Growth Hormone Deficiency
Abstract
:1. Introduction
2. Molecular Genetics
Gene | Inheritance Pattern | Clinical Features | Pituitary Deficiencies |
---|---|---|---|
HESX1 | Autosomal dominant or autosomal recessive | Short stature; anterior pituitary gland hypoplasia, ectopic posterior pituitary gland; septo-optic dysplasia, agenesis of the corpus callosum, absent infundibulum | GH, TSH, LH, FSH, PRL, and ACTH deficiencies |
POU1F1 | Autosomal dominant or autosomal recessive | Short stature; small or normal anterior pituitary gland | GH and PRL deficiencies, usually severe; TSH deficiency variable |
PROP1 | Autosomal recessive | Short stature, although normal adult heights have been reported even without treatment; possible delayed puberty and infertility | GH, TSH, LH, FSH, and PRL deficiencies; GH, PRL, and TSH deficiencies milder than in patients with POU1F1 mutations; cortisol deficiency increasing with age |
LHX3 | Autosomal recessive | Short stature; short, rigid cervical spine with restricted neck range of motion; small, normal, or enlarged anterior pituitary gland | GH, TSH, LH, FSH, and PRL deficiencies |
LHX4 | Autosomal dominant | Short stature; small anterior pituitary gland, ectopic posterior pituitary gland, absent infundibulum, and cerebellum abnormalities (inadequately formed sella turcica and pointed cerebellar tonsils) | GH, TSH, and ACTH deficiencies |
GLI2 | Autosomal dominant | Short stature; holoprosencephaly and multiple midline defects (single nares, single central incisor); variable craniofacial abnormalities | GH, TSH, LH, FSH, prolactin and ACTH deficiencies |
PITX2 | Autosomal dominant | Short stature; Rieger syndrome—variable presentation: abnormalities of anterior chamber of eye, dental hypoplasia, protuberant umbilicus, intellectual disability, and pituitary abnormalities | |
OTX2 | Autosomal dominant | Short stature, anophthalmia, microphthalmia; also possible optic nerve hypoplasia and other eye abnormalities, brain and pituitary abnormalities, developmental delay, intellectual disability, and feeding difficulties |
Gene Involved | Inheritance Pattern | Features |
---|---|---|
GHR | Autosomal recessive or autosomal dominant | Laron syndrome—variable height presentation, midfacial hypoplasia |
STAT5B | Autosomal recessive | Midfacial hypoplasia, immunodeficiency, pulmonary insufficiency, elevated PRL |
IGFALS | Autosomal recessive | Mild short stature |
IPAPPA2 | Autosomal recessive | Mild short stature; microcephaly, skeletal abnormalities |
IGF1 | Autosomal recessive | SGA, microcephaly, intellectual disability, deafness |
IGF1R | Autosomal dominant or autosomal recessive | SGA, microcephaly, intellectual disability, insulin insensitivity, decreased bone density |
IGF2 | Paternal inheritance | SGA, short stature, macrocephaly, triangular facies, frontal bossing, low-set ears, clinodactyly, micrognathia/retrognathia |
3. Clinical Presentation
4. Diagnostic Approach
5. Treatment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wit, J.M.; Clayton, P.E.; Rogol, A.D.; Savage, M.O.; Saenger, P.H.; Cohen, P. Idiopathic short stature: Definition, epidemiology, and diagnostic evaluation. Growth Horm. IGF Res. 2008, 18, 89–110. [Google Scholar] [CrossRef] [PubMed]
