Stress Axis in the Cancer Patient: Clinical Aspects and Management
Abstract
:1. Introduction
2. Stress Axis Response to Surgery, Chemotherapy, and Radiotherapy
2.1. Hypothalamic–Pituitary–Adrenal Axis Dysfunction
2.1.1. The Impact of Tumor Mass and Neurosurgery
2.1.2. The Impact of Chemotherapy
2.1.3. The Impact of Radiotherapy
2.2. Primary Adrenal Insufficiency
3. Stress Axis Response to Tyrosine Kinase Inhibitors
4. Stress Axis Response to Immunotherapy
5. Stress Axis Response in the Context of Supportive Therapies and Palliative Care
5.1. The Impact of Glucocorticoid Therapy
5.2. The Impact of Opioid Therapy
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cui, B.; Peng, F.; Lu, J.; He, B.; Su, Q.; Luo, H.; Deng, Z.; Jiang, T.; Su, K.; Huang, Y.; et al. Cancer and stress: NextGen strategies. Brain Behav. Immun. 2021, 93, 368–383. [Google Scholar] [CrossRef]
- Brignardello, E.; Felicetti, F.; Castiglione, A.; Chiabotto, P.; Corrias, A.; Fagioli, F.; Ciccone, G.; Boccuzzi, G. Endocrine health conditions in adult survivors of childhood cancer: The need for specialized adult-focused follow-up clinics. Eur. J. Endocrinol. 2013, 168, 465–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howell, J.C.; Rose, S.R. Pituitary disease in pediatric brain tumor survivors. Expert Rev. Endocrinol. Metab. 2019, 14, 283–291. [Google Scholar] [CrossRef]
- Merchant, T.E.; Williams, T.; Smith, J.M.; Rose, S.R.; Danish, R.K.; Burghen, G.A.; Kun, L.E.; Lustig, R.H. Preirradiation endocrinopathies in pediatric brain tumor patients determined by dynamic tests of endocrine function. Int. J. Radiat. Oncol. Biol. Phys. 2002, 54, 45–50. [Google Scholar] [CrossRef]
- Merchant, T.E.; Rose, S.R.; Bosley, C.; Wu, S.; Xiong, X.; Lustig, R.H. Growth hormone secretion after conformal radiation therapy in pediatric patients with localized brain tumors. J. Clin. Oncol. 2011, 29, 4776–4780. [Google Scholar] [CrossRef] [Green Version]
- Taku, N.; Gurnell, M.; Burnet, N.; Jena, R. Time Dependence of Radiation-induced Hypothalamic-Pituitary Axis Dysfunction in Adults Treated for Non-pituitary, Intracranial Neoplasms. Clin. Oncol. 2017, 29, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Schneider, H.J.; Rovere, S.; Corneli, G.; Croce, C.G.; Gasco, V.; Rudà, R.; Grottoli, S.; Stalla, G.K.; Soffietti, R.; Ghigo, E.; et al. Endocrine dysfunction in patients operated on for non-pituitary intracranial tumors. Eur. J. Endocrinol. 2006, 155, 559–566. [Google Scholar] [CrossRef] [PubMed]
- De Marinis, L.; Fusco, A.; Bianchi, A.; Aimaretti, G.; Ambrosio, M.R.; Scaroni, C.; Cannavo, S.; Di Somma, C.; Mantero, F.; degli Uberti, E.C.; et al. Hypopituitarism findings in patients with primary brain tumors 1 year after neurosurgical treatment: Preliminary report. J. Endocrinol. Investig. 2006, 29, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Fleck, S.K.; Wallaschofski, H.; Rosenstengel, C.; Matthes, M.; Kohlmann, T.; Nauck, M.; Schroeder, H.W.; Spielhagen, C. Prevalence of hypopituitarism after intracranial operations not directly associated with the pituitary gland. BMC Endocr. Disord. 2013, 13, 51. [Google Scholar] [CrossRef] [Green Version]
