Newborn Screening in Pediatric Endocrine Disorders
Abstract
:1. Introduction
The Need for Newborn Endocrine Screening
2. Congenital Hypothyroidism
2.1. History
2.2. CH NBS Developments
2.3. Present Day Status of CH screening
2.4. Etiology
2.5. Management
- Confirming diagnosis with serum TSH and free T4 levels;
- Prompt treatment initiation with thyroxine 10–15 mcg/kg;
- Post treatment repeat serum free T4 and TSH at follow-up in two weeks.
3. Congenital Adrenal Hyperplasia
3.1. History
3.2. CAH NBS Development
3.3. Etiology and Genetics
3.4. Management
- Confirming diagnosis with serum electrolytes and 17-OHP levels;
- Consultation with pediatric endocrinologist, and subsequent ACTH stimulation testing in some cases;
- Prompt treatment with cortisol (10–15 mg/m2/day divided in three doses) and mineralocorticoid (fludrocortisone 0.05–0.1 mg/day), and salt supplementation;
- Education of family on how to administer medication and adrenal crisis management with stress dose of oral steroids during stress/intercurrent illnesses or IM glucocorticoid if any oral intolerance to be followed by an emergency call to 911;
- Evaluation of internal genital anatomy by ultrasound in presumed females;
- Consultation with surgical specialists with expertise in disorders of sexual differentiation to help with family ‘s decision making;
- Follow-up with pediatric endocrinology in two weeks, one month, and every three months when stable.
4. Further Considerations with CAH
- -
- The cost and emotional impact on families of evaluating those who have a false-positive result. Improving the positive predictive value of screening to safely lower false-positive rates without increasing false negatives. Recent summaries suggest a need for improvement [45]. Cross reacting immunoassays, apart from illness and stress in newborns and prematurity, can be confounding factors. Adjusting cut-off levels based on gestational age or birth weight in premature newborns can help, while adoption of LS/MS secondary screening assaying ratios of various steroids can also help mitigate these [46].
- -
- The lack of screening in developing countries due to expense and need for infrastructure to support programs. As of 2020 the US, 35 other countries and only parts of 17 countries had CAH newborn screening in place [42].
- -
- One cost–benefit analysis suggested that CAH newborn screening may be of lesser merit than screening for CH when strict cost-effectiveness or cost–benefit analysis is performed [23]. However, the demonstrated value of the screening in saving lives suggests that this cost–benefit analysis may not adequately highlight the benefit of a child’s life saved for that family or the cost of a child lost to a treatable condition such as CAH.
- -
- Use of prenatal dexamethasone therapy to mitigate or prevent virilization of external genitalia in females with CAH. While this has shown some efficacy in clinical trials, risk to unaffected fetuses continues to raise ethical concerns.
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brief History of Newborn Screening|NICHD—Eunice Kennedy Shriver National Institute of Child Health and Human Development. Available online: https://www.nichd.nih.gov/health/topics/newborn/conditioninfo/history (accessed on 17 January 2022).
- Kanungo, S.; Patel, D.R.; Neelakantan, M.; Ryali, B. Newborn screening and changing face of inborn errors of metabolism in the United States. Ann. Transl. Med. 2018, 6, 468. [Google Scholar] [CrossRef] [PubMed]
- Frankenburg, W.K. Pediatric screening. Adv. Pediatr. 1973, 20, 149–175. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.H.; Meltzer, S.; Kenny, F.M. Improved prognosis in congenital hypothyroidism treated before age three months. J. Pediatr. 1972, 81, 912–915. [Google Scholar] [CrossRef]
- Naafs, J.C.; Marchal, J.P.; Fliers, E.; Verkerk, P.H.; Luijten, M.A.; Boelen, A.; van Trotsenburg, A.P.; Zwaveling-Soonawala, N. Cognitive and Motor Outcome in Patients with Early-Detected Central Congenital Hypothyroidism Compared with Siblings. J. Clin. Endocrinol. Metab. 2021, 106, E1231–E1239. [Google Scholar] [CrossRef]
- Dussault, J.H.; Coulombe, P.; Laberge, C.; Letarte, J.; Guyda, H.; Khoury, K. Preliminary report on a mass screening program for neonatal hypothyroidism. J. Pediatr. 1975, 86, 670–674. [Google Scholar] [CrossRef]
- Klein, A.H.; Agustin, A.V.; Foley, T.P. Successful laboratory screening for congenital hypothyroidism. Lancet 1974, 2, 77–79. [Google Scholar] [CrossRef]
- Foley, T.P., Jr.; Klein, A.H.; Foley, B.; Agustin, A.V.; MacDonald, H.M.; Hopwood, N.; Postellon, D.C. TSH-screening program for congenital hypothyroidism. Experiences with early thyrotropin (TSH) screening. Fortschr. Der Med. 1979, 97, 221–224. Available online: https://pubmed.ncbi.nlm.nih.gov/428863/ (accessed on 17 January 2022).
