmans, M.C.; Menko, F.H.; van Nesselrooij, B.P.M.; Netea-Maier, R.T.; Oosterwijk, J.C.; et al. CDC73-Related Disorders: Clinical Manifestations and Case Detection in Primary Hyperparathyroidism. J. Clin. Endocrinol. Metab. 2017, 102, 4534–4540. [Google Scholar] [CrossRef] [Green Version]
- Russo, M.; Borzì, G.; Ilenia, M.; Frasca, F.; Malandrino, P.; Gullo, D. Challenges in the treatment of parathyroid carcinoma: A case report. Hormones 2019, 18, 325–328. [Google Scholar] [CrossRef]
- Bricaire, L.; Odou, M.F.; Cardot-Bauters, C.; Delemer, B.; North, M.O.; Salenave, S.; Vezzosi, D.; Kuhn, J.M.; Murat, A.; Caron, P.; et al. Frequent large germline HRPT2 deletions in a French National cohort of patients with primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 2013, 98, E403–E408. [Google Scholar] [CrossRef] [Green Version]
- Gill, A.J.; Lim, G.; Cheung, V.K.Y.; Andrici, J.; Perry-Keene, J.L.; Paik, J.; Sioson, L.; Clarkson, A.; Sheen, A.; Luxford, C.; et al. Parafibromin-deficient (HPT-JT Type, CDC73 Mutated) Parathyroid Tumors Demonstrate Distinctive Morphologic Features. Am. J. Surg. Pathol. 2019, 43, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Simonds, W.F.; Robbins, C.M.; Agarwal, S.K.; Hendy, G.N.; Carpten, J.D.; Marx, S.J. Familial isolated hyperparathyroidism is rarely caused by germline mutation in HRPT2, the gene for the hyperparathyroidism-jaw tumor syndrome. J. Clin. Endocrinol. Metab. 2004, 89, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Guarnieri, V.; Battista, C.; Muscarella, L.A.; Bisceglia, M.; de Martino, D.; Baorda, F.; Maiello, E.; D’Agruma, L.; Chiodini, I.; Clemente, C.; et al. CDC73 mutations and parafibromin immunohistochemistry in parathyroid tumors: Clinical correlations in a single-centre patient cohort. Cell. Oncol. 2012, 35, 411–422. [Google Scholar] [CrossRef]
- Cetani, F.; Pardi, E.; Borsari, S.; Viacava, P.; Dipollina, G.; Cianferotti, L.; Ambrogini, E.; Gazzerro, E.; Colussi, G.; Berti, P.; et al. Genetic analyses of the HRPT2 gene in primary hyperparathyroidism: Germline and somatic mutations in familial and sporadic parathyroid tumors. J. Clin. Endocrinol. Metab. 2004, 89, 5583–5591. [Google Scholar] [CrossRef] [Green Version]
- Davidson, J.T.; Lam, C.G.; McGee, R.B.; Bahrami, A.; Diaz-Thomas, A. Parathyroid Cancer in the Pediatric Patient. J. Pediatr. Hematol. Oncol. 2016, 38, 32–37. [Google Scholar] [CrossRef]
- Mahajan, G.; Sacerdote, A. Previously unreported deletion of CDC73 involving exons 1-13 was detected in a patient with recurrent parathyroid carcinoma. BMJ Case Rep. 2018, 11, e225784. [Google Scholar] [CrossRef] [PubMed]
- Korpi-Hyövälti, E.; Cranston, T.; Ryhänen, E.; Arola, J.; Aittomäki, K.; Sane, T.; Thakker, R.V.; Schalin-Jäntti, C. CDC73 intragenic deletion in familial primary hyperparathyroidism associated with parathyroid carcinoma. J. Clin. Endocrinol. Metab. 2014, 99, 3044–3048. [Google Scholar] [CrossRef]
- Caron, P.; Simonds, W.F.; Maiza, J.C.; Rubin, M.; Cantor, T.; Rousseau, L.; Bilezikian, J.P.; Souberbielle, J.C.; D’Amour, P. Nontruncated amino-terminal parathyroid hormone overproduction in two patients with parathyroid carcinoma: A possible link to HRPT2 gene inactivation. Clin. Endocrinol. 2011, 74, 694–698. [Google Scholar] [CrossRef] [Green Version]
- Moon, S.D.; Park, J.H.; Kim, E.M.; Kim, J.H.; Han, J.H.; Yoo, S.J.; Yoon, K.H.; Kang, M.I.; Lee, K.W.; Son, H.Y.; et al. A Novel IVS2-1G>A mutation causes aberrant splicing of the HRPT2 gene in a family with hyperparathyroidism-jaw tumor syndrome. J. Clin. Endocrinol. Metab. 2005, 90, 878–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howell, V.M.; Haven, C.J.; Kahnoski, K.; Khoo, S.K.; Petillo, D.; Chen, J.; Fleuren, G.J.; Robinson, B.G.; Delbridge, L.W.; Philips, J.; et al. HRPT2 mutations are associated with malignancy in sporadic parathyroid tumours. J. Med. Genet. 2003, 40, 657–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niramitmahapanya, S.; Deerochanawong, C.; Sarinnapakorn, V.; Sunthornthepvarakul, T.; Pingsuthiwong, S.; Athipan, P.; Sangsuda, Y. Somatic HRPT2 Mutation (Arg234X) of Parathyroid Carcinoma Associated with Slipped Capital Femoral Epiphysis: A First Case Report. J. Med. Assoc. Thail. 2016, 99, S201–S205. [Google Scholar]
- Hu, Y.; Zhang, X.; Wang, O.; Bi, Y.; Xing, X.; Cui, M.; Wang, M.; Tao, W.; Liao, Q.; Zhao, Y. The genomic profile of parathyroid carcinoma based on whole-genome sequencing. Int. J. Cancer 2020, 147, 2446–2457. [Google Scholar] [CrossRef]
- Kang, H.; Pettinga, D.; Schubert, A.D.; Ladenson, P.W.; Ball, D.W.; Chung, J.H.; Schrock, A.B.; Madison, R.; Frampton, G.M.; Stephens, P.J.; et al. Genomic Profiling of Parathyroid Carcinoma Reveals Genomic Alterations Suggesting Benefit from Therapy. Oncologist 2019, 24, 791–797. [Google Scholar] [CrossRef] [Green Version]
- Iacobone, M.; Camozzi, V.; Mian, C.; Pennelli, G.; Pagetta, C.; Casal Ide, E.; Masi, G.; Zovato, S.; Torresan, F. Long-Term Outcomes of Parathyroidectomy in Hyperparathyroidism-Jaw Tumor Syndrome: Analysis of Five Families with CDC73 Mutations. World J. Surg. 2020, 44, 508516. [Google Scholar] [CrossRef]
- Guarnieri, V.; Seaberg, R.M.; Kelly, C.; Jean Davidson, M.; Raphael, S.; Shuen, A.Y.; Baorda, F.; Palumbo, O.; Scillitani, A.; Hendy, G.N.; et al. Large intragenic deletion of CDC73 (exons 4-10) in a three-generation hyperparathyroidism-jaw tumor (HPT-JT) syndrome family. BMC Med. Genet. 2017, 18, 83. [Google Scholar] [CrossRef]
- Khadilkar, K.S.; Budyal, S.R.; Kasliwal, R.; Lila, A.R.; Bandgar, T.; Shah, N.S. HRPT2-(CDC73) related hereditary hyperparathyroidism: A case series from western India. Endocr. Pract. 2015, 21, 1010–1016. [Google Scholar] [CrossRef]
- Parfitt, J.; Harris, M.; Wright, J.M.; Kalamchi, S. Tumor suppressor gene mutation in a patient with a history of hyperparathyroidism-jaw tumor syndrome and healed generalized osteitis fibrosa cystica: A case report and genetic pathophysiology review. J. Oral Maxillofac. Surg. 2015, 73, 194.e1–194.e9. [Google Scholar] [CrossRef]
- Frank-Raue, K.; Haag, C.; Schulze, E.; Keuser, R.; Raue, F.; Dralle, H.; Lorenz, K. CDC73-related hereditary hyperparathyroidism: Five new mutations and the clinical spectrum. Eur. J. Endocrinol. 2011, 165, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Kutcher, M.R.; Rigby, M.H.; Bullock, M.; Trites, J.; Taylor, S.M.; Hart, R.D. Hyperparathyroidism-jaw tumor syndrome. Head Neck 2013, 35, E175–E177. [Google Scholar] [CrossRef]
- Grigorie, D.; Sucaliuc, A.; Ciuffi, S.; Franceschelli, F.; Marini, F.; Ioachim, D.; Terzea, D.; Brandi, M.L. High risk of parathyroid carcinoma and genetic screening in the first diagnosed romanian family with hyperparathyroidism-jaw tumor syndrome and a germline mutation of the CDC73 gene. Acta Endocrinol. 2019, 15, 398–403. [Google Scholar] [CrossRef]
- Veiguela, B.; Isidro, M.L.; Jorge, S.; Ruano, B. An uncommon cause of hypercalcemia: Synchronous carcinoma of two parathyroids in the context of hyperparathyroidism-jaw tumor syndrome. Endocrinol. Nutr. 2010, 57, 391–393. [Google Scholar] [CrossRef]
