Updates of Genomics and Proteomics of Parathyroid Carcinoma
Abstract
:1. Introduction
2. Genetics of PC
2.1. CDC73
2.2. PRUNE2 Gene
2.3. CCND1 Gene
2.4. MEN1 Gene
2.5. PI3K/AKT/mTOR Pathway-Related Genes
2.6. Wnt Signaling Pathway-Related Genes
2.7. Other Mutations
3. Proteomics of PC
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, P.K.; Jarosek, S.L.; Virnig, B.A.; Evasovich, M.; Tuttle, T.M. Trends in the incidence and treatment of parathyroid cancer in the United States. Cancer 2007, 109, 1736–1741. [Google Scholar] [CrossRef]
- Ryhänen, E.M.; Leijon, H.; Metso, S.; Eloranta, E.; Korsoff, P.; Ahtiainen, P.; Kekäläinen, P.; Tamminen, M.; Ristamäki, R.; Knutar, O.; et al. A nationwide study on parathyroid carcinoma. Acta Oncol. 2017, 56, 991–1003. [Google Scholar] [CrossRef] [Green Version]
- Kong, S.H.; Kim, J.H.; Park, M.Y.; Kim, S.W.; Shin, C.S. Epidemiology and prognosis of parathyroid carcinoma: Real-world data using nationwide cohort. J. Cancer Res. Clin. Oncol. 2021, 147, 3091–3097. [Google Scholar] [CrossRef]
- Cetani, F.; Pardi, E.; Marcocci, C. Update on parathyroid carcinoma. J. Endocrinol. Investig. 2016, 39, 595–606. [Google Scholar] [CrossRef]
- Erickson, L.A.; Mete, O.; Juhlin, C.C.; Perren, A.; Gill, A.J. Overview of the 2022 WHO Classification of Parathyroid Tumors. Endocr. Pathol. 2022, 33, 64–89. [Google Scholar] [CrossRef]
- Sharretts, J.M.; Kebebew, E.; Simonds, W.F. Parathyroid cancer. Semin. Oncol. 2010, 37, 580–590. [Google Scholar] [CrossRef]
- Kang, H.; Pettinga, D.; Schubert, A.D.; Ladenson, P.W.; Ball, D.W.; Chung, J.H.; Schrock, A.B.; Madison, R.; Frampton, G.M.; Stephens, P.J.; et al. Genomic Profiling of Parathyroid Carcinoma Reveals Genomic Alterations Suggesting Benefit from Therapy. Oncologist 2019, 24, 791–797. [Google Scholar] [CrossRef] [Green Version]
- Kasaian, K.; Wiseman, S.M.; Thiessen, N.; Mungall, K.L.; Corbett, R.D.; Qian, J.Q.; Nip, K.M.; He, A.; Tse, K.; Chuah, E.; et al. Complete genomic landscape of a recurring sporadic parathyroid carcinoma. J. Pathol. 2013, 230, 249–260. [Google Scholar] [CrossRef]
- Pandya, C.; Uzilov, A.V.; Bellizzi, J.; Lau, C.Y.; Moe, A.S.; Strahl, M.; Hamou, W.; Newman, L.C.; Fink, M.Y.; Antipin, Y.; et al. Genomic profiling reveals mutational landscape in parathyroid carcinomas. JCI Insight 2017, 2, e92061. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; McPherson, J.R.; Stevenson, M.; van Eijk, R.; Heng, H.L.; Newey, P.; Gan, A.; Ruano, D.; Huang, D.; Poon, S.L.; et al. Whole-exome sequencing studies of parathyroid carcinomas reveal novel PRUNE2 mutations, distinctive mutational spectra related to APOBEC-catalyzed DNA mutagenesis and mutational enrichment in kinases associated with cell migration and invasion. J. Clin. Endocrinol. Metab. 2015, 100, E360–E364. [Google Scholar] [CrossRef]
- Cristina, E.-V.; Alberto, F. Management of familial hyperparathyroidism syndromes: MEN1, MEN2, MEN4, HPT-Jaw tumour, Familial isolated hyperparathyroidism, FHH, and neonatal severe hyperparathyroidism. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 861–875. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Adikaram, P.R.; Welch, J.; Guan, B.; Weinstein, L.S.; Chen, H.; Simonds, W.F. Genotype of CDC73 germline mutation determines risk of parathyroid cancer. Endocr.-Relat. Cancer 2020, 27, 483–494. [Google Scholar] [CrossRef]
- Marcocci, C.; Cetani, F.; Rubin, M.R.; Silverberg, S.J.; Pinchera, A.; Bilezikian, J.P. Parathyroid carcinoma. J. Bone Miner. Res. 2008, 23, 1869–1880. [Google Scholar] [CrossRef]