- Foley, T.P.; Klein, A.H.; Agustin, A.V. Adaptation of TSH filter paper method for regionalized screening for congenital hypothyroidism. J. Lab. Clin. Med. 1977, 90, 11–17. [Google Scholar]
- LaFranchi, S.H.; Murphey, W.H.; Foley, T.P.; Larsen, P.R.; Buist, N.R. Neonatal hypothyroidism detected by the Northwest Regional Screening Program. Pediatrics 1979, 63, 180–191. [Google Scholar] [CrossRef]
- Irie, M.; Enomoto, K.; Naruse, H. Measurement of thyroid-stimulating hormone in dried blood spot. Lancet 1975, 2, 1233–1234. [Google Scholar] [CrossRef]
- Minamitani, K. Newborn Screening for Congenital Hypothyroidism in Japan. Int. J. Neonatal. Screen. 2021, 7, 34. [Google Scholar] [CrossRef] [PubMed]
- Fisher, D.A.; Dussault, J.H.; Foley, T.P., Jr.; Klein, A.H.; LaFranchi, S.; Larsen, P.R.; Mitchell, M.L.; Murphey, W.H.; Walfish, P.G. Screening for congenital hypothyroidism: Results of screening one million North American infants. J. Pediatr. 1979, 94, 700–705. [Google Scholar] [CrossRef]
- American Academy of Pediatrics AAP Section on Endocrinology and Committee on Genetics, and American Thyroid Association Committee on Public Health: Newborn Screening for Congenital Hypothyroidism: Recommended Guidelines. Pediatrics. Available online: https://pubmed.ncbi.nlm.nih.gov/8502532/ (accessed on 17 January 2022).
- LaFranchim, S. Congenital hypothyroidism: A newborn screening success story? Endocrinologist 1994, 4, 477–486. [Google Scholar] [CrossRef]
- Germak, J.A.; Foley, T.P. Longitudinal assessment of L-thyroxine therapy for congenital hypothyroidism. J. Pediatr. 1990, 117, 211–219. [Google Scholar] [CrossRef]
- Aleksander, P.E.; Brückner-Spieler, M.; Stoehr, A.M.; Lankes, E.; Kühnen, P.; Schnabel, D.; Ernert, A.; Stäblein, W.; Craig, M.E.; Blankenstein, O.; et al. Mean High-Dose l-Thyroxine Treatment Is Efficient and Safe to Achieve a Normal IQ in Young Adult Patients With Congenital Hypothyroidism. J. Clin. Endocrinol. Metab. 2018, 103, 1459–1469. [Google Scholar] [CrossRef]
- Perry, R.; Heinrichs, C.; Bourdoux, P.; Khoury, K.; Szöts, F.; Dussault, J.H.; Vassart, G.; Van Vliet, G. Discordance of monozygotic twins for thyroid dysgenesis: Implications for screening and for molecular pathophysiology. J. Clin. Endocrinol. Metab. 2002, 87, 4072–4077. [Google Scholar] [CrossRef]
- Rose, S.R.; Blunden, C.E.; Jarrett, O.O.; Kaplan, K.; Caravantes, R.; Akinbi, H.T. Utility of Repeat Testing for Congenital Hypothyroid ism in Infants with Very Low Birth Weight. J. Pediatr. 2022, 242, 152–158.e1. [Google Scholar] [CrossRef]
- Ford, G.; Lafranchi, S.H. Screening for congenital hypothyroidism: A worldwide view of strategies. Best Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 175–187. [Google Scholar] [CrossRef]
- Kaplowitz, P.B. Neonatal Thyroid Disease: Testing and Management. Pediatr. Clin. North Am. 2019, 66, 343–352. [Google Scholar] [CrossRef]
- Alexander, E.K.; Pearce, E.N.; Brent, G.A.; Brown, R.S.; Chen, H.; Dosiou, C.; Grobman, W.A.; Laurberg, P.; Lazarus, J.H.; Mandel, S.J.; et al. Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease During Pregnancy and the Postpartum. Thyroid 2017, 27, 315–389. [Google Scholar] [CrossRef] [Green Version]