- Ciuffi, S.; Cianferotti, L.; Nesi, G.; Luzi, E.; Marini, F.; Giusti, F.; Zonefrati, R.; Gronchi, G.; Perigli, G.; Brandi, M.L. Characterization of a novel CDC73 gene mutation in a hyperparathyrodism-jaw tumor patient affected by parathyroid carcinoma in the absence of somatic loss of heterozygosity. Endocr. J. 2019, 66, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Kapur, A.; Singh, N.; Mete, O.; Hegele, R.A.; Fantus, I.G. A Young Male with Parafibromin-Deficient Parathyroid Carcinoma Due to a Rare Germline HRPT2/CDC73 Mutation. Endocr. Pathol. 2018, 29, 374–379. [Google Scholar] [CrossRef]
- Kutahyalioglu, M.; Nguyen, H.T.; Kwatampora, L.; Clarke, C.; Silva, A.; Ibrahim, E.; Waguespack, S.G.; Cabanillas, M.E.; Jimenez, C.; Hu, M.I.; et al. Genetic profiling as a clinical tool in advanced parathyroid carcinoma. J. Cancer Res. Clin. Oncol. 2019, 145, 1977–1986. [Google Scholar] [CrossRef]
- Mele, M.; Rolighed, L.; Jespersen, M.; Rejnmark, L.; Christiansen, P. Recurrence of Hyperparathyroid Hypercalcemia in a Patient With the HRPT-2 Mutation and a Previous Parathyroid Carcinoma in Hyperparathyroidism-Jaw Tumor Syndrome. Int. J. Endocrinol. Metab. 2016, 14, e35424. [Google Scholar] [CrossRef] [Green Version]
- Masi, G.; Barzon, L.; Iacobone, M.; Viel, G.; Porzionato, A.; Macchi, V.; De Caro, R.; Favia, G.; Palù, G. Clinical, genetic, and histopathologic investigation of CDC73-related familial hyperparathyroidism. Endocr. Relat. Cancer 2008, 15, 1115–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, K.J.; Hobbs, M.R.; Buley, I.D.; Carpten, J.D.; Cavaco, B.M.; Fares, J.E.; Laidler, P.; Manek, S.; Robbins, C.M.; Salti, I.S.; et al. Uterine tumours are a phenotypic manifestation of the hyperparathyroidism-jaw tumour syndrome. J. Intern. Med. 2005, 257, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Patel, D.; Rosenberg, A.; Boufraqech, M.; Ellis, R.J.; Nilubol, N.; Quezado, M.M.; Marx, S.J.; Simonds, W.F.; Kebebew, E. Hyperparathyroidism-jaw tumor syndrome: Results of operative management. Surgery 2014, 156, 1315–1324. [Google Scholar] [CrossRef] [Green Version]
- Raue, F.; Haag, C.; Frank-Raue, K. Hyperparathyroidism-jaw tumor syndrome. A hereditary form of primary hyperparathyroidism with parathyroid carcinoma. Dtsch. Med. Wochenschr. 2007, 132, 1459–1462. [Google Scholar] [CrossRef] [PubMed]
- Chiofalo, M.G.; Sparaneo, A.; Chetta, M.; Franco, R.; Baorda, F.; Cinque, L.; Granatiero, M.; D’Agruma, L.; Pezzullo, L.; Scillitani, A.; et al. A novel CDC73 gene mutation in an Italian family with hyperparathyroidism-jaw tumour (HPT-JT) syndrome. Cell. Oncol. 2014, 37, 281–288. [Google Scholar] [CrossRef]
- Muscarella, L.A.; Turchetti, D.; Fontana, A.; Baorda, F.; Palumbo, O.; la Torre, A.; de Martino, D.; Franco, R.; Losito, N.S.; Repaci, A.; et al. Large deletion at the CDC73 gene locus and search for predictive markers of the presence of a CDC73 genetic lesion. Oncotarget 2018, 9, 20721–20733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sriphrapradang, C.; Sornmayura, P.; Chanplakorn, N.; Trachoo, O.; Sae-Chew, P.; Aroonroch, R. Fine-needle aspiration cytology of parathyroid carcinoma mimic hürthle cell thyroid neoplasm. Case Rep. Endocrinol. 2014, 2014, 680876. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, S.Y.; Mo, E.Y.; Kim, E.S.; Han, J.H.; Maeng, L.S.; Lee, A.H.; Eun, J.W.; Nam, S.W.; Moon, S.D. Upregulation of FGFR1 expression is associated with parathyroid carcinogenesis in HPT-JT syndrome due to an HRPT2 splicing mutation. Int. J. Oncol. 2014, 45, 641–650. [Google Scholar] [CrossRef] [Green Version]
- Dematapitiya, C.; Perera, C.; Pathmanathan, S.; Subasinghe, V.; Anandagoda, G.; Dissanayaka, V.; Wijenayake, U.; Dissanayake, P.; Gamage, K.; Wijewickrama, P.; et al. Parathyroid carcinoma during pregnancy: A novel pathogenic CDC73 mutation—A case report. BMC Endocr. Disord. 2022, 22, 259. [Google Scholar] [CrossRef]
- Hewitt, K.M.; Sharma, P.K.; Samowitz, W.; Hobbs, M. Aberrant methylation of the HRPT2 gene in parathyroid carcinoma. Ann. Otol. Rhinol. Laryngol. 2007, 116, 928–933. [Google Scholar] [CrossRef]
- Zhu, R.; Wang, Z.; Hu, Y. Prognostic role of parafibromin staining and CDC73 mutation in patients with parathyroid carcinoma: A systematic review and meta-analysis based on individual patient data. Clin. Endocrinol. 2020, 92, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Imanishi, Y.; Hosokawa, Y.; Yoshimoto, K.; Schipani, E.; Mallya, S.; Papanikolaou, A.; Kifor, O.; Tokura, T.; Sablosky, M.; Ledgard, F.; et al. Primary hyperparathyroidism caused by parathyroid-targeted overexpression of cyclin D1 in transgenic mice. J. Clin. Investig. 2001, 107, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Sun, L.; Liu, D.; He, X.; Tao, B.; Ning, G.; Liu, J.; Zhao, H. Copy Number Variation in CCND1 Gene is Implicated in the Pathogenesis of Sporadic Parathyroid Carcinoma. World J. Surg. 2014, 38, 1730–1737. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Manning, B.D. The TSC1-TSC2 complex: A molecular switchboard controlling cell growth. Biochem. J. 2008, 412, 179–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.H.; Seigneur, E.M.; Pandey, M.; Loshakov, A.; Dagur, P.K.; Connelly, P.S.; Koo, L.; Panicker, L.M.; Simonds, W.F. The EIF4EBP3 translational repressor is a marker of CDC73 tumor suppressor haploinsufficiency in a parathyroid cancer syndrome. Cell Death Dis. 2012, 3, 266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svedlund, J.; Aurén, M.; Sundström, M.; Dralle, H.; Akerström, G.; Björklund, P.; Westin, G. Aberrant WNT/β-catenin signaling in parathyroid carcinoma. Mol. Cancer 2010, 9, 294. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, S.K.; Mateo, C.M. Rare germline mutations in cyclin-dependent kinase inhibitor genes in multiple endocrine neoplasia type 1 and related states. J. Clin. Endocrinol. Metab. 2009, 94, 1826–1834. [Google Scholar] [CrossRef] [Green Version]
- Starker, L.F.; Svedlund, J.; Udelsman, R.; Dralle, H.; Akerström, G.; Westin, G.; Lifton, R.P.; Björklund, P.; Carling, T. The DNA methylome of benign and malignant parathyroid tumors. Genes Chromosomes Cancer 2011, 50, 735–745. [Google Scholar] [CrossRef]
- Horn, S.; Figl, A.; Rachakonda, P.S.; Fischer, C.; Sucker, A.; Gast, A.; Kadel, S.; Moll, I.; Nagore, E.; Hemminki, K.; et al. TERT promoter mutations in familial and sporadic melanoma. Science 2013, 339, 959–961. [Google Scholar] [CrossRef] [Green Version]
- Condello, V.; Cetani, F.; Denaro, M.; Torregrossa, L.; Pardi, E.; Piaggi, P.; Borsari, S.; Poma, A.M.; Muscarella, L.A.; Graziano, P.; et al. Gene expression profile in metastatic and non-metastatic parathyroid carcinoma. Endocr. Relat. Cancer 2021, 28, 111–134. [Google Scholar] [CrossRef]