- Uljanovs, R.; Sinkarevs, S.; Strumfs, B.; Vidusa, L.; Merkurjeva, K.; Strumfa, I. Immunohistochemical Profile of Parathyroid Tumours: A Comprehensive Review. Int. J. Mol. Sci. 2022, 23, 6981. [Google Scholar] [CrossRef]
- Gill, A.J.; Lim, G.; Cheung, V.K.Y.; Andrici, J.; Perry-Keene, J.L.; Paik, J.; Sioson, L.; Clarkson, A.; Sheen, A.; Luxford, C.; et al. Parafibromin-deficient (HPT-JT Type, CDC73 Mutated) Parathyroid Tumors Demonstrate Distinctive Morphologic Features. Am. J. Surg. Pathol. 2019, 43, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Kutahyalioglu, M.; Nguyen, H.T.; Kwatampora, L.; Clarke, C.; Silva, A.; Ibrahim, E.; Waguespack, S.G.; Cabanillas, M.E.; Jimenez, C.; Hu, M.I.; et al. Genetic profiling as a clinical tool in advanced parathyroid carcinoma. J. Cancer Res. Clin. Oncol. 2019, 145, 1977–1986. [Google Scholar] [CrossRef]
- Cardoso, L.; Stevenson, M.; Thakker, R.V. Molecular genetics of syndromic and non-syndromic forms of parathyroid carcinoma. Hum. Mutat. 2017, 38, 1621–1648. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, K.M.; Sharma, P.K.; Samowitz, W.; Hobbs, M. Aberrant methylation of the HRPT2 gene in parathyroid carcinoma. Ann. Otol. Rhinol. Laryngol. 2007, 116, 928–933. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, X.; Wang, O.; Bi, Y.; Xing, X.; Cui, M.; Wang, M.; Tao, W.; Liao, Q.; Zhao, Y. The genomic profile of parathyroid carcinoma based on whole-genome sequencing. Int. J. Cancer 2020, 147, 2446–2457. [Google Scholar] [CrossRef]
- Newey, P.J.; Bowl, M.R.; Thakker, R.V. Parafibromin--functional insights. J. Intern. Med. 2009, 266, 84–98. [Google Scholar] [CrossRef]
- Woodard, G.E.; Lin, L.; Zhang, J.H.; Agarwal, S.K.; Marx, S.J.; Simonds, W.F. Parafibromin, product of the hyperparathyroidism-jaw tumor syndrome gene HRPT2, regulates cyclin D1/PRAD1 expression. Oncogene 2005, 24, 1272–1276. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Kong, D.; Tan, M.H.; Pappas, D.L., Jr.; Wang, P.F.; Chen, J.; Farber, L.; Zhang, N.; Koo, H.M.; Weinreich, M.; et al. Parafibromin inhibits cancer cell growth and causes G1 phase arrest. Biochem. Biophys. Res. Commun. 2006, 350, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.K.; Simonds, W.F.; Marx, S.J. The parafibromin tumor suppressor protein interacts with actin-binding proteins actinin-2 and actinin-3. Mol. Cancer 2008, 7, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeLellis, R.A. Parathyroid tumors and related disorders. Mod. Pathol. 2011, 24, S78–S93. [Google Scholar] [CrossRef] [Green Version]
- Forsberg, L.; Björck, E.; Hashemi, J.; Zedenius, J.; Höög, A.; Farnebo, L.O.; Reimers, M.; Larsson, C. Distinction in gene expression profiles demonstrated in parathyroid adenomas by high-density oligoarray technology. Eur. J. Endocrinol. 2005, 152, 459–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Sun, L.H.; Liu, D.M.; He, X.Y.; Tao, B.; Ning, G.; Liu, J.M.; Zhao, H.Y. Copy number variation in CCND1 gene is implicated in the pathogenesis of sporadic parathyroid carcinoma. World J. Surg. 2014, 38, 1730–1737. [Google Scholar] [CrossRef]
- Chandrasekharappa, S.C.; Guru, S.C.; Manickam, P.; Olufemi, S.E.; Collins, F.S.; Emmert-Buck, M.R.; Debelenko, L.V.; Zhuang, Z.; Lubensky, I.A.; Liotta, L.A.; et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997, 276, 404–407. [Google Scholar] [CrossRef]
- Singh Ospina, N.; Sebo, T.J.; Thompson, G.B.; Clarke, B.L.; Young, W.F., Jr. Prevalence of parathyroid carcinoma in 348 patients with multiple endocrine neoplasia type 1—Case report and review of the literature. Clin. Endocrinol. 2016, 84, 244–249. [Google Scholar] [CrossRef]