- Vliet GVan Grosse, S.D. Newborn screening for congenital hypothyroidism and congenital adrenal hyperplasia: Benefits and costs of a successful public health program. Med. Sci. 2021, 37, 528–534. [Google Scholar] [CrossRef]
- Dussault, J.H. The anecdotal history of screening for congenital hypothyroidism. J. Clin. Endocrinol. Metab. 1999, 84, 4332–4334. [Google Scholar] [CrossRef]
- Leutwyler, K. The price of prevention. Sci. Am. 1995, 272, 124–129. [Google Scholar] [CrossRef]
- Szinnai, G. Clinical genetics of congenital hypothyroidism. Endocr. Dev. 2014, 26, 60–78. [Google Scholar] [CrossRef]
- Deladoey, J.; Ruel, J.; Giguere, Y.; Van Vliet, G. Is the incidence of congenital hypothyroidism really increasing? A 20-year retrospective population-based study in Quebec. J. Clin. Endocrinol. Metab. 2011, 96, 2422–2429. [Google Scholar] [CrossRef] [Green Version]
- Olivieri, A.; Corbetta, C.; Weber, G.; Vigone, M.C.; Fazzini, C.; Medda, E. Congenital hypothyroidism due to defects of thyroid development and mild increase of TSH at screening: Data from the Italian National Registry of infants with congenital hypothyroidism. J. Clin. Endocrinol. Metab. 2013, 98, 1403–1408. [Google Scholar] [CrossRef] [Green Version]
- Wassner, A.J.; Brown, R.S. Congenital hypothyroidism: Recent advances. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 407–412. [Google Scholar] [CrossRef]
- Persani, L. Clinical review: Central hypothyroidism: Pathogenic, diagnostic, and therapeutic challenges. J. Clin. Endocrinol. Metab. 2012, 97, 3068–3078. [Google Scholar] [CrossRef] [Green Version]
- Hanna, C.E.; Krainz, P.L.; Skeels, M.R.; Miyahira, R.S.; Sesser, D.E.; LaFranchi, S.H. Detection of congenital hypopituitary hypothyroidism: Ten-year experience in the Northwest Regional Screening Program. J. Pediatr. 1986, 109, 959–964. [Google Scholar] [CrossRef]
- Joustra, S.D.; Heinen, C.A.; Schoenmakers, N.; Bonomi, M.; Ballieux, B.E.; Turgeon, M.O.; Bernard, D.J.; Fliers, E.; van Trotsenburg, A.S.; Losekoot, M.; et al. IGSF1 deficiency: Lessons from an extensive case series and recommendations for clinical management. J. Clin. Endocrinol. Metab. 2016, 101, 1627–1636. [Google Scholar] [CrossRef] [Green Version]
- Lomenick, J.P.; Wang, L.; Ampah, S.B.; Saville, B.R.; Greenwald, F.I. Generic levothyroxine compared with synthroid in young children with congenital hypothyroidism. J. Clin. Endocrinol. Metab. 2013, 98, 653–658. [Google Scholar] [CrossRef]
- Zdraveska, N.; Anastasovska, V.; Kocova, M. Frequency of thyroid status monitoring in the first year of life and predictors for more frequent monitoring in infants with congenital hypothyroidism. J. Pediatr. Endocrinol. Metab. 2016, 29, 795–800. [Google Scholar] [CrossRef]
- Wilkins, L.; Lewis, R.A.; Klein, R.; Gardner, L.I.; Crigler, J.F., Jr.; Rosemberg, E.; Migeon, C.J. Treatment of congenital adrenal hyperplasia with cortisone. J. Clin. Endocrinol. Metab. 1951, 11, 1–25. [Google Scholar] [CrossRef]
- Bartter, F.C.; Forbes, A.P.; Leaf, A. Congenital adrenal hyperplasia associated with the adrenogenital syndrome: An attempt to correct its disordered hormonal pattern. J. Clin. Investig. 1950, 29, 797. Available online: https://pubmed.ncbi.nlm.nih.gov/15436679/ (accessed on 17 January 2022).