- Sulaiman, L.; Juhlin, C.C.; Nilsson, I.L.; Fotouhi, O.; Larsson, C.; Hashemi, J. Global and gene-specific promoter methylation analysis in primary hyperparathyroidism. Epigenetics 2013, 8, 646–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juhlin, C.C.; Kiss, N.B.; Villablanca, A.; Haglund, F.; Nordenström, J.; Höög, A.; Larsson, C. Frequent promoter hypermethylation of the APC and RASSF1A tumour suppressors in parathyroid tumours. PLoS ONE 2010, 5, e9472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svedlund, J.; Koskinen Edblom, S.; Marquez, V.E.; Åkerström, G.; Björklund, P.; Westin, G. Hypermethylated in cancer 1 (HIC1), a tumor suppressor gene epigenetically deregulated in hyperparathyroid tumors by histone H3 lysine modification. J. Clin. Endocrinol. Metab. 2012, 97, E1307–E1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svedlund, J.; Barazeghi, E.; Stålberg, P.; Hellman, P.; Åkerström, G.; Björklund, P.; Westin, G. The histone methyltransferase EZH2, an oncogene common to benign and malignant parathyroid tumors. Endocr. Relat. Cancer 2014, 21, 231–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corbetta, S.; Vaira, V.; Guarnieri, V.; Scillitani, A.; Eller-Vainicher, C.; Ferrero, S.; Vicentini, L.; Chiodini, I.; Bisceglia, M.; Beck-Peccoz, P.; et al. Differential expression of microRNAs in human parathyroid carcinomas compared with normal parathyroid tissue. Endocr. Relat. Cancer 2010, 17, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Rahbari, R.; Holloway, A.K.; He, M.; Khanafshar, E.; Clark, O.H.; Kebebew, E. Identification of differentially expressed microRNA in parathyroid tumors. Ann. Surg. Oncol. 2011, 18, 1158–1165. [Google Scholar] [CrossRef]
- Vaira, V.; Elli, F.; Forno, I.; Guarnieri, V.; Verdelli, C.; Ferrero, S.; Scillitani, A.; Vicentini, L.; Cetani, F.; Mantovani, G.; et al. The microRNA cluster C19MC is deregulated in parathyroid tumours. J. Mol. Endocrinol. 2012, 49, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Verdelli, C.; Forno, I.; Morotti, A.; Creo, P.; Guarnieri, V.; Scillitani, A.; Cetani, F.; Vicentini, L.; Balza, G.; Beretta, E.; et al. The aberrantly expressed miR-372 partly impairs sensitivity to apoptosis in parathyroid tumor cells. Endocr. Relat. Cancer 2018, 25, 761–771. [Google Scholar] [CrossRef] [Green Version]
- Vaira, V.; Faversani, A.; Dohi, T.; Montorsi, M.; Augello, C.; Gatti, S.; Coggi, G.; Altieri, D.C.; Bosari, S. miR-296 regulation of a cell polarity-cell plasticity module controls tumor progression. Oncogene 2012, 31, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Pardini, B.; Sabo, A.A.; Birolo, G.; Calin, G.A. Noncoding RNAs in Extracellular Fluids as Cancer Biomarkers: The New Frontier of Liquid Biopsies. Cancers 2019, 11, 1170. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, A.M.; Chang, H.Y. Long Noncoding RNAs in Cancer Pathways. Cancer Cell 2016, 29, 452–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Hu, Y.; Wang, M.; Zhang, R.; Wang, P.; Cui, M.; Su, Z.; Gao, X.; Liao, Q.; Zhao, Y. Profiling analysis of long non-coding RNA and mRNA in parathyroid carcinoma. Endocr. Relat. Cancer 2019, 26, 163–176. [Google Scholar] [CrossRef]
- Morotti, A.; Forno, I.; Verdelli, C.; Guarnieri, V.; Cetani, F.; Terrasi, A.; Silipigni, R.; Guerneri, S.; Andrè, V.; Scillitani, A.; et al. The Oncosuppressors MEN1 and CDC73 Are Involved in lncRNA Deregulation in Human Parathyroid Tumors. J. Bone Miner. Res. 2020, 35, 2423–2431. [Google Scholar] [CrossRef] [PubMed]
- Samson, J.; Cronin, S.; Dean, K. BC200 (BCYRN1)—The shortest, long, non-coding RNA associated with cancer. Non-Coding RNA Res. 2018, 3, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Morotti, A.; Cetani, F.; Passoni, G.; Borsari, S.; Pardi, E.; Guarnieri, V.; Verdelli, C.; Tavanti, G.S.; Valenti, L.; Bianco, C.; et al. The Long Non-Coding BC200 Is a Novel Circulating Biomarker of Parathyroid Carcinoma. Front. Endocrinol. 2022, 13, 869006. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; You, L.; Ren, X.; Zhao, W.; Liao, Q.; Zhao, Y. Long non-coding RNA PVT1 and cancer. Biochem. Biophys. Res. Commun. 2016, 471, 10–14. [Google Scholar] [CrossRef]
- Ciregia, F.; Cetani, F.; Pardi, E.; Soggiu, A.; Piras, C.; Zallocco, L.; Borsari, S.; Ronci, M.; Caruso, V.; Marcocci, C.; et al. Parathyroid Carcinoma and Adenoma Co-existing in One Patient: Case Report and Comparative Proteomic Analysis. Cancer Genom. Proteom. 2021, 18, 781–796. [Google Scholar] [CrossRef]
- Liu, S.; González-Prieto, R.; Zhang, M.; Geurink, P.P.; Kooij, R.; Iyengar, P.V.; van Dinther, M.; Bos, E.; Zhang, X.; Le Dévédec, S.E.; et al. Deubiquitinase Activity Profiling Identifies UCHL1 as a Candidate Oncoprotein That Promotes TGFβ-Induced Breast Cancer Metastasis. Clin. Cancer Res. 2020, 26, 1460–1473. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zou, L.; Zhou, D.; Zhou, Z.; Tang, F.; Xu, Z.; Liu, X. Overexpression of ubiquitin carboxyl terminal hydrolase-L1 enhances multidrug resistance and invasion/metastasis in breast cancer by activating the MAPK/Erk signaling pathway. Mol. Carcinog. 2016, 55, 1329–1342. [Google Scholar] [CrossRef]
- Luo, Y.; He, J.; Yang, C.; Orange, M.; Ren, X.; Blair, N.; Tan, T.; Yang, J.M.; Zhu, H. UCH-L1 promotes invasion of breast cancer cells through activating Akt signaling pathway. J. Cell. Biochem. 2018, 119, 691–700. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, W.; Xu, J.; Wang, H.; Zhang, Z.; Chu, C.; Liu, X.; Zou, Q. UCH-L1 involved in regulating the degradation of EGFR and promoting malignant properties in drug-resistant breast cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 12500–12508. [Google Scholar] [PubMed]
- Peng, J.M.; Lin, S.H.; Yu, M.C.; Hsieh, S.Y. CLIC1 recruits PIP5K1A/C to induce cell-matrix adhesions for tumor metastasis. J. Clin. Investig. 2021, 131, e133525. [Google Scholar] [CrossRef] [PubMed]
- Lima Queiroz, A.; Zhang, B.; Comstock, D.E.; Hao, Y.; Eriksson, M.; Hydbring, P.; Vakifahmetoglu-Norberg, H.; Norberg, E. miR-126-5p targets Malate Dehydrogenase 1 in non-small cell lung carcinomas. Biochem. Biophys. Res. Commun. 2018, 499, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Hong, S.S.; Zhang, M.; Cai, Q.Q.; Zhang, M.X.; Xu, C.J. Proteomic alterations of fibroblasts induced by ovarian cancer cells reveal potential cancer targets. Neoplasma 2018, 65, 104–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harari, A.; Waring, A.; Fernandez-Ranvier, G.; Hwang, J.; Suh, I.; Mitmaker, E.; Shen, W.; Gosnell, J.; Duh, Q.Y.; Clark, O. Parathyroid carcinoma: A 43-year outcome and survival analysis. J. Clin. Endocrinol. Metab. 2011, 96, 3679–3686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christakis, I.; Silva, A.M.; Williams, M.D.; Garden, A.; Grubbs, E.G.; Busaidy, N.L.; Lee, J.E.; Perrier, N.D.; Zafereo, M. Postoperative local-regional radiation therapy in the treatment of parathyroid carcinoma: The MD Anderson experience of 35 years. Pract. Radiat. Oncol. 2017, 7, e463–e470. [Google Scholar] [CrossRef]
- Cetani, F.; Pardi, E.; Marcocci, C. Update on parathyroid carcinoma. J. Endocrinol. Investig. 2016, 39, 595–606. [Google Scholar] [CrossRef]
- Silverberg, S.J.; Rubin, M.R.; Faiman, C.; Peacock, M.; Shoback, D.M.; Smallridge, R.C.; Schwanauer, L.E.; Olson, K.A.; Klassen, P.; Bilezikian, J.P. Cinacalcet hydrochloride reduces the serum calcium concentration in inoperable parathyroid carcinoma. J. Clin. Endocrinol. Metab. 2007, 92, 3803–3808. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, Y.; Takahashi, S.; Miura, D.; Katagiri, M.; Nakashima, N.; Ohishi, H.; Shimazaki, R.; Tominaga, Y. Cinacalcet hydrochloride relieves hypercalcemia in Japanese patients with parathyroid cancer and intractable primary hyperparathyroidism. J. Bone Miner. Metab. 2017, 35, 616–622. [Google Scholar] [CrossRef]