- Seejore, K.; Kyriakakis, N.; Murray, R.D. Is Chemotherapy Implicated in the Development of Hypopituitarism in Childhood Cancer Survivors? J. Clin. Endocrinol. Metab. 2020, 105, e1897–e1900. [Google Scholar] [CrossRef]
- Rose, S.R.; Schreiber, R.E.; Kearney, N.S.; Lustig, R.H.; Danish, R.K.; Burghen, G.A.; Hudson, M.M. Hypothalamic dysfunction after chemotherapy. J. Pediatr. Endocrinol. Metab. 2004, 17, 55–66. [Google Scholar] [CrossRef]
- Felicetti, F.; Prencipe, N.; Brignardello, E.; Arvat, E. Craniopharyngioma and Posttreatment Pituitary Dysfunction in Brain Tumors. In Hypothalamic-Pituitary Diseases; Casanueva, F., Ghigo, E., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Darzy, K.H.; Shalet, S.M. Hypopituitarism following radiotherapy. Pituitary 2009, 12, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Darzy, K.H. Radiation-induced hypopituitarism. Curr. Opin. Endocrinol. Diabetes Obes. 2013, 20, 342–353. [Google Scholar] [CrossRef] [PubMed]
- Clayton, P.E.; Shalet, S.M. Dose dependency of time of onset of radiation-induced growth hormone deficiency. J. Pediatr. 1991, 118, 226–228. [Google Scholar] [CrossRef]
- Mulder, R.L.; Kremer, L.C.; van Santen, H.M.; Ket, J.L.; van Trotsenburg, A.S.; Koning, C.C.; Schouten-van Meeteren, A.Y.; Caron, H.N.; Neggers, S.J.; van Dalen, E.C. Prevalence and risk factors of radiation-induced growth hormone deficiency in childhood cancer survivors: A systematic review. Cancer Treat. Rev. 2009, 35, 616–632. [Google Scholar] [CrossRef] [PubMed]
- Agha, A.; Sherlock, M.; Brennan, S.; O’Connor, S.A.; O’Sullivan, E.; Rogers, B.; Faul, C.; Rawluk, D.; Tormey, W.; Thompson, C.J. Hypothalamic-pituitary dysfunction after irradiation of nonpituitary brain tumors in adults. J. Clin. Endocrinol. Metab. 2005, 90, 6355–6360. [Google Scholar] [CrossRef] [Green Version]
- Appelman-Dijkstra, N.M.; Kokshoorn, N.E.; Dekkers, O.M.; Neelis, K.J.; Biermasz, N.R.; Romijn, J.A.; Smit, J.W.; Pereira, A.M. Pituitary dysfunction in adult patients after cranial radiotherapy: Systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2011, 96, 2330–2340. [Google Scholar] [CrossRef] [Green Version]
- Follin, C.; Wiebe, T.; Moëll, C.; Erfurth, E.M. Moderate dose cranial radiotherapy causes central adrenal insufficiency in long-term survivors of childhood leukaemia. Pituitary 2014, 17, 7–12. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, S.M.; Safai, S.; Trofimov, A.; Wolfgang, J.; Fullerton, B.; Yeap, B.Y.; Bortfeld, T.; Tarbell, N.J.; Yock, T. Proton radiotherapy for childhood ependymoma: Initial clinical outcomes and dose comparisons. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 979–986. [Google Scholar] [CrossRef]
- Viswanathan, V.; Pradhan, K.R.; Eugster, E.A. Pituitary hormone dysfunction after proton beam radiation therapy in children with brain tumors. Endocr. Pract. 2011, 17, 891–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eaton, B.R.; Esiashvili, N.; Kim, S.; Patterson, B.; Weyman, E.A.; Thornton, L.T.; Mazewski, C.; MacDonald, T.J.; Ebb, D.; MacDonald, S.M.; et al. Endocrine outcomes with proton and photon radiotherapy for standard risk medulloblastoma. Neuro. Oncol. 2016, 18, 881–887. [Google Scholar] [CrossRef] [Green Version]