- Cinque, L.; Sparaneo, A.; Cetani, F.; Coco, M.; Clemente, C.; Chetta, M.; Balsamo, T.; Battista, C.; Sanpaolo, E.; Pardi, E.; et al. Novel association of MEN1 gene mutations with parathyroid carcinoma. Oncol. Lett. 2017, 14, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Haven, C.J.; van Puijenbroek, M.; Tan, M.H.; Teh, B.T.; Fleuren, G.J.; van Wezel, T.; Morreau, H. Identification of MEN1 and HRPT2 somatic mutations in paraffin-embedded (sporadic) parathyroid carcinomas. Clin. Endocrinol. 2007, 67, 370–376. [Google Scholar] [CrossRef]
- Aoki, M.; Fujishita, T. Oncogenic Roles of the PI3K/AKT/mTOR Axis. Curr. Top. Microbiol. Immunol. 2017, 407, 153–189. [Google Scholar] [CrossRef]
- Porta, C.; Paglino, C.; Mosca, A. Targeting PI3K/Akt/mTOR Signaling in Cancer. Front. Oncol. 2014, 4, 64. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, M.S.; Stojanov, P.; Mermel, C.H.; Robinson, J.T.; Garraway, L.A.; Golub, T.R.; Meyerson, M.; Gabriel, S.B.; Lander, E.S.; Getz, G. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 2014, 505, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Clarke, C.N.; Katsonis, P.; Hsu, T.K.; Koire, A.M.; Silva-Figueroa, A.; Christakis, I.; Williams, M.D.; Kutahyalioglu, M.; Kwatampora, L.; Xi, Y.; et al. Comprehensive Genomic Characterization of Parathyroid Cancer Identifies Novel Candidate Driver Mutations and Core Pathways. J. Endocr. Soc. 2019, 3, 544–559. [Google Scholar] [CrossRef] [Green Version]
- Zhan, T.; Rindtorff, N.; Boutros, M. Wnt signaling in cancer. Oncogene 2017, 36, 1461–1473. [Google Scholar] [CrossRef]
- Svedlund, J.; Aurén, M.; Sundström, M.; Dralle, H.; Akerström, G.; Björklund, P.; Westin, G. Aberrant WNT/β-catenin signaling in parathyroid carcinoma. Mol. Cancer 2010, 9, 294. [Google Scholar] [CrossRef] [Green Version]
- Wachsmannova, L.; Mego, M.; Stevurkova, V.; Zajac, V.; Ciernikova, S. Novel strategies for comprehensive mutation screening of the APC gene. Neoplasma 2017, 64, 338–343. [Google Scholar] [CrossRef]
- Liu, F.; Lu, X.; Zhou, X.; Huang, H. APC gene promoter methylation as a potential biomarker for lung cancer diagnosis: A meta-analysis. Thorac. Cancer 2021, 12, 2907–2913. [Google Scholar] [CrossRef]
- Katoh, M. Multi-layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β-catenin signaling activation (Review). Int. J. Mol. Med. 2018, 42, 713–725. [Google Scholar] [CrossRef] [Green Version]
- Sugiura, T.; Yamaguchi, A.; Miyamoto, K. A cancer-associated RING finger protein, RNF43, is a ubiquitin ligase that interacts with a nuclear protein, HAP95. Exp. Cell Res. 2008, 314, 1519–1528. [Google Scholar] [CrossRef]
- Giannakis, M.; Hodis, E.; Jasmine Mu, X.; Yamauchi, M.; Rosenbluh, J.; Cibulskis, K.; Saksena, G.; Lawrence, M.S.; Qian, Z.R.; Nishihara, R.; et al. RNF43 is frequently mutated in colorectal and endometrial cancers. Nat. Genet. 2014, 46, 1264–1266. [Google Scholar] [CrossRef]
- Bell, R.J.; Rube, H.T.; Xavier-Magalhães, A.; Costa, B.M.; Mancini, A.; Song, J.S.; Costello, J.F. Understanding TERT Promoter Mutations: A Common Path to Immortality. Mol. Cancer Res. 2016, 14, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Horn, S.; Figl, A.; Rachakonda, P.S.; Fischer, C.; Sucker, A.; Gast, A.; Kadel, S.; Moll, I.; Nagore, E.; Hemminki, K.; et al. TERT promoter mutations in familial and sporadic melanoma. Science 2013, 339, 959–961. [Google Scholar] [CrossRef] [Green Version]
- de Hoog, C.L.; Mann, M. Proteomics. Annu. Rev. Genom. Hum Genet. 2004, 5, 267–293. [Google Scholar] [CrossRef]
- Boys, E.L.; Liu, J.; Robinson, P.J.; Reddel, R.R. Clinical applications of mass spectrometry-based proteomics in cancer: Where are we? Proteomics 2022, e2200238. [Google Scholar] [CrossRef]