CDC73 Mutation (cDNA Reference Sequence GenBank Accession Number NM_024529.4) | Gene Site | Type of Mutation | Predicted Effect on the Parafibromin | Reference |
---|---|---|---|---|
Germline mutations | ||||
c.12-31dup | Exon 1 | Frameshift/premature stop codon | p.Tyr11CysfsX17 | [11] |
c.30delG | Exon 1 | Frameshift/premature stop codon | p.Gln10HisfsX11 | [12,13] |
c.32delA | Exon 1 | Frameshift/premature stop codon | p.Tyr11SerfsX10 | [12] |
c.40delC | Exon 1 | Frameshift/premature stop codon | p.Gln14ArgfsX7 | [11] |
c.40C>T | Exon 1 | Nonsense | p.Gln14X | [14] |
c.70G>T | Exon 1 | Nonsense | p.Glu24X | [15] |
c.78delC | Exon 1 | Frameshift variant | p.Ile26fs | [16] |
c.96G>A | Exon 1 | Nonsense | p.Trp32X | [14] |
c.127_128insC | Exon 1 | Frameshift/premature stop codon | p.Trp43SerfsX23 | [17] |
c.126_131+9delinsCT | Intron 1 | Splicing site | Not reported | [18] |
c.176C>T | Exon 2 | Missense | p.Ser59Phe | [19] |
c.226C>T | Exon 2 | Nonsense | p.Arg76X | [20,21] |
c.260_261delGA | Exon 3 | Frameshift/premature stop codon | p.Arg87Lysfs2X | [14,22] |
c.271C>T | Exon 3 | Frameshift/premature stop codon | p.Arg91X | [23] |
c.307+1G>A | Intron 3 | Splicing site | Not reported | [24] |
c.343G>T | Exon 4 | Nonsense | p.Glu115X | [25,26] |
c.355C>T | Exon 4 | Nonsense | p.Gln119X | [16] |
c.356delA | Exon 4 | Frameshift/premature stop codon | p.Gln119ArgfsX14 | [12,13] |
c.375dupA | Exon 5 | Frameshift/premature stop codon | p.Glu130X | [27] |
Not reported | Exon 5 | Frameshift/premature stop codon | p.Lys125_Arg126fs | [13] |
c.376C>T | Exon 5 | Nonsense | p.Arg126X | [28] |
c.415C>T | Exon 5 | Nonsense | p.Arg139X | [26,29,30] |
c.423+1G>A | Intron 5 | Splicing site | Not reported | [31] |
c.496C>T | Exon 6 | Nonsense | p.Gln166X | [16,23,32] |
c.539_544insA | Exon 7 | Frameshift/premature stop codon | p.Ile182AsnfsX10 | [12] |
c.544dup | Exon 7 | Frameshift/premature stop codon | p.Ile182AsnfsX11 | [33] |
c.571delG | Exon 7 | Frameshift/premature stop codon | p.Ala191LeufsX11 | [14] |
c.580A>T | Exon 7 | Nonsense | p.Arg194X | [34] |
c.626_629delAACA | Exon 7 | Frameshift/premature stop codon | p.Lys209Arg.fs217X | [14,22] |
c.664C>T | Exon 7 | Nonsense | p.Arg222X | [13,14,17,27,35] |
c.681insAG | Exon 7 | Frameshift | p.Arg227_Glu228fs | [13] |
c.685A>T | Exon 7 | Nonsense | p.Arg229X | [23] |
c.685_688delAGAG | Exon 7 | Frameshift/premature stop codon | p.Arg229TyrfsX27 | [14,36] |
c.687_688dupAG | Exon 7 | Frameshift/premature stop codon | p.Arg227Lysfs31X | [27,37] |
c.687_688delAG | Exon 7 | Frameshift/premature stop codon | p.Arg229SerfsX37 | [14,22,28,38] |
c.692_693insT | Exon 7 | Frameshift/premature stop codon | p.Trp231CysfsX36 | [19] |
c.700C>T | Exon 7 | Nonsense | p.Arg234X | [26,39] |
c.728+2T>G | Intron 7 | Splicing site | Not reported | [36] |
c.1242delA | Exon 14 | Frameshift | Not reported | [31] |
Deletion of exon 1 | Exon 1 | Gross deletion | Not reported | [40] |
Deletion of exon 1 | Exon 1 | Gross deletion | Not reported | [33] |
Deletion of exons 1–13 | Exons 1–13 | Gross deletion | Not reported | [41] |
Deletion of exons 4–10 | Exons 4–10 | Gross deletion | Not reported | [42] |
Deletion of exon 17 | Exons 17 | Gross deletion | Not reported | [23] |
Deletion of exon 17 | Exons 17 | Gross deletion | Not reported | [43] |
Deletion of the entire CDC73 gene | Exons 1–17 | Gross deletion | Not reported | [36] |
Somatic mutations | ||||
c.13C>T | Exon 1 | Missense | p.Leu5Phe | [38] |
c.13_30del18 | Exon 1 | In-frame deletion | p.Leu5_Gln10del | [44] |
c.16delA | Exon 1 | Frameshift/premature stop codon | p.Ser6AlafsX15 | [13] |
c.23_26delinsTGCG>GTG | Exon 1 | Frameshift/premature stop codon | p.Leu8ArgfsX12 | [17,27] |
c.25C>T | Exon 1 | Nonsense | p.Arg9X | [26,39] |
c.32delA | Exon 1 | Frameshift/premature stop codon | p.Tyr11SerfsX10 | [13] |
c.39delC | Exon 1 | Frameshift | p.Ile13fs | [13] |
c.40delC | Exon 1 | Frameshift/premature stop codon | p.Gln14ArgfsX7 | [27] |
c.42delG | Exon 1 | Frameshift/premature stop codon | p.Gln14fsX20 | [38] |
c.60delG | Exon 1 | Frameshift/premature stop codon | p.Val20ValfsX6 | [26] |
c.64G>T | Exon 1 | Nonsense | p.Gly22X | [26] |
c.70G>T | Exon 1 | Nonsense | p.Glu24X | [17,26,27,29] |
c.82_85del4 | Exon 1 | Frameshift/premature stop codon | p.Gly28SerfsX8 | [17,27] |
c.85delG | Exon 1 | Frameshift/premature stop codon | p.Glu29SerfsX8 | [20,44] |
c.85G>T | Exon 1 | Nonsense | p.Glu29X | [13] |
c.94insTA | Exon 1 | Frameshift/premature stop codon | p.Tyr32fsX37 | [38] |
c.128G>A | Exon 1 | Nonsense | p.Trp43X | [19] |
c.142G>T | Exon 2 | Nonsense | p.Glu48X | [13] |
c.162C>G | Exon 2 | Nonsense | p.Tyr54X | [13,27] |
c.165C>A | Exon 2 | Nonsense | p.Tyr55X | [45] |
c.165delC | Exon 2 | Frameshift | p.Tyr55fs | [12,13,19] |
c.182T>A | Exon 2 | Nonsense | p.Leu61X | [26,29] |
c.195insA | Exon 2 | Frameshift/premature stop codon | p.Asn66LysfsX16 | [39] |
c.195insT | Exon 2 | Frameshift/premature stop codon | p.Asn66X | [26,39] |
c.197dupA | Exon 2 | Frameshift/premature stop codon | p.Asn66X | [26] |
c.248delT | Exon 3 | Frameshift/premature stop codon | p.Ile83IlefsX26 | [26] |
c.284T>C | Exon 3 | Missense | p.Leu95Pro | [12,13] |
c.343G>T | Exon 4 | Nonsense | p.Glu115X | [26] |
c.415C>T | Exon 5 | Nonsense | p.Arg139X | [26] |
c.513-1delG | Intron 6 | Splicing site | Not reported | [45] |
c.520_523delTCTG | Exon 7 | Frameshift/premature stop codon | p.Ser174LysfsX27 | [21,30] |
c.687_688delAG | Exon 7 | Frameshift/premature stop codon | p.Arg229SerfsX37 | [38] |
c.700C>T | Exon 7 | Nonsense | p.Arg234X | [26,46] |
c.736delT | Exon 8 | Frameshift/premature stop codon | p.Ser246ProfsX11 | [17,27] |
c.750delT | Exon 8 | Frameshift/premature stop codon | p.Phe250LeufsX7 | [17] |
c.1230delC | Exon 14 | Frameshift | p.Gln410fs | [13] |
Undetermined mutations * | ||||
c.1A>T | Exon 1 | Missense | p.Met1Leu | [47] |
c.60_69del10 | Exon 1 | Frameshift/premature stop codon | p.Gly22X | [27] |
Not reported | Exon 1 | Frameshift/premature stop codon | p.Val25fs1X | [48] |
c.76delA | Exon 1 | Frameshift/premature stop codon | p.Ile26SerfsX11 | [45] |
Not reported | Exon 1 | Frameshift/premature stop codon | p.Phe27fsX9 | [48] |
c.85G>T | Exon 1 | Nonsense | p.Glu29X | [47,48] |
c.96G>A | Exon 1 | Nonsense | p.Trp32X | [2,47] |
c.128G>A | Exon 1 | Nonsense | p.Trp43X | [48] |
c.131+1G>A | Intron 1 | Splicing site | Not reported | [47] |
Not reported | Exon 2 | Nonsense | p.Arg52X | [48] |
c.157G>T | Exon 2 | Nonsense | p.Glu53X | [47] |
c.162C>G | Exon 2 | Nonsense | p.Tyr54X | [22,45,47] |
c.164A>G | Exon 2 | Missense | p.Tyr55Cys | [2] |
c.165delC | Exon 2 | Frameshift | p.Tyr55fs | [45] |
Not reported | Exon 2 | Nonsense | p.Tyr55X | [2] |
c.237+1G>C | Intron 2 | Splicing site | Not reported | [48] |
c.271C>T | Exon 3 | Frameshift/premature stop codon | p.Arg91X | [47,48] |
c.415C>T | Exon 5 | Nonsense | p.Arg139X | [36] |
Not reported | Exon 7 | Frameshift/premature stop codon | p.Ile182fsX20 | [48] |
c.664C>T | Exon 7 | Nonsense | p.Arg222X | [22] |