- Darzy, K.H.; Shalet, S.M. Absence of adrenocorticotropin (ACTH) neurosecretory dysfunction but increased cortisol concentrations and production rates in ACTH-replete adult cancer survivors after cranial irradiation for nonpituitary brain tumors. J. Clin. Endocrinol. Metab. 2005, 90, 5217–5225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyriakakis, N.; Lynch, J.; Orme, S.M.; Gerrard, G.; Hatfield, P.; Loughrey, C.; Short, S.C.; Murray, R.D. Pituitary dysfunction following cranial radiotherapy for adult-onset nonpituitary brain tumours. Clin. Endocrinol. 2016, 84, 372–379. [Google Scholar] [CrossRef]
- Sklar, C.A.; Antal, Z.; Chemaitilly, W.; Cohen, L.E.; Follin, C.; Meacham, L.R.; Murad, M.H. Hypothalamic-Pituitary and Growth Disorders in Survivors of Childhood Cancer: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2018, 103, 2761–2784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deuschle, M.; Lecei, O.; Stalla, G.K.; Landgraf, R.; Hamann, B.; Lederbogen, F.; Uhr, M.; Luppa, P.; Maras, A.; Colla, M.; et al. Steroid synthesis inhibition with ketoconazole and its effect upon the regulation of the hypothalamus-pituitary-adrenal system in healthy humans. Neuropsychopharmacology 2003, 28, 379–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grønning, K.; Sharma, A.; Mastroianni, M.A.; Karlsson, B.D.; Husebye, E.S.; Løvås, K.; Nermoen, I. Primary adrenal lymphoma as a cause of adrenal insufficiency, a report of two cases. Endocrinol. Diabetes Metab. Case Rep. 2020, 2020, 19-0131. [Google Scholar] [CrossRef]
- Van Waas, M.; Neggers, S.J.; van Eck, J.P.; van Noesel, M.M.; van der Lely, A.J.; de Jong, F.H.; Pieters, R.; van den Heuvel-Eibrink, M.M. Adrenal function in adult long-term survivors of nephroblastoma and neuroblastoma. Eur. J. Cancer 2012, 48, 1159–1166. [Google Scholar] [CrossRef] [Green Version]
- Farjado, L.F.; Berthrong, M.; Anderson, R.E. Radiation Pathology, 1st ed.; Oxford University Press: Oxford, UK, 2001; ISBN 0-19-511023-4. [Google Scholar]
- Croce, C.M. Oncogenes and cancer. N. Engl. J. Med. 2008, 358, 502–511. [Google Scholar] [CrossRef] [Green Version]
- Fallahi, P.; Ferrari, S.M.; Elia, G.; Ragusa, F.; Paparo, S.R.; Camastra, S.; Mazzi, V.; Miccoli, M.; Benvenga, S.; Antonelli, A. Therapy of endocrine disease: Endocrine-metabolic effects of treatment with multikinase inhibitors. Eur. J. Endocrinol. 2021, 184, R29–R40. [Google Scholar] [CrossRef]
- Patyna, S.; Arrigoni, C.; Terron, A.; Kim, T.W.; Heward, J.K.; Vonderfecht, S.L.; Denlinger, R.; Turnquist, S.E.; Evering, W. Nonclinical safety evaluation of sunitinib: A potent inhibitor of VEGF, PDGF, KIT, FLT3, and RET receptors. Toxicol. Pathol. 2008, 36, 905–916. [Google Scholar] [CrossRef]
