The Evolution of Hypovolemic and Euvolemic Hyponatremia Coincides with an Inflammatory Status in Patients with COVID-19: An Observational Cohort Study
Abstract
:1. Introduction
2. Methods
2.1. Design and Subjects
2.2. Statistical Analysis
3. Results
3.1. Clinical Evolution of Hyponatremic Patients
3.2. Inflammation Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Waikar, S.S.; Mount, D.B.; Curhan, G.C. Mortality after Hospitalization with Mild, Moderate, and Severe Hyponatremia. Am. J. Med. 2009, 122, 857–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wald, R. Impact of Hospital-Associated Hyponatremia on Selected Outcomes. Arch. Intern. Med. 2010, 170, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuesta, M.; Slattery, D.; Goulden, E.L.; Gupta, S.; Tatro, E.; Sherlock, M.; Tormey, W.; O’Neill, S.; Thompson, C.J. Hyponatraemia in patients with community-acquired pneumonia; prevalence and aetiology, and natural history of SIAD. Clin. Endocrinol. 2019, 90, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Swart, R.M.; Hoorn, E.J.; Betjes, M.G.; Zietse, R. Hyponatremia and inflammation: The emerging role of interleukin-6 in osmoregulation. Nephron. Physiol. 2011, 118, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Mastorakos, G.; Weber, J.S.; Magiakou, M.A.; Gunn, H.; Chrousos, G.P. Hypothalamic-pituitary-adrenal axis activation and stimulation of systemic vasopressin secretion by recombinant interleukin-6 in humans: Potential implications for the syndrome of inappropriate vasopressin secretion. J. Clin. Endocrinol. Metab. 1994, 79, 934–939. [Google Scholar] [CrossRef] [PubMed]
- Cascella, M.; Rajnik, M.; Aleem, A.; Dulebohn, S.C.; Di Napoli, R. Features, Evaluation, and Treatment of Coronavirus (COVID-19); StatPearls: Tampa, FL, USA, 2022. [Google Scholar]
- Liu, J.; Li, S.; Liu, J.; Liang, B.; Wang, X.; Wang, H.; Li, W.; Tong, Q.; Yi, J.; Zhao, L.; et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 2020, 55, 102763. [Google Scholar] [CrossRef]
- Satış, H.; Özger, H.S.; Aysert Yıldız, P.; Hızel, K.; Gulbahar, Ö.; Erbaş, G.; Aygencel, G.; Guzel Tunccan, O.; Öztürk, M.A.; Dizbay, M.; et al. Prognostic value of interleukin-18 and its association with other inflammatory markers and disease severity in COVID-19. Cytokine 2021, 137, 155302. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, B.; Qu, Y.; Chen, Y.; Xiong, J.; Feng, Y.; Men, D.; Huang, Q.; Liu, Y.; Yang, B.; et al. Detectable Serum Severe Acute Respiratory Syndrome Coronavirus 2 Viral Load (RNAemia) Is Closely Correlated With Drastically Elevated Interleukin 6 Level in Critically Ill Patients With Coronavirus Disease 2019. Clin. Infect. Dis. 2020, 71, 1937–1942. [Google Scholar] [CrossRef]
- Şimşek-Yavuz, S.; Komsuoğlu Çelikyurt, F.I. An update of anti-viral treatment of COVID-19. Turk. J. Med. Sci. 2021, 51, 3372–3390. [Google Scholar] [CrossRef]