c.668delA | Exon 7 | Frameshift/premature stop codon | p.Asp223ValfsX34 | [36] |
Not reported | Exon 7 | Frameshift/premature stop codon | p.Val230fsX28 | [48] |
c.693_694dupG | Exon 7 | Frameshift/premature stop codon | p.Arg232GlufsX35 | [19] |
c.700C>T | Exon 7 | Nonsense | p.Arg234X | [27,47] |
c.704delC | Exon 7 | Frameshift/premature stop codon | p.Thr235LysfsX22 | [36] |
Not reported | Exon 14 | Nonsense | p.Ser389X | [48] |
c.1231delC | Exon 14 | Frameshift/premature stop codon | p.Gln411ArgfsX17 | [27] |
Deletion of exon 1 | Exon 1 | Gross deletion | Not reported | [36] |
Deletion of exons 2–10 | Exons 2–10 | Gross deletion | Not reported | [36] |
Deletion of exon 17 | Exon 17 | Gross deletion | Not reported | [36] |
CDC73 Mutation (cDNA Reference Sequence GenBank Accession Number NM_024529.4) | Gene Site | Type of Mutation | Predicted Effect on the Parafibromin | Reference |
---|---|---|---|---|
Germline mutations | ||||
c.-2insG | 5′-UTR | Regulatory? | Not reported | [49] |
c.-4_-11insG | 5′-UTR | Regulatory? | Not reported | [50] |
c.14_17dupTTAG | Exon 1 | Frameshift/premature stop codon | p.ValfsX7 | [51] |
c.18_46del31 | Exon 1 | Frameshift/premature stop codon | p.Ser6ArgfsX50 | [52] |
c.76delA | Exon 1 | Frameshift/premature stop codon | p.Ile26SerfsX11 | [45,53] |
c.96G>A | Exon 1 | Nonsense | p.Trp32X | [54] |
c.131+1delG | Intron 1 | Splicing site | Not reported | [55] |
c.165C>A | Exon 2 | Nonsense | p.Tyr55X | [56] |
c.165C>G | Exon 2 | Nonsense | p.Tyr55X | [11] |
c.191_192delT | Exon 2 | Frameshift/premature stop codon | p.Leu64LeufsX44 | [57] |
c.226C>T | Exon 2 | Nonsense | p.Arg76X | [58,59] |
c.271C>T | Exon 3 | Frameshift/premature stop codon | p.Arg91X | [36] |
c.276delA | Exon 3 | Frameshift/premature stop codon | p.Asp93IlefsX16 | [49] |
c.306_307+13del | Exon 3 | Frameshift/premature stop codon | p.Ser103AsnfsX5 | [11] |
c.356delA | Exon 4 | Frameshift/premature stop codon | p.Gln119ArgfsX14 | [11] |
c.358C>T | Exon 4 | Nonsense | p.Arg120X | [60] |
c.433_442delinsAGA | Exon 6 | Frameshift/premature stop codon | p.Cys145ArgfsX55 | [49,61] |
c.668_669delAT/insG | Exon 7 | Frameshift/premature stop codon | p.Asp223GlyfsX34 | [62] |
c.687_688dupAG | Exon 7 | Frameshift/premature stop codon | p.Arg227Lysfs31X | [11,63] |
c.700C>T | Exon 7 | Nonsense | p.Arg234X | [53,64] |
c.1346delG | Exon 15 | Frameshift/premature stop codon | p.Gly449ValfsX30 | [53] |
c.1382delT | Exon 15 | Frameshift/premature stop codon | p.Leu460LeufsX18 | [65] |
Deletion of exons 1–10 | Exons 1–10 | Gross deletion | Not reported | [66] |
Deletion of exons 4–10 | Exons 4–10 | Gross deletion | Not reported | [50] |
Somatic mutations | ||||
c.70delG | Exon 1 | Frameshift/premature stop codon | p.Glu24LysfsX2 | Sriphrapradang 2014 |
c.686_689delGAGT | Exon 7 | Frameshift/premature stop codon | p.Arg229AsnfsX27 | [67] |
Undetermined mutations * | ||||
c.238-1G>A | Intron 2 | Splicing site | Not reported | [44,68] |
CDC73 Mutation (cDNA Reference Sequence GenBank Accession Number NM_024529.4) | Gene Site | Type of Mutation | Predicted Effect on the Parafibromin | Reference |
---|---|---|---|---|
Germline mutations | ||||
c.131+1G>A | Intron 1 | Splicing site | Not reported | [62] |
c.191T>C | Exon 2 | Missense | p.Leu64Pro | [45] |
c.307+1G>A | Intron 3 | Splicing site | Not reported | [24] |
c.548delC | Exon 7 | Frameshift | p.Ser195fs | [69] |
Gene | Type of Tumor-Related Gene | Identified Mutation(s) in PC | Encoded Protein | Function of the Encoded Protein (Gene Cards) | Reference |
---|---|---|---|---|---|
AADACL3 | Not reported | Three missense mutations (p.Arg152His, p.Arg186Trp, p.Ala200Thr) | Arylacetamide Deacetylase-Like 3 (AADACL3) | Membrane protein predicted to enable hydrolase activity. | [47] |
ACTB | Not reported | Three missense mutations (p.Cys17Tyr, p.Glu117Gln, p.Arg372His) | Actin Beta (ACTB) | This gene encodes one of six different actin proteins of the cytoskeleton, involved in cell motility, structure, integrity, and intercellular signaling | [47] |
ADCK1 | Proto-oncogene? | A recurrent heterozygote missense mutation (p.Ile482Met) | AarF Domain-Containing Kinase 1 (ADCK1) | Protein kinase? | [13] |
AKAP9 | TSG | Five missense mutations (p.Ser94Thr, p.Met159Ile, p.Glu341Val, p.Arg649Gln, p.Val1595Leu)) One nonsense mutation (p.Gln3379X) | A-Kinase Anchoring Protein 9 (AKAP9) | Binding protein to the regulatory subunit of protein kinase A, participating in multiple signal transduction pathways | [2,13,47] |
ARID2 | TSG | One inactivating truncating mutation (p.Gln1403X) | AT-Rich Interaction Domain 2 (ARID2) | DNA-binding protein, involved in transcriptional activation and repression of select genes by chromatin remodeling | [13] |
ARID4A | Not reported | One frameshift indel (p.Lys512fs) | AT-Rich Interaction Domain 4A (ARID4A) | Bridging protein, recruiting histone deacetylases and regulating chromatin remodeling | [13] |
ARID1B | Not reported | One missense mutation (p.Met910Lys) | AT-Rich Interaction Domain 1B (ARID1B) | Component of the SWI/SNF chromatin remodeling complex that may play a role in cell cycle activation | [2] |
ATM | Not reported | One missense mutation (p.Ser1691Arg) One nonsense mutation (p.Leu1327X) | ATM Serine/Threonine Kinase (ATM) | Cell cycle checkpoint kinase | [2,59] |
BRAF | Proto-oncogene | One missense mutation (p.Gly496Ala) | B-Raf Proto-Oncogene, Serine/Threonine Kinase (BRAF) | Serine/threonine protein kinase, playing a role in regulating the MAP kinase/ERK signaling pathway, which affects cell division, differentiation, and secretion | [2] |
BRCA2 | TSG | One missense mutation (p.Ser3133Leu) | BRCA2 DNA Repair Associated (BRCA2) | Protein involved in the maintenance of genome stability, specifically the homologous recombination pathway for double-strand DNA break repair. | [2] |
CCDC74A | Not reported | Two nonsense mutations (p.Gly230Ser *, p.Ser243Pro) | Coiled-Coil Domain-Containing 74A (CCDC47A) | Microtubule-associated protein | [47] |
CENPF | Not reported | Two nonsense mutations (p.Ser1780X, p.Arg3094X) | Centromere Protein F (CENPF) | Component of the nuclear centromere–kinetochore complex, playing a role in chromosome segregation during mitosis | [2] |
DCC | TSG | One missense mutation (p.Ser932Arg) | Netrin 1 Receptor (NTN1R1) | Transmembrane protein involved in cell adhesion | [59] |
DDX11 | Not reported | Three missense mutations (p.Arg186Trp, p.Gly345Arg, p.Pro798Val) | DEAD/H-Box Helicase 11 (DDX11) | Double-strand DNA helicase involved in DNA replication, DNA repair, heterochromatin organization, and ribosomal RNA synthesis | [47] |
DFNB31 (WHRN) | Not reported | Two missense mutations (p.Met1Ile, p.Gly68Asp) One missense mutation (p.Ser12X) | Whirlin (WHRN) | Suspected to be involved in actin cystoskeletal assembly and stereocilia elongation and maintenance | [47] |
EP300 | Not reported | Two missense mutations (p.Gly1778Arg, p.Ile1786Val) One nonsense mutation (p.Arg1645X) One splicing site mutation (4779+1G>A) | E1A-Binding Protein P300 | Histone acetyltransferase that regulates transcription via chromatin remodeling, important for regulating cell proliferation and differentiation | [48,59] |