- Giusti, L.; Cetani, F.; Ciregia, F.; Da Valle, Y.; Donadio, E.; Giannaccini, G.; Banti, C.; Pardi, E.; Saponaro, F.; Basolo, F.; et al. A proteomic approach to study parathyroid glands. Mol. Biosyst. 2011, 7, 687–699. [Google Scholar] [CrossRef]
- Donadio, E.; Giusti, L.; Cetani, F.; Da Valle, Y.; Ciregia, F.; Giannaccini, G.; Pardi, E.; Saponaro, F.; Torregrossa, L.; Basolo, F.; et al. Evaluation of formalin-fixed paraffin-embedded tissues in the proteomic analysis of parathyroid glands. Proteome Sci. 2011, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Varshney, S.; Bhadada, S.K.; Arya, A.K.; Sharma, S.; Behera, A.; Bhansali, A.; Rao, S.D. Changes in parathyroid proteome in patients with primary hyperparathyroidism due to sporadic parathyroid adenomas. Clin. Endocrinol. 2014, 81, 614–620. [Google Scholar] [CrossRef]
- Ciregia, F.; Cetani, F.; Pardi, E.; Soggiu, A.; Piras, C.; Zallocco, L.; Borsari, S.; Ronci, M.; Caruso, V.; Marcocci, C.; et al. Parathyroid Carcinoma and Adenoma Co-existing in One Patient: Case Report and Comparative Proteomic Analysis. Cancer Genom. Proteom. 2021, 18, 781–796. [Google Scholar] [CrossRef]
- Fang, Y.; Shen, X. Ubiquitin carboxyl-terminal hydrolases: Involvement in cancer progression and clinical implications. Cancer Metastasis Rev. 2017, 36, 669–682. [Google Scholar] [CrossRef]
- Liu, S.; González-Prieto, R.; Zhang, M.; Geurink, P.P.; Kooij, R.; Iyengar, P.V.; van Dinther, M.; Bos, E.; Zhang, X.; Le Dévédec, S.E.; et al. Deubiquitinase Activity Profiling Identifies UCHL1 as a Candidate Oncoprotein That Promotes TGFβ-Induced Breast Cancer Metastasis. Clin. Cancer Res. 2020, 26, 1460–1473. [Google Scholar] [CrossRef] [Green Version]
- Adam, M.A.; Untch, B.R.; Olson, J.A., Jr. Parathyroid carcinoma: Current understanding and new insights into gene expression and intraoperative parathyroid hormone kinetics. Oncologist 2010, 15, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.C. Annexin A2 (ANX A2): An emerging biomarker and potential therapeutic target for aggressive cancers. Int. J. Cancer 2019, 144, 2074–2081. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, X.; Cui, M.; Wang, M.; Su, Z.; Liao, Q.; Zhao, Y. Circular RNA profile of parathyroid neoplasms: Analysis of co-expression networks of circular RNAs and mRNAs. RNA Biol. 2019, 16, 1228–1236. [Google Scholar] [CrossRef]
Protein Localization | The Function of the Protein |
---|---|
Nucleus | A member of the PAF1 complex, functioning as a transcriptional regulator by histone-modifying and chromatic remodeling [20] |
Tumor suppressor, involved in cell cycle progression by regulating cyclin D1/PRAD1 expression and the Wnt pathway, potentially downregulating β-catenin and c-Myc [21] | |
Has a role in nuclear localization since the N-terminal of parafibromin contains a highly conserved functional monopartite nuclear localization signal (NLS) [19] | |
Cytoplasm | Interacts with the actin-binding proteins, actinin-2 and actinin-3, which are involved in cytoskeletal structure organization [23] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, S.H. Updates of Genomics and Proteomics of Parathyroid Carcinoma. Endocrines 2022, 3, 745-752. https://doi.org/10.3390/endocrines3040061
Kong SH. Updates of Genomics and Proteomics of Parathyroid Carcinoma. Endocrines. 2022; 3(4):745-752. https://doi.org/10.3390/endocrines3040061
Chicago/Turabian StyleKong, Sung Hye. 2022. "Updates of Genomics and Proteomics of Parathyroid Carcinoma" Endocrines 3, no. 4: 745-752. https://doi.org/10.3390/endocrines3040061
APA StyleKong, S. H. (2022). Updates of Genomics and Proteomics of Parathyroid Carcinoma. Endocrines, 3(4), 745-752. https://doi.org/10.3390/endocrines3040061