- Cheetham, T.; Davies, J.H. Investigation and management of short stature. Arch. Dis. Child. 2014, 99, 767–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seaver, L.H.; Irons, M. ACMG practice guideline: Genetic evaluation of short stature. Genet. Med. 2009, 11, 465–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar, D.; Castano, G. Constitutional Growth Delay. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- LaFranchi, S.; Hanna, C.E.; Mandel, S.H. Constitutional delay of growth: Expected versus final adult height. Pediatrics 1991, 87, 82–87. [Google Scholar] [CrossRef]
- Polidori, N.; Castorani, V.; Mohn, A.; Chiarelli, F. Deciphering short stature in children. Ann. Pediatr. Endocrinol. Metab. 2020, 25, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Rani, D.; Shrestha, R.; Kanchan, T.; Krishan, K. Short Stature. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Sultan, M.; Afzal, M.; Qureshi, S.M.; Aziz, S.; Lutfullah, M.; Khan, S.A.; IqbaL, M.; Maqsood, S.U.; Sadiq, N.; Farid, N. Etiology of short stature in children. J. Coll. Physicians Surg. Pak. 2008, 18, 493–497. [Google Scholar]
- Hartman, M.L.; Iranmanesh, A.; Thorner, M.O.; Veldhuis, J.D. Evaluation of pulsatile patterns of growth hormone release in humans: A brief review. Am. J. Hum. Biol. 1993, 5, 603–614. [Google Scholar] [CrossRef]
- Fazeli, P.K.; Klibanski, A. Determinants of GH resistance in malnutrition. J. Endocrinol. 2014, 220, R57–R65. [Google Scholar] [CrossRef] [Green Version]
- Alatzoglou, K.S.; Dattani, M.T. Genetic causes and treatment of isolated growth hormone deficiency—An update. Nat. Rev. Endocrinol. 2010, 6, 562–576. [Google Scholar] [CrossRef]
- Blum, W.F.; Alherbish, A.; Alsagheir, A.; El Awwa, A.; Kaplan, W.; Koledova, E.; Savage, M.O. The growth hormone-insulin-like growth factor-I axis in the diagnosis and treatment of growth disorders. Endocr. Connect. 2018, 7, R212–R222. [Google Scholar] [CrossRef]
- Casteras, A.; Kratzsch, J.; Ferrandez, A.; Zafon, C.; Carrascosa, A.; Mesa, J. Clinical challenges in the management of isolated GH deficiency type IA in adulthood. Endocrinol. Diabetes Metab. Case. Rep. 2014, 2014, 130057. [Google Scholar] [CrossRef] [PubMed]
- Kelberman, D.; Dattani, M.T. The role of transcription factors implicated in anterior pituitary development in the aetiology of congenital hypopituitarism. Ann. Med. 2006, 38, 560–577. [Google Scholar] [CrossRef] [PubMed]
- Kowarski, A.A.; Schneider, J.; Ben-Galim, E.; Weldon, V.V.; Daughaday, W.H. Growth failure with normal serum RIA-GH and low somatomedin activity: Somatomedin restoration and growth acceleration after exogenous GH. J. Clin. Endocrinol. Metab. 1978, 47, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Kaji, H.; Okimura, Y.; Goji, K.; Abe, H.; Chihara, K. Brief report: Short stature caused by a mutant growth hormone. N. Engl. J. Med. 1996, 334, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Besson, A.; Salemi, S.; Deladoey, J.; Vuissoz, J.M.; Eble, A.; Bidlingmaier, M.; Burgi, S.; Honegger, U.; Fluck, C.; Mullis, P.E. Short stature caused by a biologically inactive mutant growth hormone (GH-C53S). J. Clin. Endocrinol. Metab. 2005, 90, 2493–2499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dattani, M.T. Growth hormone deficiency and combined pituitary hormone deficiency: Does the genotype matter? Clin. Endocrinol. 2005, 63, 121–130. [Google Scholar] [CrossRef]
- Flemming, G.M.; Klammt, J.; Ambler, G.; Bao, Y.; Blum, W.F.; Cowell, C.; Donaghue, K.; Howard, N.; Kumar, A.; Sanchez, J.; et al. Functional characterization of a heterozygous GLI2 missense mutation in patients with multiple pituitary hormone deficiency. J. Clin. Endocrinol. Metab. 2013, 98, E567–E575. [Google Scholar] [CrossRef] [Green Version]