EPHB4 | Not reported | One missense mutation (p.Glu733Gly) | EPH Receptor B4 (EPHB4) | Tyrosine kinase receptor for ephrins with an essential role in vascular development | [59] |
ERBB4 | Not reported | One nonsense mutation (p.Glu1260X) | Erb-B2 Receptor Tyrosine Kinase 4 (ERBB4) | Transmembrane tyrosine kinase receptor involved in regulation of cell mitogenesis and differentiation | [2] |
ERC1 | Not reported | Two missense mutations (p.Asn266Ser, p.Ser969Tyr) | ELKS/RAB6-Interacting/CAST Family Member 1 (ERC1) | Regulatory component of the Nf-kB signaling pathway | [2] |
FAM20A | Not reported | One nonsense mutation (p.Tyr414X) | FAM20A Golgi Associated Secretory Pathway Pseudokinase (FAM20A) | Pseudokinase acting as an allosteric activator of the Golgi serine/threonine protein kinase FAM20C, involved in the regulation of biomineralization | [47] |
FANCL | Not reported | One missense mutation (p.Leu254Val) | FA Complementation Group L (FANCL) | Ubiquitin ligase involved in DNA repair | [2] |
FAT3 | TSG | Two homozygote inactivating nonsense mutations (p.Tyr293X, p.Leu126X) Four missense mutations (p.Pro996Ser, p.Glu2064Lys, p.Gly427Ser, p.Thr1483Met) | FAT Atypical Cadherin 3 (FAT3) | Predicted to be involved in cell–cell adhesion | [13] |
FCGR2A | Not reported | One missense mutation (p.His167Arg) One splicing site mutation (not reported) | Fc Gamma Receptor IIa (FCGR2A) | Immunoglobulin Fc receptor expressed on the membrane of macrophages and neutrophils, involved in the process of phagocytosis of immucomplexes | [47] |
FEV | Proto-oncogene | Two missense mutations (p.Met181Leu, p.Trp195Gly) | FEV Transcription Factor | Transcription factor exclusively expressed in in neurons of the central serotonin system | [47] |
FLG2 | Not reported | Three missese mutations (p.Ala818Ser, p.Ser2118Tyr, p.Ala2083Gly) | Filaggrin 2 (FLG2) | Protein involved in epithelial homeostasis, essential for normal cell–cell adhesion in the cornified cell layers | [47] |
GLI3 | Not reported | One nonsense mutation (p.Glu710X) | GLI Family Zinc Finger 3 (GLI3) | DNA-binding transcription factor, mediator of Sonic hedgehog (Shh) signaling pathway | [2] |
GRIN3A | Not reported | Two missense mutations (p.Glu771Gln, p.Asp1073Ile **) | Glutamate Ionotropic Receptor NMDA Type Subunit 3A (GRIN3A) | Subunit of the N-methyl-D-aspartate (NMDA) receptors, involved in physiological and pathological processes in the central nervous system | [47] |
GUCY1A2 | Not reported | One missense mutation (p.Ala257Thr) | Guanylate Cyclase 1 Soluble Subunit Alpha 2 (GUCY1A2) | Component of a soluble guanylate cyclase that that catalyze the conversion of GTP to 3′,5′-cyclic GMP and pyrophosphate | [59] |
HLA-A | Not reported | Two missense mutations (p.Gly80Arg ***, p.Lys292Glu) | Major Histocompatibility Complex, Class I, A (HLA-A) | Member of the antigen-presenting major histocompatibility complex class IA for the for recognition by alpha-beta T cell receptor | [47] |
HLA-B | Not reported | Two missense mutations (p.Arg180Trp *, p.Tyr140Ser) | Major Histocompatibility Complex, Class I, B (HLA-B) | Member of the antigen-presenting major histocompatibility complex class IB for the for recognition by alpha-beta T cell receptor | [47] |
HLA-C | Not reported | Three missense mutations (p.Asn104Lys, p.Ser101Asn, p.Arg121Trp) | Major Histocompatibility Complex, Class I, C (HLA-C) | Member of the antigen-presenting major histocompatibility complex class IC for the for recognition by alpha-beta T cell receptor | [47] |
IL9R | Not reported | One missense mutation (p.Asn439Ser) One splicing site mutation (not reported) | Interleukin 9 Receptor (IL9R) | Receptor that specifically mediates the biological effects of interleukin 9, such as immune response against parasites | [47] |
JMJD1C | TSG | One in-frame deletion (p.Lys593_Ser601del) | Jumonji Domain-Containing 1C (JMJD1C) | Histone demethylase, regulating chromatin remodeling | [13] |
KDM4C | Not reported | One missense mutation (p.Arg919Lys) | Lysine Demethylase 4C (KDM4C) | Histone demethylase of lysine residues, regulating chromatin remodeling | [13] |
KDM4E | Not reported | One missense mutation (p.Arg100His) | Lysine Demethylase 4E (KDM4E) | Histone demethylase of lysine residues, regulating chromatin remodeling | [13] |
KDM5A | Not reported | One missense mutation (p.Ser1403Phe) | Lysine Demethylase 5A (KDM5A) | Histone demethylase of lysine residues, regulating chromatin remodeling | [48] |
KDM5C | Not reported | Two missense mutations (p.Gly536Arg, p.Leu1549Val) Two nonsense mutations (p.Arg694X, p.Glu1475X9 | Lysine Demethylase 5C (KDM5C) | Histone demethylase of lysine residues, regulating chromatin remodeling | [2,13,48] |
KDM6A | Not reported | One missense mutation (p.Leu617Val) | Lysine Demethylase 6A (KDM6A) | Histone demethylase of lysine residues, regulating chromatin remodeling | [59] |
KDR | Not reported | One missense mutation (p.Thr688Lys) One gene amplification | Kinase Insert Domain Receptor (KDR or VGRF2) | Tyrosine protein kinase that acts as a cell surface receptor for vascular endothelial growth factor (VEGFs), regulating angiogenesis | [48] |
KIAA1549 | Not reported | One missense mutation (p.Ala905Thr) One nonsense mutation (p.Trp1853X) | KIAA1549 | Suspected to be involved in the regulation of oncogenic MAPK signaling | [2] |
KMT2B | Not reported | One missense mutation (p.Arg1771Gln) | Lysine Methyltransferase 2B (KMT2B) | Histone methylase on lysine residues, regulating chromatin remodeling | [2] |
KMT2C | Not reported | Two missense mutations (p.Leu3483Ser, p.Arg4523Ser) | Lysine Methyltransferase 2C (KMT2C) | Histone methylase on lysine residues, regulating chromatin remodeling | [2] |
KMT2D | Not reported | Two missense mutations (p.Pro610Ala, p.Arg2830Gln) | Lysine Methyltransferase 2D (KMT2D) | Histone methylase on lysine residues, regulating chromatin remodeling | [2] |
LATS2 | TSG | Two missense mutations (p.Ala428Thr, p.Lys793Met) | Large Tumor Suppressor Kinase 2 | Serine/threonine protein kinase acting as regulator of YAP1 in the Hippo signaling pathway that plays a pivotal role in tumor suppression by restricting cell proliferation and promoting apoptosis | [2] |
MAF | Proto-oncogene | Two missense mutations (p.Glu115Gln, p.His185Pro) | MAF BZIP Transcription Factor (MAF) | DNA-binding, leucine zipper-containing transcription factor, acting both as a transcriptional activator and repressor. | [47] |
MAGI1 | Not reported | One missense mutation (p. Glu1021Lys) | Membrane-Associated Guanylate Kinase, WW And PDZ Domain-Containing 1 (MAGI1) | Member of the membrane-associated guanylate kinase homologue that may play a role as scaffolding protein at cell-cell junctions | [59] |
MAP1B | Not reported | Two missense mutations (p.Val1549Gly, p.Phe1838Leu) | Microtubule-Associated Protein 1B (MAP1B) | Microtubule-associated protein. Phosphorylated MAP1B may play a role in the cytoskeletal changes | [47] |
MSH2 | Not reported | One nonsense mutation (p.Gln545X) | MutS Homolog 2 (MSH2) | Component of the post-replicative DNA mismatch repair system | [2] |