- Elshimy, G.; Gandhi, A.; Guo, R.; Correa, R. Tyrosine Kinase Inhibitors’ Newly Reported Endocrine Side Effect: Pazopanib-Induced Primary Adrenal Insufficiency in a Patient with Metastatic Renal Cell Cancer. J. Investig. Med. High Impact Case Rep. 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Goodman, V.L.; Rock, E.P.; Dagher, R.; Ramchandani, R.P.; Abraham, S.; Gobburu, J.V.; Booth, B.P.; Verbois, S.L.; Morse, D.E.; Liang, C.Y.; et al. Approval summary: Sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin. Cancer Res. 2007, 13, 1367–1373. [Google Scholar] [CrossRef] [Green Version]
- Bilgir, O.; Kebapcilar, L.; Bilgir, F.; Sarì, I.; Oner, P.; Karaca, B.; Alacacioglu, I. Is there any relationship between imatinib mesylate medication and hypothalamic-pituitary-adrenal axis dysfunction? Int. J. Clin. Pract. 2010, 64, 45–50. [Google Scholar] [CrossRef]
- Brassard, M.; Neraud, B.; Trabado, S.; Salenave, S.; Brailly-Tabard, S.; Borget, I.; Baudin, E.; Leboulleux, S.; Chanson, P.; Schlumberger, M.; et al. Endocrine effects of the tyrosine kinase inhibitor vandetanib in patients treated for thyroid cancer. J. Clin. Endocrinol. Metab. 2011, 96, 2741–2749. [Google Scholar] [CrossRef] [Green Version]
- Colombo, C.; De Leo, S.; Di Stefano, M.; Vannucchi, G.; Persani, L.; Fugazzola, L. Primary Adrenal Insufficiency During Lenvatinib or Vandetanib and Improvement of Fatigue After Cortisone Acetate Therapy. J. Clin. Endocrinol. Metab. 2019, 104, 779–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lodish, M.B.; Stratakis, C.A. Endocrine side effects of broad-acting kinase inhibitors. Endocr. Relat. Cancer 2010, 17, R233–R244. [Google Scholar] [CrossRef] [Green Version]
- Barnabei, A.; Carpano, S.; Chiefari, A.; Bianchini, M.; Lauretta, R.; Mormando, M.; Puliani, G.; Paoletti, G.; Appetecchia, M.; Torino, F. Case Report: Ipilimumab-Induced Panhypophysitis: An Infrequent Occurrence and Literature Review. Front. Oncol. 2020, 10, 582394. [Google Scholar] [CrossRef]
- Castinetti, F.; Albarel, F.; Archambeaud, F.; Bertherat, J.; Bouillet, B.; Buffier, P.; Briet, C.; Cariou, B.; Caron, P.; Chabre, O.; et al. French Endocrine Society Guidance on endocrine side effects of immunotherapy. Endocr. Relat. Cancer 2019, 26, G1–G18. [Google Scholar] [CrossRef] [Green Version]
- Barroso-Sousa, R.; Barry, W.T.; Garrido-Castro, A.C.; Hodi, F.S.; Min, L.; Krop, I.E.; Tolaney, S.M. Incidence of Endocrine Dysfunction Following the Use of Different Immune Checkpoint Inhibitor Regimens: A Systematic Review and Meta-analysis. JAMA Oncol. 2018, 4, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.S.; Barroso-Sousa, R.; Tolaney, S.M.; Hodi, F.S.; Kaiser, U.B.; Min, L. Endocrine Toxicity of Cancer Immunotherapy Targeting Immune Checkpoints. Endocr. Rev. 2019, 40, 17–65. [Google Scholar] [CrossRef] [Green Version]
- Hattersley, R.; Nana, M.; Lansdown, A.J. Endocrine complications of immunotherapies: A review. Clin. Med. 2021, 21, e212–e222. [Google Scholar] [CrossRef] [PubMed]
- Iwama, S.; De Remigis, A.; Callahan, M.K.; Slovin, S.F.; Wolchok, J.D.; Caturegli, P. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci. Transl. Med. 2014, 6, 230ra45. [Google Scholar] [CrossRef]