- Cohen, L.E.; Radovick, S. Other transcription factors and hypopituitarism. Rev. Endocr. Metab. Disord. 2002, 3, 301–311. [Google Scholar] [CrossRef]
- Melmed, S.; Keonig, R.; Rosen, C.; Auchus, R.; Goldfine, A. Williams Textbook of Endocrinology, 14th ed.; Elsevier: Philadelphia, PA, USA, 2020; p. 1792. [Google Scholar]
- Schilter, K.F.; Schneider, A.; Bardakjian, T.; Soucy, J.F.; Tyler, R.C.; Reis, L.M.; Semina, E.V. OTX2 microphthalmia syndrome: Four novel mutations and delineation of a phenotype. Clin. Genet. 2011, 79, 158–168. [Google Scholar] [CrossRef] [Green Version]
- Diaczok, D.; Romero, C.; Zunich, J.; Marshall, I.; Radovick, S. A novel dominant negative mutation of OTX2 associated with combined pituitary hormone deficiency. J. Clin. Endocrinol. Metab. 2008, 93, 4351–4359. [Google Scholar] [CrossRef]
- Wit, J.M.; Oostdijk, W.; Losekoot, M.; van Duyvenvoorde, H.A.; Ruivenkamp, C.A.; Kant, S.G. Mechanisms in Endocrinology: Novel genetic causes of short stature. Eur. J. Endocrinol. 2016, 174, R145–R173. [Google Scholar] [CrossRef] [PubMed]
- Hwa, V.; Fujimoto, M.; Zhu, G.; Gao, W.; Foley, C.; Kumbaji, M.; Rosenfeld, R.G. Genetic causes of growth hormone insensitivity beyond GHR. Rev. Endocr. Metab. Disord. 2021, 22, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Urbach, S.; O’Gorman, C.; Alabdulrazzaq, D. Case 2: Hypoglycemia and micropenis in the newborn-hormonal red flags. Paediatr. Child. Health 2009, 14, 453–456. [Google Scholar] [CrossRef] [Green Version]
- Pena-Almazan, S.; Buchlis, J.; Miller, S.; Shine, B.; MacGillivray, M. Linear growth characteristics of congenitally GH-deficient infants from birth to one year of age. J. Clin. Endocrinol. Metab. 2001, 86, 5691–5694. [Google Scholar] [CrossRef]
- De Luca, F.; Bernasconi, S.; Blandino, A.; Cavallo, L.; Cisternino, M. Auxological, clinical and neuroradiological findings in infants with early onset growth hormone deficiency. Acta Paediatr. 1995, 84, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Wit, J.M.; van Unen, H. Growth of infants with neonatal growth hormone deficiency. Arch. Dis. Child. 1992, 67, 920–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kucharczyk, W. Etiology of congenital growth hormone deficiency. Am. J. Neuroradiol. 2000, 21, 999–1000. [Google Scholar]
- Hamilton, J.; Blaser, S.; Daneman, D. MR imaging in idiopathic growth hormone deficiency. Am. J. Neuroradiol. 1998, 19, 1609–1615. [Google Scholar]
- Aimaretti, G.; Ambrosio, M.R.; Benvenga, S.; Borretta, G.; De Marinis, L.; De Menis, E.; Di Somma, C.; Faustini-Fustini, M.; Grottoli, S.; Gasco, V.; et al. Hypopituitarism and growth hormone deficiency (GHD) after traumatic brain injury (TBI). Growth Horm. IGF Res. 2004, 14 (Suppl. A), S114–S117. [Google Scholar] [CrossRef]
- Alatzoglou, K.S.; Webb, E.A.; Le Tissier, P.; Dattani, M.T. Isolated growth hormone deficiency (GHD) in childhood and adolescence: Recent advances. Endocr. Rev. 2014, 35, 376–432. [Google Scholar] [CrossRef]