- Atila, C.; Sailer, C.O.; Bassetti, S.; Tschudin-Sutter, S.; Bingisser, R.; Siegemund, M.; Osswald, S.; Rentsch, K.; Rueegg, M.; Schaerli, S.; et al. Prevalence and outcome of dysnatremia in patients with COVID-19 compared to controls. Eur. J. Endocrinol. 2021, 184, 413–422. [Google Scholar] [CrossRef]
- Ruiz-Sánchez, J.G.; Núñez-Gil, I.J.; Cuesta, M.; Rubio, M.A.; Maroun-Eid, C.; Arroyo-Espliguero, R.; Romero, R.; Becerra-Muñoz, V.M.; Uribarri, A.; Feltes, G.; et al. Prognostic Impact of Hyponatremia and Hypernatremia in COVID-19 Pneumonia. A HOPE-COVID-19 (Health Outcome Predictive Evaluation for COVID-19) Registry Analysis. Front. Endocrinol. 2020, 11, 599255. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Lv, X.; Li, C.; Xu, Y.; Qi, Y.; Zhang, Z.; Li, M.; Cai, F.; Liu, D.; Yue, J.; et al. Disorders of sodium balance and its clinical implications in COVID-19 patients: A multicenter retrospective study. Intern. Emerg. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Frontera, J.A.; Valdes, E.; Huang, J.; Lewis, A.; Lord, A.S.; Zhou, T.; Kahn, D.E.; Melmed, K.; Czeisler, B.M.; Yaghi, S.; et al. Prevalence and Impact of Hyponatremia in Patients With Coronavirus Disease 2019 in New York City. Crit. Care Med. 2020, 48, e1211–e1217. [Google Scholar] [CrossRef]
- Ayus, J.C.; Negri, A.L.; Moritz, M.L.; Lee, K.M.; Caputo, D.; Borda, M.E.; Go, A.S.; Eghi, C. Hyponatremia, Inflammation at Admission, and Mortality in Hospitalized COVID-19 Patients: A Prospective Cohort Study. Front. Med. 2021, 8, 748364. [Google Scholar] [CrossRef] [PubMed]
- Akbar, M.R.; Pranata, R.; Wibowo, A.; Irvan; Sihite, T.A.; Martha, J.W. The Prognostic Value of Hyponatremia for Predicting Poor Outcome in Patients With COVID-19: A Systematic Review and Meta-Analysis. Front. Med. 2021, 8, 666949. [Google Scholar] [CrossRef]
- Gheorghe, G.; Ilie, M.; Bungau, S.; Stoian, A.M.P.; Bacalbasa, N.; Diaconu, C.C. Is There a Relationship between COVID-19 and Hyponatremia? Medicina 2021, 57, 55. [Google Scholar] [CrossRef] [PubMed]
- Fernandez Martinez, A.; Barajas Galindo, D.; Ruiz Sanchez, J. Management of hyponatraemia and hypernatraemia during the Covid-19 pandemic: A consensus statement of the Spanish Society for Endocrinology (Acqua Neuroendocrinology Group). Rev. Endocr. Metab. Disord. 2021. [Google Scholar] [CrossRef] [PubMed]
- Berni, A.; Malandrino, D.; Parenti, G.; Maggi, M.; Poggesi, L.; Peri, A. Hyponatremia, IL-6, and SARS-CoV-2 (COVID-19) infection: May all fit together? J. Endocrinol. Investig. 2020, 43, 1137–1139. [Google Scholar] [CrossRef]
- Hillier, T.A.; Abbott, R.D.; Barrett, E.J. Hyponatremia: Evaluating the correction factor for hyperglycemia. Am. J. Med. 1999, 106, 399–403. [Google Scholar] [CrossRef]