- Faje, A.T.; Sullivan, R.; Lawrence, D.; Tritos, N.A.; Fadden, R.; Klibanski, A.; Nachtigall, L. Ipilimumab-induced hypophysitis: A detailed longitudinal analysis in a large cohort of patients with metastatic melanoma. J. Clin. Endocrinol. Metab. 2014, 99, 4078–4085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paepegaey, A.C.; Lheure, C.; Ratour, C.; Lethielleux, G.; Clerc, J.; Bertherat, J.; Kramkimel, N.; Groussin, L. Polyendocrinopathy Resulting From Pembrolizumab in a Patient with a Malignant Melanoma. J. Endocr. Soc. 2017, 1, 646–649. [Google Scholar] [CrossRef] [Green Version]
- Grouthier, V.; Lebrun-Vignes, B.; Moey, M.; Johnson, D.B.; Moslehi, J.J.; Salem, J.E.; Bachelot, A. Immune Checkpoint Inhibitor-Associated Primary Adrenal Insufficiency: WHO VigiBase Report Analysis. Oncologist 2020, 25, 696–701. [Google Scholar] [CrossRef]
- Crowne, E.; Gleeson, H.; Benghiat, H.; Sanghera, P.; Toogood, A. Effect of cancer treatment on hypothalamic-pituitary function. Lancet Diabetes Endocrinol. 2015, 3, 568–576. [Google Scholar] [CrossRef]
- Stewart, P.M.; Newell-Price, J.D.C. The adrenal cortex. In Williams Textbook of Endocrinology, 13th ed.; Melmed, S., Polonsky, K.S., Larsen, P.R., Eds.; Elsevier: Philadelphia, PA, USA, 2016; p. 527. [Google Scholar]
- Ruiz-Babot, G.; Hadjidemetriou, I.; King, P.J.; Guasti, L. New directions for the treatment of adrenal insufficiency. Front. Endocrinol. 2015, 6, 70. [Google Scholar] [CrossRef] [PubMed]
- Arlt, W.; Allolio, B. Adrenal insufficiency. Lancet 2003, 361, 1881–1893. [Google Scholar] [CrossRef]
- Owattanapanich, W.; Sirinvaravong, S.; Suphadirekkul, K.; Wannachalee, T. Transient adrenal insufficiency in diffuse large B cell lymphoma patients after chemotherapy with short-course, high-dose corticosteroids. Ann. Hematol. 2018, 97, 2403–2410. [Google Scholar] [CrossRef] [Green Version]
- Armitage, J.O. My treatment approach to patients with diffuse large B-cell lymphoma. Mayo Clin. Proc. 2012, 87, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Einaudi, S.; Bertorello, N.; Masera, N.; Farinasso, L.; Barisone, E.; Rizzari, C.; Corrias, A.; Villa, A.; Riva, F.; Saracco, P.; et al. Adrenal axis function after high-dose steroid therapy for childhood acute lymphoblastic leukemia. Pediatr. Blood Cancer. 2008, 50, 537–541. [Google Scholar] [CrossRef]
- Vestergaard, T.R.; Juul, A.; Lausten-Thomsen, U.; Lausen, B.; Hjalgrim, H.; Kvist, T.K.; Andersen, E.W.; Schmiegelow, K. Duration of adrenal insufficiency during treatment for childhood acute lymphoblastic leukemia. J. Pediatr. Hematol. Oncol. 2011, 33, 442–449. [Google Scholar] [CrossRef] [Green Version]
- Ries, L.A.G.; Harkins, D.; Kosary, M.; Mariotto, A.; Miller, B.A.; Feuer, E.J.; Clegg, L.X.; Eisner, M.P.; Horner, M.-J.; Howlader, N.; et al. SEER Cancer Statistics Review, 1973–1999; National Cancer Institute: Bethesda, MD, USA, 2002; p. 467. [Google Scholar]
- Planey, S.L.; Litwack, G. Glucocorticoid-induced apoptosis in lymphocytes. Biochem. Biophys. Res. Commun. 2000, 279, 307–312. [Google Scholar] [CrossRef]
- Byyny, R.L. Withdrawal from glucocorticoid therapy. N. Engl. J. Med. 1976, 295, 30–32. [Google Scholar] [CrossRef]