- Einaudi, S.; Bondone, C. The effects of head trauma on hypothalamic-pituitary function in children and adolescents. Curr. Opin. Pediatr. 2007, 19, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Haymond, M.; Kappelgaard, A.M.; Czernichow, P.; Biller, B.M.; Takano, K.; Kiess, W.; Global Advisory Panel Meeting on the Effects of Growth Hormone. Early recognition of growth abnormalities permitting early intervention. Acta Paediatr. 2013, 102, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Oostdijk, W.; Grote, F.K.; de Muinck Keizer-Schrama, S.M.; Wit, J.M. Diagnostic approach in children with short stature. Horm. Res. 2009, 72, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Growth Hormone Research, S. Consensus guidelines for the diagnosis and treatment of growth hormone (GH) deficiency in childhood and adolescence: Summary statement of the GH Research Society. J. Clin. Endocrinol. Metab. 2000, 85, 3990–3993. [Google Scholar] [CrossRef] [Green Version]
- Halac, I.; Zimmerman, D. Evaluating short stature in children. Pediatr. Ann. 2004, 33, 170–176. [Google Scholar] [CrossRef]
- Braziuniene, I.; Wilson, T.A.; Lane, A.H. Accuracy of self-reported height measurements in parents and its effect on mid-parental target height calculation. BMC Endocr. Disord. 2007, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Rose, S.R.; Vogiatzi, M.G.; Copeland, K.C. A general pediatric approach to evaluating a short child. Pediatr. Rev. 2005, 26, 410–420. [Google Scholar] [CrossRef]
- Richmond, E.J.; Rogol, A.D. Growth hormone deficiency in children. Pituitary 2008, 11, 115–120. [Google Scholar] [CrossRef]
- Allen, D.B.; Cuttler, L. Treatment of Short Stature. N. Engl. J. Med. 2013, 368, 1220–1228. [Google Scholar] [CrossRef] [Green Version]
- Collett-Solberg, P.F.; Ambler, G.; Backeljauw, P.F.; Bidlingmaier, M.; Biller, B.M.K.; Boguszewski, M.C.S.; Cheung, P.T.; Choong, C.S.Y.; Cohen, L.E.; Cohen, P.; et al. Diagnosis, Genetics, and Therapy of Short Stature in Children: A Growth Hormone Research Society International Perspective. Horm. Res. Paediatr. 2019, 92, 1–14. [Google Scholar] [CrossRef]
- Shalet, S.M.; Toogood, A.; Rahim, A.; Brennan, B.M. The diagnosis of growth hormone deficiency in children and adults. Endocr. Rev. 1998, 19, 203–223. [Google Scholar] [CrossRef] [PubMed]
- Ibba, A.; Corrias, F.; Guzzetti, C.; Casula, L.; Salerno, M.; di Iorgi, N.; Tornese, G.; Patti, G.; Radetti, G.; Maghnie, M.; et al. IGF1 for the diagnosis of growth hormone deficiency in children and adolescents: A reappraisal. Endocr. Connect. 2020, 9, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Geffner, M.; Lundberg, M.; Koltowska-Haggstrom, M.; Abs, R.; Verhelst, J.; Erfurth, E.M.; Kendall-Taylor, P.; Price, D.A.; Jonsson, P.; Bakker, B. Changes in height, weight, and body mass index in children with craniopharyngioma after three years of growth hormone therapy: Analysis of KIGS (Pfizer International Growth Database). J. Clin. Endocrinol. Metab. 2004, 89, 5435–5440. [Google Scholar] [CrossRef] [PubMed]
- Grimberg, A.; DiVall, S.A.; Polychronakos, C.; Allen, D.B.; Cohen, L.E.; Quintos, J.B.; Rossi, W.C.; Feudtner, C.; Murad, M.H.; Drug and Therapeutics Committee and Ethics Committee of the Pediatric Endocrine Society. Guidelines for Growth Hormone and Insulin-Like Growth Factor-I Treatment in Children and Adolescents: Growth Hormone Deficiency, Idiopathic Short Stature, and Primary Insulin-like Growth Factor-I Deficiency. Horm. Res. Paediatr. 2016, 86, 361–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamoun, C.; Hawkes, C.P.; Grimberg, A. Provocative growth hormone testing in children: How did we get here and where do we go now? J. Pediatr. Endocrinol. Metab. 2021, 34, 679–696. [Google Scholar] [CrossRef] [PubMed]