- Merke, D.P.; Auchus, R.J. Congenital Adrenal Hyperplasia Due to 21-Hydroxylase Deficiency. N. Engl. J. Med. 2020, 383, 13–16. [Google Scholar] [CrossRef]
- Pang, S.; Hotchkiss, J.; Drash, A.L.; Levine, L.S.; New, M.I. Microfilter paper method for ‘17 alpha-hydroxyprogesterone radioimmunoassay: Its application for rapid screening for congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 1977, 45, 1003–1008. [Google Scholar] [CrossRef]
- Pang, S.; Murphey, W.; Levine, L.S.; Spence, D.A.; Leon, A.; Lafranchi, S.; Surve, A.S.; New, M.I. A Pilot Newborn Screening for Congenital Adrenal Hyperplasia in Alaska. J. Clin. Endocrinol. Metab. 1982, 55, 413–420. [Google Scholar] [CrossRef]
- Pang, S.; Wallace, M.A.; Hofman, L.; Thuline, H.C.; Dorche, C.; Lyon, I.C.; Dobbins, R.H.; Kling, S.; Fujieda, K.; Suwa, S. Worldwide experience in newborn screening for classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Pediatrics 1988, 81, 866–874. [Google Scholar] [CrossRef]
- Speiser, P.W.; Azziz, R.; Baskin, L.S.; Ghizzoni, L.; Hensle, T.W.; Merke, D.P.; Meyer-Bahlburg, H.F.; Miller, W.L.; Montori, V.M.; Oberfield, S.E.; et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2010, 95, 4133–4160. [Google Scholar] [CrossRef]
- Speiser, P.W.; Arlt, W.; Auchus, R.J.; Baskin, L.S.; Conway, G.S.; Merke, D.P.; Meyer-Bahlburg, H.F.; Miller, W.L.; Murad, M.H.; Oberfield, S.E.; et al. Erratum: Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: An endocrine society clinical practice guideline (The Journal of Clinical Endocrinology and Metabolism (2018) 103:11 (4043–4088).). J. Clin. Endocrinol. Metab. 2021, 106, E2853. [Google Scholar] [CrossRef]
- Edelman, S.; Desai, H.; Pigg, T.; Yusuf, C.; Ojodu, J. Landscape of Congenital Adrenal Hyperplasia Newborn Screening in the United States. Int. J. Neonatal. Screen. 2020, 6, 64. [Google Scholar] [CrossRef] [PubMed]
- White, P.C.; Speiser, P. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr. Rev. 2000, 21, 245–291. [Google Scholar] [PubMed]
- Speiser, P.W.; Chawla, R.; Chen, M.; Diaz-Thomas, A.; Finlayson, C.; Rutter, M.M.; Sandberg, D.E.; Shimy, K.; Talib, R.; Cerise, J.; et al. Newborn Screening Protocols and Positive Predictive Value for Congenital Adrenal Hyperplasia Vary across the United States. Int. J. Neonatal. Screen. 2020, 6, 37. [Google Scholar] [CrossRef] [PubMed]
- Tieh, P.Y.; Yee, J.K.; Hicks, R.A.; Mao, C.S.; Lee, W.N. Utility of a precursor-to-product ratio in the evaluation of presumptive positives in newborn screening of congenital adrenal hyperplasia. J. Perinatol. 2017, 37, 283–287. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Draznin, M.; Borgohain, P.; Kanungo, S. Newborn Screening in Pediatric Endocrine Disorders. Endocrines 2022, 3, 107-114. https://doi.org/10.3390/endocrines3010010
Draznin M, Borgohain P, Kanungo S. Newborn Screening in Pediatric Endocrine Disorders. Endocrines. 2022; 3(1):107-114. https://doi.org/10.3390/endocrines3010010
Chicago/Turabian StyleDraznin, Martin, Preeti Borgohain, and Shibani Kanungo. 2022. "Newborn Screening in Pediatric Endocrine Disorders" Endocrines 3, no. 1: 107-114. https://doi.org/10.3390/endocrines3010010
APA StyleDraznin, M., Borgohain, P., & Kanungo, S. (2022). Newborn Screening in Pediatric Endocrine Disorders. Endocrines, 3(1), 107-114. https://doi.org/10.3390/endocrines3010010