NCOR1 | Not reported | Two missense mutations (p.Gln469Glu, p.Arg1129Gln) | Nuclear Receptor Corepressor 1 (NCOR1) | Mediator of transcriptional repression of thyroid hormone and retinoic acid receptors by promoting chromatin condensation | [47] |
NEB | Six missense mutations (p.Val150Ile, p.Tyr773Cys, p.Ile2239Met, p.Val2751Ile, p.Lys3099Asn, p.Phe5555Leu, p.Asp5633Ile) One splicing site mutation (not reported) | Nebulin (NEB) | Giant protein component of the cytoskeletal matrix of cells of the skeletal muscle | [47] | |
NF1 | TSG | Two nonsense mutations (p.Gly751X, p.Arg1748X) One frameshift mutation (p.Leu134fsX21) | Neurofibromin 1 (NF1) | Negative regulator of the ras signal transduction pathway | [2,48,59] |
NOTCH1 | TSG | One missense mutation (p.Thr194Pro) One inactivating nonsense mutation (Gln439X) | Notch Receptor 1 (NOTCH1) | Receptor involved in the Notch signaling pathway that regulates cell fate specification, differentiation, proliferation, and survival | [13] |
NRCAM | Not reported | Two missense mutations (p.Agr875Gln #, p.Asn1115Ser #) | Neuronal Cell Adhesion Molecule (NRCAM) | Ankyrin-binding protein involved in neuron–neuron adhesion and suspected also to play a general role in cell–cell communication via signaling from its intracellular domain to the actin cytoskeleton, during directional cell migration | [47] |
NT5C1B-RDH14 | Not reported | Two missense mutations (p.Arg146Gln, p.Glu221Gln) | NT5C1B-RDH14 Read-Through Transcript | Naturally occurring fusion protein, sharing sequence identity with the products of NT5C1B and RDH14 neighboring gene, presumably involved in the metabolism of nucleotides | [47] |
NUP107 | Not reported | Two missense mutations (p.Ser167Leu, p.Leu301met) | Nucleoporin 107 (NUP107) | Essential component of the nuclear pore complex that regulates in and out transport of all molecules to and from the nucleus | [2] |
PDE4DIP | Not reported | Eight missense mutations (p.Pro30Ser, p.Pro50Leu, p.Pro155Arg *, p.Ala435Thr *, p.Asp759His, p.Gln1989Lys, p.Pro2355His, p.Lys2288Gln *) | Phosphodiesterase 4D Interacting Protein (PDE4DIP) | Protein acting as an anchor of phosphodiesterase 4D to the Golgi/centrosome region of the cell, participating in microtubule dynamics and assembly, responsible for polarized cell movement | [47] |
PDPR | Not reported | One missense mutation (p.Thr29Ala *) | Pyruvate Dehydrogenase Phosphatase Regulatory Subunit (PDPR) | Regulatory subunit of the pyruvate dehydrogenase complex that catalyzes the oxidative decarboxylation of pyruvate during the glycolysis-related fatty acid synthesis | [47] |
POLR2E | Not reported | One missense mutation (p.Ala102Val) | RNA Polymerase II, I And III Subunit E (POLR2E) | Subunit E of the RNA polymerase II, responsible for synthesizing messenger RNA | [2] |
POLR2L | Not reported | One missense mutation (p.Ala34Thr) | RNA Polymerase II, I And III Subunit L (POLR2L) | Subunit L of the RNA polymerase II, responsible for synthesizing messenger RNA | [2] |
POT1 | Not reported | One missense mutation (p.Gln256Arg) | Protection Of Telomeres 1 (POT1) | Nuclear protein, member of a multi-protein complex that binds to the TTAGGG repeats of telomeres, regulating telomere length and protecting chromosome ends from recombination and chromosome instability | [59] |
PPP2R5D | Not reported | One missense mutation (p.Ile172Met #) One nonsense mutation (p.Gln51X #) | Protein Phosphatase 2 Regulatory Subunit B’Delta (PPP2R5D) | Regulatory subunit B of a Serine/Threonine phosphatase 2A, implicated in the negative control of cell growth and division | [47] |
PRKAR1A | Not reported | One missense mutation (p.Glu189Asp) | Protein Kinase CAMP-Dependent Type I Regulatory Subunit Alpha (PRKAR1A) | Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP-mediated signaling in cells | [28] |
PSMC3IP | Not reported | One nonsense mutation (p.Lys116X) | PSMC3 Interacting Protein (PSMC3IP) | Subunit of the PSMC3IP/MND1 complex, playing an important role in meiotic recombination | [2] |
PTPRB | Not reported | One missense mutation (p.Arg1754Trp) | Protein Tyrosine Phosphatase Receptor Type B (PTPRB) | Protein tyrosine phosphatase, playing an important role in blood vessel remodeling and angiogenesis | [2] |
RAD50 | Not reported | Two missense mutations (p.Ile1227Met, p.Ser1244Cys) | RAD50 Double-Strand Break Repair Protein (RAD50) | Component of the MRN complex, involved in DNA double-strand break repair | [2] |
RANBP9 | Proto-oncogene? | Two missense mutations (p.Pro10Gln, p.Glu58Asp) | RAN-Binding Protein 9 (RANBP9) | Scaffold protein binding the RAN small GTP-binding protein, presumably acting as adapter protein to couple membrane receptors to intracellular signaling pathways | [47] |
RFC5 | Not reported | One missense mutation (p.Arg215Thr) | Replication Factor C Subunit 5 (RFC5) | Subunit 5 of the replication factor C complex, required for DNA replication | [2] |
RNASEL | Not reported | One missense mutation (p.Ile1221Thr) | Ribonuclease L (RNASEL) | Component of the interferon-regulated 2–5A system with antiviral and antiproliferative function | [59] |
SETD1B | TSG | One inactivating missense mutation (p.Ser1128Leu) | SET Domain Containing 1B, Histone Lysine Methyltransferase (SETD1B) | Histone methyltransferase, regulating chromatin remodeling | [13] |
SUN2 | Not reported | One missense mutation (p.Trp582Cys) | SUN Domain-Containing Protein 2 (SUN2) | Component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex, involved in the connection between the nuclear lamina and the cytoskeleton | [2] |
SYCP2 | Not reported | One missense mutation (p.Pro495Leu) | Synaptonemal Complex Protein 2 (SYCP2) | Major component of the axial/lateral elements of synaptonemal complexes that links homologous chromosomes during the prophase of meiosis | [2] |
SYNE1 | Not reported | Two missense mutations (p.Ile3456Met, p.Glu5956Gly) | Spectrin Repeat Containing Nuclear Envelope Protein 1 (SYNE1) | Spectrin repeat containing protein, which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization | [2] |
TJP2 | Not reported | Two missense mutations (p.Arg24His, p.Glu1003His) | Tight Junction Protein 2 (TJP2) | Component of the tight junction barrier in epithelial and endothelial cells | [47] |
TP53 | TSG | Seven missense mutations (p.Lys132Asn, p.Arg181Cys, p.Arg248Trp, p.Arg273His, p.Arg283Cys, p.Gly334Trp, p.Arg337His) Four nonsense mutations (p.Glu51X, p.Arg342X, p.Gln375X, p.Arg306X) One splicing site mutation (783-1G>A) | Tumor Protein P53 (TP53) | Transcriptional regulator that, in response to cellular stress, regulates transcription of target genes inducing cell cycle arrest, apoptosis, senescence, DNA repair, or changes in metabolism. | [2,48,59] |
TRIO | Not reported | Two missense mutations (p.Pro67Ser, p.Asp2095His) | Trio Rho Guanine Nucleotide Exchange Factor (TRIO) | GDP to GTP exchange factor for GTPases, promoting the reorganization of the actin cytoskeleton and playing a role in cell migration and growth | [47] |
TTK | Not reported | Two missense mutations (p.Ser108Thr, p.Glu361Lys) | Phosphotyrosine Picked Threonine Kinase (TTK) | Mitotic kinase able to phosphorylate proteins on serine, threonine, and tyrosine, essential for chromosome alignment at the centromere during mitosis and for centrosome duplication | [47] |