- Wagner, I.V.; Paetzold, C.; Gausche, R.; Vogel, M.; Koerner, A.; Thiery, J.; Arsene, C.G.; Henrion, A.; Guettler, B.; Keller, E.; et al. Clinical evidence-based cutoff limits for GH stimulation tests in children with a backup of results with reference to mass spectrometry. Eur. J. Endocrinol. 2014, 171, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Alatzoglou, K.S.; Turton, J.P.; Kelberman, D.; Clayton, P.E.; Mehta, A.; Buchanan, C.; Aylwin, S.; Crowne, E.C.; Christesen, H.T.; Hertel, N.T.; et al. Expanding the spectrum of mutations in GH1 and GHRHR: Genetic screening in a large cohort of patients with congenital isolated growth hormone deficiency. J. Clin. Endocrinol. Metab. 2009, 94, 3191–3199. [Google Scholar] [CrossRef] [Green Version]
- Nwosu, B.U.; Jasmin, G.; Parajuli, S.; Rogol, A.D.; Wallace, E.C.; Lee, A.F. Long-term GH Therapy Does Not Advance Skeletal Maturation in Children and Adolescents. J. Endocr. Soc. 2021, 5, bvab036. [Google Scholar] [CrossRef]
- Richmond, E.; Rogol, A.D. Treatment of growth hormone deficiency in children, adolescents and at the transitional age. Best Pract. Res. Clin. Endocrinol. Metab. 2016, 30, 749–755. [Google Scholar] [CrossRef]
- Thornton, P.S.; Maniatis, A.K.; Aghajanova, E.; Chertok, E.; Vlachopapadopoulou, E.; Lin, Z.; Song, W.; Christoffersen, E.D.; Breinholt, V.M.; Kovalenko, T.; et al. Weekly Lonapegsomatropin in Treatment-Naive Children with Growth Hormone Deficiency: The Phase 3 heiGHt Trial. J. Clin. Endocrinol. Metab. 2021, 106, 3184–3195. [Google Scholar] [CrossRef]
- Saggese, G.; Baroncelli, G.I.; Bertelloni, S.; Barsanti, S. The effect of long-term growth hormone (GH) treatment on bone mineral density in children with GH deficiency. Role of GH in the attainment of peak bone mass. J. Clin. Endocrinol. Metab. 1996, 81, 3077–3083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blethen, S.L.; Allen, D.B.; Graves, D.; August, G.; Moshang, T.; Rosenfeld, R. Safety of recombinant deoxyribonucleic acid-derived growth hormone: The National Cooperative Growth Study experience. J. Clin. Endocrinol. Metab. 1996, 81, 1704–1710. [Google Scholar] [PubMed]
- Souza, F.M.; Collett-Solberg, P.F. Adverse effects of growth hormone replacement therapy in children. Arq. Bras. Endocrinol. Metabol. 2011, 55, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, A.J.; Cooke, R.; Beckers, D.; Borgstrom, B.; Butler, G.; Carel, J.C.; Cianfarani, S.; Clayton, P.; Coste, J.; Deodati, A.; et al. Cancer Risks in Patients Treated with Growth Hormone in Childhood: The SAGhE European Cohort Study. J. Clin. Endocrinol. Metab. 2017, 102, 1661–1672. [Google Scholar] [CrossRef] [PubMed]
- Molitch, M.E.; Clemmons, D.R.; Malozowski, S.; Merriam, G.R.; Vance, M.L.; Endocrine, S. Evaluation and treatment of adult growth hormone deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1587–1609. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O'Neill, C.; Gangat, M.; Radovick, S. Growth Hormone Deficiency. Endocrines 2022, 3, 736-744. https://doi.org/10.3390/endocrines3040060
O'Neill C, Gangat M, Radovick S. Growth Hormone Deficiency. Endocrines. 2022; 3(4):736-744. https://doi.org/10.3390/endocrines3040060
Chicago/Turabian StyleO'Neill, Colleen, Mariam Gangat, and Sally Radovick. 2022. "Growth Hormone Deficiency" Endocrines 3, no. 4: 736-744. https://doi.org/10.3390/endocrines3040060
APA StyleO'Neill, C., Gangat, M., & Radovick, S. (2022). Growth Hormone Deficiency. Endocrines, 3(4), 736-744. https://doi.org/10.3390/endocrines3040060