- Pui, C.H.; Pei, D.; Sandlund, J.T.; Ribeiro, R.C.; Rubnitz, J.E.; Raimondi, S.C.; Onciu, M.; Campana, D.; Kun, L.E.; Jeha, S.; et al. Long-term results of St Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia 2010, 24, 371–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, N.; Abosoudah, I.F.; Sobaihi, M.M.; Algiraigri, A.H.; Roujouleh, F.; Ghurab, F.; Chanoine, J.P. Adrenal function following acute discontinuation of glucocorticoids in children with acute lymphocytic leukemia: A prospective study. Pediatr. Hematol. Oncol. 2019, 36, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Rensen, N.; Gemke, R.J.; van Dalen, E.C.; Rotteveel, J.; Kaspers, G.J. Hypothalamic-pituitary-adrenal (HPA) axis suppression after treatment with glucocorticoid therapy for childhood acute lymphoblastic leukaemia. Cochrane Database Syst. Rev. 2017, 11. [Google Scholar] [CrossRef] [Green Version]
- Van den Beuken-van Everdingen, M.H.; de Rijke, J.M.; Kessels, A.G.; Schouten, H.C.; van Kleef, M.; Patijn, J. Prevalence of pain in patients with cancer: A systematic review of the past 40 years. Ann. Oncol. 2007, 18, 1437–1449. [Google Scholar] [CrossRef]
- Wiffen, P.J.; Wee, B.; Derry, S.; Bell, R.F.; Moore, R.A. Opioids for cancer pain—An overview of Cochrane reviews. Cochrane Database Syst. Rev. 2017, 7. [Google Scholar] [CrossRef]
- Daniell, H.W. Hypogonadism in men consuming sustained-action oral opioids. J. Pain 2002, 3, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Daniell, H.W. Opioid endocrinopathy in women consuming prescribed sustained-action opioids for control of nonmalignant pain. J. Pain. 2008, 9, 28–36. [Google Scholar] [CrossRef]
- Abs, R.; Verhelst, J.; Maeyaert, J.; Van Buyten, J.P.; Opsomer, F.; Adriaensen, H.; Verlooy, J.; Van Havenbergh, T.; Smet, M.; Van Acker, K. Endocrine consequences of long-term intrathecal administration of opioids. J. Clin. Endocrinol. Metab. 2000, 85, 2215–2222. [Google Scholar] [CrossRef]
- Gibb, F.W.; Stewart, A.; Walker, B.R.; Strachan, M.W. Adrenal insufficiency in patients on long-term opioid analgesia. Clin. Endocrinol. 2016, 85, 831–835. [Google Scholar] [CrossRef] [PubMed]
- Rhodin, A.; Stridsberg, M.; Gordh, T. Opioid endocrinopathy: A clinical problem in patients with chronic pain and long-term oral opioid treatment. Clin. J. Pain 2010, 26, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Fountas, A.; Chai, S.T.; Kourkouti, C.; Karavitaki, N. MECHANISMS OF ENDOCRINOLOGY: Endocrinology of opioids. Eur. J. Endocrinol. 2018, 179, R183–R196. [Google Scholar] [CrossRef] [PubMed]
- Glahn, A.; Heberlein, A.; Dürsteler-MacFarland, K.M.; Lenz, B.; Frieling, H.; Gröschl, M.; Wiesbeck, G.A.; Kornhuber, J.; Bönsch, D.; Bleich, S.; et al. Atrial natriuretic peptide, arginine vasopressin peptide and cortisol serum levels in opiate-dependent patients. Neuropsychobiology 2013, 67, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Allolio, B.; Schulte, H.M.; Deuss, U.; Kallabis, D.; Hamel, E.; Winkelman, W. Effect of oral morphine and naloxone on pituitary-adrenal response in man induced by human corticotropin-releasing hormone. Acta Endocrinol. 1987, 114, 509–514. [Google Scholar] [CrossRef]