- Hoorn, E.J.; Zietse, R. Diagnosis and treatment of hyponatremia: Compilation of the guidelines. J. Am. Soc. Nephrol. 2017, 28, 1340–1349. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.-M.; Kluge, R.; Schrier, R.W.; Anderson, R.J. Clinical assessment of extracellular fluid volume in hyponatremia. Am. J. Med. 1987, 83, 905–908. [Google Scholar] [CrossRef]
- Ruiz-Sánchez, J.G.; Cuesta, M.; Gómez-Hoyos, E.; Cárdenas-Salas, J.; Rubio-Herrera, M.Á.; Martínez-González, E.; De Miguel Novoa, P.; Ternero-Vega, J.E.; Calle-Pascual, A.L.; Runkle, I. Changes in Serum Creatinine Levels Can Help Distinguish Hypovolemic from Euvolemic Hyponatremia. Medicina 2022, 58, 851. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Schefold, J.C.; Guignard, V.; Exadaktylos, A.K.; Pfortmueller, C.A. Hyponatraemia is independently associated with in-hospital mortality in patients with pneumonia. Eur. J. Intern. Med. 2018, 54, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Nair, V.; Niederman, M.S.; Masani, N.; Fishbane, S. Hyponatremia in Community-Acquired Pneumonia. Am. J. Nephrol. 2007, 27, 184–190. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, H.; Letellier, T.; Karakachoff, M.; Desvaux, G.; Caillon, H.; Papuchon, E.; Bentoumi-Loaec, M.; Benaouicha, N.; Canet, E.; Chapelet, G.; et al. Hyponatremia is associated with poor outcome in COVID-19. J. Nephrol. 2021, 34, 991–998. [Google Scholar] [CrossRef]
- Ferreira da Cunha, D.; Pontes Monteiro, J.; Modesto dos Santos, V.; Araújo Oliveira, F.; Freire de Carvalho da Cunha, S. Hyponatremia in Acute-Phase Response Syndrome Patients in General Surgical Wards. Am. J. Nephrol. 2000, 20, 37–41. [Google Scholar] [CrossRef]
- Beukhof, C.M.; Hoorn, E.J.; Lindemans, J.; Zietse, R. Novel risk factors for hospital-acquired hyponatraemia: A matched case?control study. Clin. Endocrinol. 2007, 66, 367–372. [Google Scholar] [CrossRef]
- Gionis, D.; Ilias, I.; Moustaki, M.; Mantzos, E.; Papadatos, I.; Koutras, D.A.; Mastorakos, G. Hypothalamic-Pituitary-Adrenal Axis and Interleukin-6 Activity in Children with Head Trauma and Syndrome of Inappropriate Secretion of Antidiuretic Hormone. J. Pediatr. Endocrinol. Metab. 2003, 16, 49–54. [Google Scholar] [CrossRef]
- Murakami, T.; Matoba, H.; Kuga, Y.; Ozawa, S.; Kubota, K.; Yoshida, S. Hyponatremia in a Patient with Chronic Inflammatory Disease. Intern. Med. 1998, 37, 792–795. [Google Scholar] [CrossRef] [Green Version]
- Ota, K.; Kumon, Y.; Hashimoto, K. Unexpected impaired consciousness in RA: A rare complication of SIADH induced by increased IL-6. Clin. Exp. Rheumatol. 2004, 22, 134. [Google Scholar]
- Rossignol, B.; Gueret, G.; Pennec, J.-P.; Morel, J.; Giroux-Metges, M.A.; Talarmin, H.; Arvieux, C.C. Effects of chronic sepsis on the voltage-gated sodium channel in isolated rat muscle fibers*. Crit. Care Med. 2007, 35, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Karabagli, H.; Yanardag, S.B. Can Hypo/Hypernatremic Conditions be a Factor for Na Ion Channel Kinetics: Model Study. Turk. Neurosurg. 2018, 28, 421–427. [Google Scholar] [CrossRef]