TXNDC2 | Not reported | (p.Ser147Gly, p.Ala225Pro, p.Ser237Gly *) | Thioredoxin Domain Containing 2 (TXNDC2) | Enzymatic domain with thioredoxin-disulfide reductase activity, involved in cell differentiation and cellular oxidant detoxification | [47] |
VCAN | Not reported | Two missense mutations (p.Pro2996Thr, p.Gly3102Ser) | Versican | Large chondroitin sulfate proteoglycan, a major component of the extracellular matrix, involved in cell adhesion, proliferation, proliferation, migration, and angiogenesis | [2] |
XAB2 | Not reported | One missense mutation (p.Asp253Asn) | XPA-Binding Protein 2 (XAB2) | Component of the spliceosome, involved in the splicing process of mRNA | [47] |
ZEB1 | Proto-oncogene? | Three activating missense mutations (p.Gln467Glu, p.Gly956Ala, p.Glu244Lys) | Zinc Finger E-Box Binding Homeobox 1 (ZEB1) | Transcriptional repressor that mediates tumor invasion and metastasis by promoting ephitelial-mesenchymal transition | [13] |
ZNF417 | Not reported | (p.Arg322Gly * #, p.Tyr329Cys #, (p.Gln343X) | Zinc Finger Protein 417 (ZNF417) | Zinc finger protein predicted to be involved in regulation of transcription by RNA polymerase II. | [47] |
miRNA [Reference] | Known Target Gene(s) | Biological Activity of the Targeted Gene(s) | Effect of miRNA Altered Expression in Parathyroid Function, Parathyroid Tumorigenesis, and/or PC [Reference] |
---|---|---|---|
Down-regulated miRNAs in PC | |||
miR-26b [86] | MYCBP | Encoding the MYC-binding protein (MYCBP) that binds to the oncogenic protein c-MYC, enhancing the ability of c-MYC to activate E box-dependent transcription, increasing cell mobility | No studies available |
miR-30b [86] | TRIM27 | Encoding the tripartite motif-containing 27 protein (TRIM27) that activates the PI3K/Akt signaling pathway | No studies available |
miR-126-5p [86] | ADAM9 | Encoding the ADAM Metallopeptidase domain 9 (ADAM9) that cleaves and releases a number of molecules with important roles in tumorigenesis and angiogenesis. Suspected to mediate cell–cell, cell–matrix interactions and regulate the motility of cells via interactions with integrins | No studies available |
CRK (proto-oncogene) | Encoding the CRK adaptor protein that binds to several tyrosine-phosphorylated proteins and is involved in regulating cell adhesion, spreading, and migration | ||
EGFL7 | Encoding the epidermal growth factor-like protein 7 (EGFL7) involved in cell migration and angiogenesis | ||
HOXA9 | Encoding the Homeobox A9 (HOXA9) transcription factor involved in embryonic development, morphogenesis, and cell differentiation. Positive regulator of the eukaryotic translation initiation factor 4E (EIF4E) that promotes protein translation initiation | ||
IRS1 | Encoding the insulin receptor substrate 1 (IRS1), an intracellular signaling adaptor protein that integrates and coordinates numerous biologically key extracellular signals within the cell | ||
KRAS
(proto-oncogene) | Encoding the KRAS GTPase that activates the RAS/MAPK pathway inducing cell proliferation. | ||
PI3K | Encoding the Phosphatidylinositol 3-Kinase (PI3K) that activates the PI3K-Akt pathway in response to a variety of growth factors, leading to cell proliferation | ||
SLC7A5 (LAT1) | Encoding the SLC7A5 membrane protein of the intracellular organelles that acts as a neutral amino acid transporter | ||
SOX2 | Encoding the SRY-box transcription factor 2 (SOX2), involved in the regulation of embryonic development and in the determination of cell fate, required for pluripotent stem-cell maintenance | ||
VEGF | Encoding the vascular endothelial growth factor (VEGF), a growth factor that induces proliferation and migration of vascular endothelial cells, essential for both physiological and pathological angiogenesis | ||
miR-296-5p [85] | HGS | Encoding the Hepatocyte growth factor-regulated Tyrosine kinase substrate that negatively regulates signal transduction mediated by cytokines and growth factors by inducing internalization and degradation of membrane receptors by lysosomes. | In human PC samples, miR-296-5p down-regulation resulted in increased HGS mRNA levels and in an immunostaining-detected dramatic over-expression of HSG [85]. |
Up-regulated miRNAs in PC | |||
miR-517C [87] | Not known | n.a. | Up-regulated miR-517C positively correlated in vivo with serum calcium and PTH levels, and with parathyroid tumor weight [87]. |
miR-371 [87] |
PTEN (tumor suppressor) | Encoding the Phosphatidylinositol 3,4,5-Trisphosphate 3-Phosphatase protein (PTEN) that negatively regulates the AKT/PKB signaling pathway | No studies available |
miR-372 [87] |
CDKN1A
(tumor suppressor) | Encoding the p21cyp1 cyclin-dependent kinase inhibitor that inhibits the complex CDK2/CDK4, acting as a negative regulator of cell cycle progression at G1 | miR-372 over-expression in parathyroid tumor cells increased PTH mRNA levels, and it positively correlated in vivo with circulating PTH levels. In parathyroid tumor cell miR-372 repressed the Wnt canonical pathway through the up-regulation of the Wnt antagonist DKK1 [88]. |
LATS2
(tumor suppressor) | Encoding the large tumor suppressor kinase 2 (LATS2) that plays a critical role in centrosome duplication, maintenance of mitotic fidelity, and genomic stability, negatively regulates G1/S transition by down-regulating cyclin E/CDK2 kinase activity, and acts as negative regulator of YAP1 in the Hippo signaling pathway restricting cell proliferation and promoting apoptosis | ||
miR-222 [85] |
CDKN1B
(tumor suppressor) | Encoding the p27kyp1 cyclin-dependent kinase inhibitor that inhibits the complex CDK2/CDK4, acting as a negative regulator of cell cycle progression at G1 | In human PC samples, the up-regulation of miR-222 resulted in an almost complete loss of expression and nuclear localization of the p27kyp1 protein [85]. |
miR-503 [85] | CCND1 | Encoding the cyclin D1, a positive regulator of cell cycle that promotes the G1 to S phase transition through activation of CDK4 and CDK6 | In human PC samples with up-regulation of miR-503, cyclin D1 displayed a heterogeneous immunoreactivity [85]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marini, F.; Giusti, F.; Palmini, G.; Aurilia, C.; Donati, S.; Brandi, M.L. Parathyroid Carcinoma: Update on Pathogenesis and Therapy. Endocrines 2023, 4, 205-235. https://doi.org/10.3390/endocrines4010018
Marini F, Giusti F, Palmini G, Aurilia C, Donati S, Brandi ML. Parathyroid Carcinoma: Update on Pathogenesis and Therapy. Endocrines. 2023; 4(1):205-235. https://doi.org/10.3390/endocrines4010018
Chicago/Turabian StyleMarini, Francesca, Francesca Giusti, Gaia Palmini, Cinzia Aurilia, Simone Donati, and Maria Luisa Brandi. 2023. "Parathyroid Carcinoma: Update on Pathogenesis and Therapy" Endocrines 4, no. 1: 205-235. https://doi.org/10.3390/endocrines4010018
APA StyleMarini, F., Giusti, F., Palmini, G., Aurilia, C., Donati, S., & Brandi, M. L. (2023). Parathyroid Carcinoma: Update on Pathogenesis and Therapy. Endocrines, 4(1), 205-235. https://doi.org/10.3390/endocrines4010018