- Rittmaster, R.S.; Cutler, G.B., Jr.; Sobel, D.O.; Goldstein, D.S.; Koppelman, M.C.; Loriaux, D.L.; Chrousos, G.P. Morphine inhibits the pituitary-adrenal response to ovine corticotropin-releasing hormone in normal subjects. J. Clin. Endocrinol. Metab. 1985, 60, 891–895. [Google Scholar] [CrossRef]
- Bershad, A.K.; Miller, M.A.; Norman, G.J.; de Wit, H. Effects of opioid- and non-opioid analgesics on responses to psychosocial stress in humans. Horm. Behav. 2018, 102, 41–47. [Google Scholar] [CrossRef]
- Watanabe, K.; Kashiwagi, K.; Kamiyama, T.; Yamamoto, M.; Fukunaga, M.; Inada, E.; Kamiyama, Y. High-dose remifentanil suppresses stress response associated with pneumoperitoneum during laparoscopic colectomy. J. Anesth. 2014, 28, 334–340. [Google Scholar] [CrossRef]
- Fountas, A.; Van Uum, S.; Karavitaki, N. Opioid-induced endocrinopathies. Lancet Diabetes Endocrinol. 2020, 8, 68–80. [Google Scholar] [CrossRef]
- De Vries, F.; Bruin, M.; Lobatto, D.J.; Dekkers, O.M.; Schoones, J.W.; van Furth, W.R.; Pereira, A.M.; Karavitaki, N.; Biermasz, N.R.; Zamanipoor Najafabadi, A.H. Opioids and Their Endocrine Effects: A Systematic Review and Meta-analysis. J. Clin. Endocrinol. Metab. 2020, 105, 1020–1029. [Google Scholar] [CrossRef] [PubMed]
- Lamprecht, A.; Sorbello, J.; Jang, C.; Torpy, D.J.; Inder, W.J. Secondary adrenal insufficiency and pituitary dysfunction in oral/transdermal opioid users with non-cancer pain. Eur. J. Endocrinol. 2018, 179, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Hannibal, K.E.; Bishop, M.D. Chronic stress, cortisol dysfunction, and pain: A psychoneuroendocrine rationale for stress management in pain rehabilitation. Phys. Ther. 2014, 94, 1816–1825. [Google Scholar] [CrossRef] [PubMed]
- Nenke, M.A.; Haylock, C.L.; Rankin, W.; Inder, W.J.; Gagliardi, L.; Eldridge, C.; Rolan, P.; Torpy, D.J. Low-dose hydrocortisone replacement improves wellbeing and pain tolerance in chronic pain patients with opioid-induced hypocortisolemic responses. A pilot randomized, placebo-controlled trial. Psychoneuroendocrinology 2015, 56, 157–167. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francesco, F.; Alice, N.; Filippo, G.; Daniela, R.; Enrico, B.; Emanuela, A. Stress Axis in the Cancer Patient: Clinical Aspects and Management. Endocrines 2021, 2, 502-513. https://doi.org/10.3390/endocrines2040044
Francesco F, Alice N, Filippo G, Daniela R, Enrico B, Emanuela A. Stress Axis in the Cancer Patient: Clinical Aspects and Management. Endocrines. 2021; 2(4):502-513. https://doi.org/10.3390/endocrines2040044
Chicago/Turabian StyleFrancesco, Felicetti, Nervo Alice, Gatti Filippo, Rosso Daniela, Brignardello Enrico, and Arvat Emanuela. 2021. "Stress Axis in the Cancer Patient: Clinical Aspects and Management" Endocrines 2, no. 4: 502-513. https://doi.org/10.3390/endocrines2040044
APA StyleFrancesco, F., Alice, N., Filippo, G., Daniela, R., Enrico, B., & Emanuela, A. (2021). Stress Axis in the Cancer Patient: Clinical Aspects and Management. Endocrines, 2(4), 502-513. https://doi.org/10.3390/endocrines2040044