- Squecco, R.; Luciani, P.; Idrizaj, E.; Deledda, C.; Benvenuti, S.; Giuliani, C.; Fibbi, B.; Peri, A.; Francini, F. Hyponatraemia alters the biophysical properties of neuronal cells independently of osmolarity: A study on Ni2+-sensitive current involvement. Exp. Physiol. 2016, 101, 1086–1100. [Google Scholar] [CrossRef] [PubMed]
- Sanz, A.B.; Sanchez-Niño, M.D.; Ortiz, A. TWEAK, a multifunctional cytokine in kidney injury. Kidney Int. 2011, 80, 708–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkins, R.C. Age and gender as risk factors for hyponatremia and hypernatremia. Clin. Chim. Acta 2003, 337, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Cowen, L.E.; Hodak, S.P.; Verbalis, J.G. Age-associated abnormalities of water homeostasis. Endocrinol. Metab. Clin. N. Am. 2013, 42, 349–370. [Google Scholar] [CrossRef] [Green Version]
- Mannheimer, B.; Skov, J.; Falhammar, H.; Calissendorff, J.; Lindh, J.D.; Nathanson, D. Sex-specific risks of death in patients hospitalized for hyponatremia: A population-based study. Endocrine 2019, 66, 660–665. [Google Scholar] [CrossRef]
- Grikiniene, J.; Volbekas, V.; Stakisaitis, D. Gender differences of sodium metabolism and hyponatremia as an adverse drug effect. Medicina 2004, 40, 935–942. [Google Scholar]
Total Cases (N = 49) | Hypovolemic (N = 27) | Euvolemic (N = 22) | p | |
---|---|---|---|---|
Age, years | 69.9 ± 14.7 | 64.9 ± 14.5 | 76.2 ± 12.6 | 0.006 * |
>70 years, n (%) | 31 (63.3) | 13 (48.1) | 18 (81.8) | 0.019 * |
Sex Male, n (%) | 32 (65.3) | 21 (77.8) | 11 (50) | 0.042 * |
Serum sodium, mmol/L | 131.3 ± 2.4 | 130.8 ± 2.3 | 132 ± 2.4 | 0.084 |
Serum potassium, mmol/L | 4.2 ± 0.4 | 4.2 ± 0.4 | 4.2 ± 0.5 | 0.882 |
Serum creatinine, mg/dL | 0.9 ± 0.4 | 1.1 ± 0.5 | 0.7 ± 0.3 | 0.005 * |
Serum urea, mg/dL | 39 ± 18 | 42 ± 21 | 34 ± 12 | 0.146 |
Glomerular filtration rate, mL/min | 80 ± 22 | 76 ± 23 | 85 ± 19 | 0.126 |
COMORBIDITIES | ||||
Hypertension, n (%) | 20 (40.8) | 9 (33.3) | 11 (50) | 0.238 |
Obesity, n (%) | 11 (34.4) | 7 (43.8) | 4 (25) | 0.458 |
DM, n (%) | 8 (16.3) | 5 (18.5) | 3 (13.6) | 0.715 |
Cancer, n (%) | 8 (16.3) | 5 (18.5) | 3 (13.6) | 0.715 |
Asthma, n (%) | 5 (10.2) | 3 (11.1) | 2 (9.1) | 1 |
COPD/smoking habit, n (%) | 4 (8.2) | 3 (11.1) | 1 (4.5) | 0.617 |
OSAHS, n (%) | 3 (6.1) | 3 (11.1) | 0 | 0.242 |
Obstructive uropathy, n (%) | 3 (6.1) | 2 (7.4) | 1 (4.5) | 1 |
Pulmonary fibrosis, n (%) | 0 | 0 | 0 | - |
Chronic kidney disease, n (%) § | 0 | 0 | 0 | - |
PREVIOUS TREATMENT | ||||
ACEI, n (%) | 10 (20.4) | 4 (14.8) | 6 (27.3) | 0.311 |
ARB, n (%) | 4 (8.2) | 3 (11.1) | 1 (4.5) | 0.617 |
MRB, n (%) | 1 (2) | 1 (3.7) | 0 | 1 |
Diuretics, n (%) | 0 | 0 | 0 | - |
Antiepileptics, n (%) | 0 | 0 | 0 | - |
Glucocorticoids, n (%) | 0 | 0 | 0 | - |
Heparin, n (%) | 0 | 0 | 0 | - |
Cotrimoxazole, n (%) | 1 (2) | 1 (3.7) | 0 | 1 |
Cyclosporine, n (%) | 0 | 0 | 0 | - |
Tacrolimus, n (%) | 0 | 0 | 0 | - |
Everolimus, n (%) | 0 | 0 | 0 | - |
Hypovolemic (N = 27) | Euvolemic (N = 22) | p | |
---|---|---|---|
At the ADMISSION DAY | |||
C-reactive protein, mg/L | 14.2 [4.8–19.6] | 7.7 [4.1–23.6] | 0.191 |
D-dimer ng/mL | 524 [279–1249] | 1106 [629–3521] | 0.095 |
Lactate dehydrogenase, UI/L | 385 [280–680] | 395 [332–566] | 0.768 |
Ferritin, ng/mL | 1148 [444–1745] | 547 [265–1409] | 0.330 |
Fibrinogen, mg/dL | 773 [571–954] | 672 [560–725] | 0.303 |
Interleuikin-6, pg/mL § | 77 [57–83] | 16 [5–86] | 0.07 |
At the 7th–10th HOSPITALIZATION DAY | |||
C-reactive protein, mg/L | 1.3 [0.6–5.6] | 0.9 [0.5–2.7] | 0.613 |
D-dimer ng/mL | 925 [583–2652] | 749 [429–1438] | 0.26 |
Lactate dehydrogenase, UI/L | 342 [256–723] | 307 [232–418] | 0.129 |
Ferritin, ng/mL | 1066 [770–1771] | 484 [306–1363] | 0.116 |
Fibrinogen, mg/dL | 568 [422–676] | 477 [390–533] | 0.747 |
Interleuikin-6, pg/mL §§ | 880 [range 9.7–1751] | 143 [range:6.2–395] | 0.8 |
At Admission Day | At the 7th–10th Hospitalization Day | p | |
---|---|---|---|
C-reactive protein, mg/L | 8.4 [4.5–23] | 0.9 [0.5–3.3] | <0.001 * |
D-dimer ng/mL | 815 [440–2398] | 865 [177–529] | 0.26 |
Lactate dehydrogenase, UI/L | 395 [299–582] | 337 [254–493] | 0.008 * |
Ferritin, ng/mL | 973 [334–1525] | 973 [396–1568] | 0.22 |
Fibrinogen, mg/dL | 683 [565–810] | 503 [393–671] | 0.012 * |
Interleuikin-6, pg/mL § | 49 [7–81] | 143 [8–1073] | 0.109 |
SNa, mmol/L | 132 [130–133] | 136 [134–138] | <0.001 * |
Hyponatremia, n (%) | 49/49 (100) | 11/42 (26.2) | <0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Sánchez, J.G.; Chávez-Díaz, P.; Cárdenas-Salas, J. The Evolution of Hypovolemic and Euvolemic Hyponatremia Coincides with an Inflammatory Status in Patients with COVID-19: An Observational Cohort Study. Endocrines 2022, 3, 726-735. https://doi.org/10.3390/endocrines3040059
Ruiz-Sánchez JG, Chávez-Díaz P, Cárdenas-Salas J. The Evolution of Hypovolemic and Euvolemic Hyponatremia Coincides with an Inflammatory Status in Patients with COVID-19: An Observational Cohort Study. Endocrines. 2022; 3(4):726-735. https://doi.org/10.3390/endocrines3040059
Chicago/Turabian StyleRuiz-Sánchez, Jorge Gabriel, Pamela Chávez-Díaz, and Jersy Cárdenas-Salas. 2022. "The Evolution of Hypovolemic and Euvolemic Hyponatremia Coincides with an Inflammatory Status in Patients with COVID-19: An Observational Cohort Study" Endocrines 3, no. 4: 726-735. https://doi.org/10.3390/endocrines3040059
APA StyleRuiz-Sánchez, J. G., Chávez-Díaz, P., & Cárdenas-Salas, J. (2022). The Evolution of Hypovolemic and Euvolemic Hyponatremia Coincides with an Inflammatory Status in Patients with COVID-19: An Observational Cohort Study. Endocrines, 3(4), 726-735. https://doi.org/10.3390/endocrines3040059